MODALITIES IN A SEQUENCE OF NORMAL NON-CONTINGENCY MODAL SYSTEMS ## H. MONTGOMERY and R. ROUTLEY Some properties of sequences of systems lying between T and S4, and T and S5, having added axioms of the form $\square^n p \supset \square^{n+1} p$ have been investigated in [4] and elsewhere (1). These systems have infinitely many modalities for n > 1. Here we consider an analogous sequence of noncontingency based systems, the i-th member of the sequence being denoted by T_Ai where i is any positive integer. The primitive basis of T_{Δ}^{i} is given by adding the axiom $\triangle^i p$ (where ' \triangle^i ' denotes i iterations of the noncontingency modal connective ' \triangle ', and ' \triangle ° p' denotes 'p') to either S1, (see [3]) or to one of the noncontingency based formulations of T given in [2]. The equivalence of these bases follows from Theorem 5. of [3]. The first member of this sequence, T₁, is deductively equivalent to the Trivial System, the second, T_{Δ}^2 , to S5, and the remaining members of the infinite sequence lie between S5 and T. Each system T_A has 2(i + 1) distinct modalities. A T_{\triangle} -model of degree n is an ordered triple $\langle K_n, R_n, V_n \rangle$ where: - (i) $K_n = \{H_1 \ldots H_n\}$ - (ii) R_n is a relation over K_n such that $H_i R_n H_i$ holds iff $i \ge i 1$. - (iii) V_n is a valuation function from wffs of T_{\triangle} and members of K_n on to $\{t, f\}$, defined as follows: - If P is any variable, A, B any wffs of T_{\triangle} , and H_i , H_j , H_k members of K_n then: - (a) For each P and each H_i either $V_n(P,H_i) = t$ or $V_n(P,H_i) = f$. - (b) $V_n(\sim P,H_i) = t$ iff $V_n(A,H_i) = t$. - (c) $V_n(A \supset B, H_i) = f$ iff $V_n(A, H_i) = t$ and $V_n(B, H_i) = f$. - (1) See remarks and footnotes in [1], pp. 259-260. (d) $V_n(\triangle A, H_i) = f$ iff for some H_i and $H_k : H_i R_n H_i$, $H_i R_n H_k$, $V_n(A, H_i) = f$ and $V_n(A, H_k) = f$. A wff A is true in a T_{\triangle} -model iff for every H_i in the K of that model, $V(A,H_i) = t$. Otherwise A is false in that model. Theorem 1. Every theorem A of T_{\triangle}^n is true in every T_{\triangle} -model of degree n where $n \ge 1$. Proof: Since R_n is reflexive, every T_{\triangle} -model of any degree is a T-model in the usual sense. Thus it remains to show that $\triangle^n p$ is true in every T_{\triangle} -model of degree n where $n \ge 1$. We consider the two possible cases: Either (i) for all H_i in K_n , $V_n(\Delta p, H_i) = t$. or (ii) for some H_i in K_n , $V_n(\Delta p, H_i) = f$. Case (i) The result is immediate by n-1 applications of clause (d) of the definition of V_n . Case (ii) Let 1 be the largest value of i for which $V_n(\Delta p, H_i)$ = f. Then by the definition of the model and the hypothesis, $V_n(\Delta p, H_j) = f$ iff $1 \le j \le 1$. Also, by k-1 applications of clause (d) of the definition, for $1 \le k \le n-1$, $V_n(\Delta^k p, H_i) = f$ iff $1 \le j \le 1 + k-1$. Hence, for n = 1 + k - 1 $$V_n(\Delta^{n-1+1}p,H_j) = f \text{ iff } 1 \leq j \leq n.$$ Hence, by the definition $$V_n(\Delta^{n-1+2}p,H_j) = t \text{ iff } 1 \leq j \leq n,$$ and by 1-2 applications of clause (d), $$V_n(\Delta^n p, H_i) = t \text{ iff } 1 \leq i \leq n.$$ Note that by the hypothesis of the case and the definition of the model, $1 \ge 2$. Theorem 2. $\triangle^{n-1}p$ is false in some T_{\triangle} -model of degree n. Proof: Consider the following model: $V_n(p,H_i) = f$ iff i = 1. Then if n = 1, $\triangle^n p$ is false in this model. If n > 1, then proceeding as in case (ii) of the proof of theorem 1, 1 = 2 by the definition of V_n , and so $V_n(\triangle^{n-1}p,H_i) = f$ iff $1 \le j \le n$. Hence $V_n(\Delta^{n-1}p,H_j) = f$ for every H_j in K_n , and $\Delta^{n-1}p$ is false in this model. Theorem 3. If $0 \le i \le j \le n$ then $\triangle^i p = \triangle^j p$ is false in some T_{\triangle} -model of degree n. Proof: Consider the model where $V_n(p,H_m) = f$ iff $1 \le m$ $\le n - j + 1$. Then $V_n(\triangle^j p, H_k) = t$ for every H_k in K_n , and for i < j, $V_n(\triangle^i p, H_k) = f$ for some H_k in K_n . Hence for some H_k in K_n , $V_n(\triangle^j p \supset \triangle^i p, H_k) = f$, and so $\triangle^i p \equiv \triangle^j p$ is false in some T_\triangle -model of degree n. Theorem 4. The system $T_{\Delta}^{"}$ has 2(n + 1) irreducible modalities. Proof: It is easily shown by the matrix: | > | 1 | 2 | ~ | Δ | |-----|---|---|---|---| | *1 | 1 | 2 | 2 | 1 | | . 2 | 1 | 1 | 1 | 1 | that no wff of the form $\triangle^i p \equiv \sim \triangle^j p$ is provable in T_{\triangle}^n . It follows from theorems 2. and 3. above that the system T_{\triangle}^n has no pair of modalities from; $p, \sim p, \ \triangle p, \ \sim \triangle p, \dots \triangle^n p, \ \sim \triangle^n p$ equivalent, and by theorem 6. of [3] these are all the irreducible modalities in the system. Monash University University of Auckland R. ROUTLEY H. MONTGOMERY ## REFERENCES - [1] Hughes, G. E. and Cresswell, M. J., An Introduction to Modal Logic, Methuen, London (1968). - [2] Montgomery, H. and Routley, R. 'Contingency and non-contingency bases for normal modal logics', Logique et Analyse, vol. 9 (1966), pp. 318-328. - [3] Montgomery, H. and Routley, R., 'Modal reduction axioms in extensions of S1', Logique et Analyse, vol. 11 (1968), pp. 492-501. - [4] Thomas, I., 'Modal systems in the neighbourhood of T', Notre Dame Journal of Formal Logic, vol. 5 (1964), pp. 59-61.