COMPACTNESS AND LOWENHEIM-SKOLEM PROOFS
IN MODAL LOGIC (")

Bas C. vAN FRAASSEN

1. Introduction

In this article we prove a number of theorems in the seman-
tics of the modal systems M (von Wright), B (Becker’s “Brou-
wersche” system), Sy, and S; (Lewis), and their extension to
quantification theory. In section 2. we describe the topological
method used (employed elsewhere to prove similar theorems for
free quantification and identity theory) in a general way. In
section 3. the method is applied to propositional modal logic,
and in section 4. (via a theorem on substitution in infinite sets)
to modal quantification theory.

2. Semantic entailment, compactness, and ultrafilters

The present section concerns the semantics of arbitrary formal
languages, and not just the languages of modal logic. By a
language L. we mean a mathematical structure comprising at
least a set of sentences W,, and a set of admissible valuations
VL., each member of V;mapping some subset of W, into the
set {T, F}. The following definitions are standard.

Definition 1. A sentence A of L is valid (~ A) in L iff v(A)
= T for every admissible valuation v of L.

Definition 2. A set of sentences X of L semantically entails a
sentence A of L (X A) in L iff every admissible
valuation v of L such that v(B) = T for all B in
X is such that v(A) = T.

(1) The research for this paper was supported under NSF grants
GS-1566 and GS-1567. The author wishes to acknowledge his debt to his
colleague R.H. Thomason.
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Henceforth we shall adopt the abbreviations
H,(A) = {veVy, : v(A) = T},
HL = <VL, {HL(A) : AEWL}>;

we shall use “member [subset] of H;, “for* member [subset] of
V\.”, omit the subscript L when convenient, and call the sets
H,, (A) elementary classes and H,, the valuation space of L.

The following definitions and theorem introduce our basic
topic of concern.

Definition 3. The valuation space H of L is compact iff any set
of sentences X of L such that N H(B) = A has
BeX
a finite subset Y such that N H(B) = A.
BeY

Definition 4. A language L has finitary semantic entailment iff
for any sentence A of L, any set of sentences X
such that XA in L has a finite subset Y such
that YA in L.

Definition 5. A language L has exclusion negation iff for every
sentence A of L there is a sentence ~ A of L such
that H(~A) = H— H(A).

Theorem 1. If L has exclusion negation then L has finitary
semantic entailment iff the valuation space of L is
compact.

The proof is immediate from the consideration that in a language
with exclusion negation, X - A if and only if N H(B) N H(~A)
BeX
= A. This theorem shows that in the usual context one may
concentrate on compactness, although for applications in com-
pleteness proofs, one needs in general a proof that the language
has finitary entailment. For this reason, we turn now to a general
method for proving this.
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Definition 6. A filter F on a set X is a non-empty family of
non-empty subsets of X such that if Y, Z are in F,
so is YNZ and any superset of Y.

Definition 7. An ultrafilter on a set X is a filter on X not
properly contained in any other filter on X.

Definition 8. A filter F on a valuation space H converges to a
member v of H iff for every elementary class H(A),
veH(A) iff H(A)eF.

We say that a filter converges iff there is some valuation to
which it converges (*). We note that any filter is contained in
an ultrafilter on the same set (e.g. Gaal, p. 265, Th. 1); and if
F is an ultrafilter on X and Y, Z subsets of X, then Z N YeF iff
ZeF and YeF, and either X-Y or Y is in F (e.g. Gaal, p. 265,
Th:2).

Theorem 2. If every ultrafilter on the valuation space H of

language L converges, then L has finitary semantic
entailment.

Proof. Let X be a non-empty set of L; {X;}, iel the finite non-

empty subsets of X; A a sentence of L; and let X;~A be false
for all iel. Then define

Jn = {veH:v(A) # T and v(B) = T for all BeX,)} for
mel; let J = {Jn}, mel. By hypothesis, J,# A for any mel.
Moreover J is closed under finite intersection: m N ... N,
= Yo where X, = Xn, U...UXm“ . It is easily checked therefore

F={YcH; Y2, for some mel}
is a filter on H. By a well-known theorem on filters noted above,
there is an ultrafilter F’ on H such that FcF'.

Let us assume that all ultrafilters on H converge. Then there

is a valuation v such that veH(B) iff H(B)eF’, for all sentences
B of L.

(a) Let BeX; then {veH : v(B) = T and v(A) = T} €7, and

(*) Our notion of convergence is not the topological notion, though
similar to it.
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this is a subset of H(B), so H(B) eFcF'. Hence veH(B) that is,
v(B) = T, for all B in X.

(b) Let BeX; then {veH:v(B) = T and v(A)*T)} €3; and
this set has an empty intersection with H(A). Hence if H(A)
were in F', F' would contain A; so H(A) ¢F’. Hence v¢H(A) :
v(A) + T.

Therefore, X does not semantically entail A.

QED.

3. Application to propositional modal logic

The languages corresponding to the modal systems M, B, S, S;
(see e.g. Kripke) shall be called L,, L;,L;, L;; we use T to range
over the index set {m, b, 4, 5}.

Definition 9. A t-model structure (z-ms) is a couple M =
<K,R>, where K is a non-empty set and R a
dyadic reflexive relation, and such that R is sym-
metric if T = b, transive if t = 4, and both tran-
sitive and symmetric if T = 5.

Definition 10. The syntactic system Synt is a triple <<A, S, W>
where A is a denumerable set (atomic sentences);
S is the set {a, ~, O0,),(}
W is the least set containing A and such that if
A,B are in W, so are (A A B), ~(A), OA).

Definition 11. A valuation over a ms M = <K,R> is a
mapping v of Kx W into {T, F} subject to the
conditions that for all « in K and A, B in W:
Vo(~A) =T iff v,(A) =F,
v, (AAaB) =T iff v. (A) = v(B) = T,
v (OA) = T iff v, (A) = T for all  in K such
that aRf, where we designate v relativized to
a in K as v, , and omit parentheses where con-
venient.

If there is a -ms M = <K, R> and member a of K such that
v = v., we call V' a t-valuation.
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Definition 12. The language L, is the couple <Synt, Vz>
where V is the set of all t-valuations.

We call W the set of sentences of L. and V¢ the set of admis-
sible valuations of L., and write H, for H; .

Theorem 3. Every ultrafilter on H . converges.

Proof. Let F(x) be the family of all ultrafilters on H,. We
define the relation R(x) on F(t) as follows:
if F, F'eF(x) then FR(x) F’ iff for all AeW such that H.,
(OA)eF, H.(A)eF'.

Lemma 1. M(x) = <F(r), R(x)>> is a t-ms.

Lemma 2. The mapping v of F(1) x W into {T, F} such that
ve(A) = T iff H.(A)eF, for all AeW, for all
F in F(1), is a valuation over M(x).

It is clear that each ultrafilter F on H. converges to the t-valua-

tion vy. Hence it remains only to prove the lemmas.

Proof of lemma 1. In L., OA~ A; hence H.(OA)c H.(A); hen-
ce R(1) is reflexive. In L, A O< (cf. Kripke); let FR(b)F’ and
H,(OB)e F'. If H,(B)¢ F then H,(~B) e F (because an ultra-
filter on K contains either H,(B) or H,, - H;(B)), so then F’ would
contain Hy(O ~B) = H,(~ OB). But H,(OB)NH,(~0OB) =
A\, so this is impossible. Hence R(b) is also symmetric.

In Ly, OA+ OOA; hence Hy(OA)<H,(OOA). Therefore
if FR(4)F’, and H(OA) € F, then H(OOA) € F'. Hence R(4) is
also transitive. In L; we prove similarly that R(5) is both sym-
metric and transitive. QED.

Proof of lemma 2. Because an ultrafilter F must contain either
H.(B) or H.-H.(B) for any sentence B, vp(~B) = T iff vp(B) #
T. Because an ultrafilter contains H.(B A C) = H,(B) N H..(C)
iff it contains both H,(B) and H,(C), vi(B A C) = T iff vx(B) =
Vi(C) = T.

That vi(OB) = T iff v4,(B) = T for all.F’ such that FR(x)F’,
we prove in two steps.

(i) If H.(OA ¢ F then H.(A) ¢ F’ for all F’ such that FR(1)F’;
follows by the deminition of R(x).
(ii) If H.,(OA) ¢ F then F* = {H.(~A)}U{H.(B) : H.(OB)
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e F} is a family of sets such that each of its finite subfamilies
has a non-empty intersection. For if it were not so, then there
would be sentences By, ..., B, such that B, ..., B,~A holds in
L. and H.(OBy),...,H (OB,) ¢ F. But then OB,,..., OB,
~OA would hold in L, (let v, (OA) = Fand v.(OB) = T
fori = 1,1, ..., n; then there is a §§ such that aRp in the relevant
model structure and v, (B) = T for i = 1, ..., n but v, (A) =
F); so then H ([JA) would be in F. We conclude that the family
of supersets of members of F* is a filterbase on H,, included
in an ultrafilter F’. Clearly FR(x)F’ and H,(A) ¢ F'.
QED.

Finitary entailment and compactness theorems for M, B, S,, and
S; now follow by theorems 1. and 2.

4. Application to quantificational modal logic

Compactness proofs can be extended to quantification theory
via a theorem on variable substitution in infinite sets of senten-
ces and a device due to Beth and Hasenjaeger (Beth, pp. 264-
265); van Fraassen sections III and IV). We begin by extending
the language of modal logic to quantification theory along the
lines of Thomason’s semantics for the system Q; (Thomason,
section 5), omitting the theory of identity, names, and definite
descriptions, This is probably the simplest way in which modal
logics can be extended to quantification theory, but the ap-
plication of a general method may appropriately be shown in a
simple case.

Definition 13. The syntactic system QSynt is a quadruple <<V,
P, S, W,> where:
V is a denumerable set (the variables);
P is a non-empty set, at most denumerable (the
predicates) of which each member has associa-
ted with it an integral degree n>>o;
S, is the set {~,a, 0,),(};
W, is the least set such that: if P is a predicate
of degree n and x,,...,x, are variables, then
(Px, ..., X,) € W, and if A, B are in W,, so are
~(A), (AaB), O(A), and (x)(A).
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Definition 14. A 1g-model structure (1g-ms) is a quadruplet
M = <K, R, D, f{> where <K, R> is a t-ms, D
a non-empty set (the domain), and f a function
which assigns to each n-ary predicate P" of QSynt
a set f,(P") of n-tuples of members of D, for each
member o of K.

Definition 15. A valuation over a tqgms M = <K,R, D, {>
is a mapping v of the variables of QSynt into D,
and of Kx W, into {T,F} such that v is a
valuation over <<K,R> and for all o in K, v«
(Prxy...x,) = Tiff <v(xy), ..., v(x,)> e, (P"),
ve((x)A) = T iff v. (A) = T for every valua-
tion v/ over. M which is like v.except perhaps
with respect to x.

If there is a 1g-ms M = <K, R, D, >, member a of K, and
valuation v over M, we call the restriction v of v to a a tg-
valuation (over M).

Definition 16. The language L., is the couple <<Qsynt, V, >
where V.., is the set of all tq-valuations.

We turn now to substitution (cf. van Fraassen, section I). A sub-
stitution function is a one-to-one mapping of the set of variables
into itself. When E is the expression e;e;...e,, we define
f(E) = e* ex* ... e,* where e;* = f(e;) if e; is a variable, and
e;* = e; otherwise.

It is easy to see that such substitution cannot result in confusion
of bound variables, and that f(~A) = ~f(A), f(AAB) =
(f(A) a f(B)), f(OA) = Of(A), f(x)A) = (fx))f(A). If X is a
subset of W,, we define

f(X) = {KA): AeX).

Convention: when f is the only substitution function being
discussed, we write E* for f(E). We shall say that v. satisfies a
set XC W, iff v (B) = T for all Be X.

Theorem 4. For any substitution function f, any tq-ms M, and
any set of sentences X is satisfied by a 1q-valuation
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over M if and only if f(X) is satisfied by a 1q-va-
luation over M.

Proof. Let v be valuation over M; and k € Dy; then we define

the valuations v* and vk to be those valuations over M such
that for all xe V,

v¥(x) = v(x*);
vE(x) = v(y) when x is y* and vk(x) = k when x is not
y* for any yeV.

The theorem now follows from the following two lemmas.

Lemma 3. For any tq-valuation v, and any sentence A, ve(A*)
= v* (A).

Lemma 4. For any tq-valuation v« and member k of Dy, v a
valuation over M, and any sentence A, v«(A) =
v K(A*).

These lemmas are proved by strong induction on the length of A

exactly as are lemmas 1. and 2. in (van Fraassen, section I) ex-

cept for the clauses concerning necessity which we prove below.

Proof of lemma 3. Hypothesis of induction: for all sentences
B of length less than A, and all valuations vz over M, v, (B*) =
vg (B).

Case O: From the hypothesis of induction it follows that for
all B such that aRB, v,(B¥) = T if and only v,*(B) = T.
Therefore, v, ((OB)*) = v, (OMB*)) = T iff v¥ (OB)) = T.

Proof of lemma 4. Hypothesis of induction: for all sentences B

of length less than A, and all valuations v, over M, v,(B) =
8 [

v, K(B*).

Case O: From he hypothesis of induction it follows that for

all § such that aRf, vg(B) = T iff v, *(B*) = T. Hence v_(OB)

= T iff v,X(O(B*) = v, *(OB)*) = T.

QED.

From here on we shall need to consider only one substitution

function f: let us designate alphabetically the i variable as x;
and let f(x;) = xy.
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A set X&' W, in which no odd variables appear (bound or free)
we call a regular set; clearly f(Y) is a regular set for any YC W,
We call a tg-valuation v, a regular valuation iff v satisfies
the following conditions (*) (cf. Beth, pp.264-265; van Fraas-
sen, section III):

With' each natural number m we associate a variable
Ym ; Y1 is th first odd variable which does not appear in
alphabetically the first sentence of the form (x)A; yn+4
is the first odd variable after y, which does not appear
in alphabetically the first (n + 1) sentences of the form
(x)A.

Then v, is regular iff v, ((x)A) = F only if v, ((yx/x)A)
= F, where (x)A is alphabetically the k" sentence which
begins with a universal quantifier.

Here (y/x)A is the result of replacing all free occurrences of x
in A by occurrences of y, after rewriting bound variables if
necessary to avoid confusion of bound variables. We assume
without proof the familiar result that v'(y/x)A = v(A) if v’ is
like v except that v'(y) = v(x), for any sentence A of L,, and
any tq-valuations v’ and v.

The first result we need is that to the satisfaction of regular
sets, only regular valuations are relevant.

Theorem 5. A regular set is satisfied by a valuation v, if and
only if it is satisfied by a regular valuation v.
over the same tq-ms.

This is immediate from the following lemma:

Lemma 5: For any sentence A, if v. and v, are valuations
over the same 1q-ms and alike with respect to all
variables which occur in A, then v (A) = vL (A).

This is proved by an easy induction on the length of A. We are
now in a position to prove that wtih respect to the questions of

(® The present formulation is slightly different from earlier for-
mulations; the device is due independently to Beth and Hasenjaeger
(Beth, loc.cit.).
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finitary entailment (and mutatis mutandis for compactness)
we need only consider the space of regular valuations.

Theorem 6. XA in L., if and only if all regular valuations
which satisfy f(X) also assign T to f(A).

Proof. 1f X~ A then XU{~A} is not satisfiable, so f(XU{~A})
is not satisfiable (Theorem 4). A fortiori, f(XU{~A}) is not
satisfied by any regular valuation; hence every regular valuation
which satisfies f(X) also satisfies f(A).

If XA does not hold, then XU{~A} is satisfiable, hence
f(XU{~A}) is satisfiable (Theorem 4). But f(XU{~A}) is a
regular set, and must then also be satisfied by some regular
valuation (Theorem 5). But then not every regular valuation
which satisfies f(X) also satisfies f(A). -

QED.

Let R be the set of regular tg-valuations and R._(A) those
members of R ., which assign T to A. Then Hy, = <R., {R(A)
: AeW,}> will be called the regular valuation space of L.

That L., has. finitary entailment now follows from Theorems
2,6, and 7. ‘

Theorem 7. Every ultrafilter on Hyp, converges to a valuation
over a 1q-ms with denumerable domain.

Proof. Let F(r) now be the set of all ultrafilters on Hg., and
define the relation R(t), set D(1), and function f(r) as follows:
R(t) : as in Theorem 3.
D(x) = V (the set of variables).
f(t) the function assigning to each n-ary predicate P® the
set f()p(P?) = {<x,..., X : R (P2, ... X,)eF} for
each F in F(1).

Lemma 6. M(x) = <F(x), R(z), D(1), f(1)> is a tg-ms with
denumerable domain.

Lemma 7. The mapping v such that v(x) = x for all x in V,
and of F(r) x W, into {T,F} such that Vi(A) = T
iff R (A)eF, for all AeW, for all F in F(7), is a
regular valuation over M(1).
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It is clear that each ultrafilter F on Hy~ converges to the 1q-
valuation vy, a regular valuation over a model with a de-
numerable domain D(r) = V. Hence it remains only to prove
the lemmas.

Proof of lemma 6. That <<F(t), R(x)> is a 1-ms is proved as
for lemma 1. That D(1) is a denumerable set, follows from the
definition of QSynt. That the function f(r) is as required by
definition 14. also follows immediately from its definition.

QED.

Proof of lemma 7. That v is a valuation over <<F(t), R(t)> is
proved as in lemma 2. In addition vp(Px,...x,) = T iff
R (Prx, ... x,)eF, iff <v(x)), ..., v(x,)=>&f(x)s(P") by the de-
finition of f(1). Finally we prove that vi((x)A) = T iff
v'¢(A) = T for all v’ like v except perhaps at x. It is clear
that such a v’ must assign a variable y, which is possibly not
X, to the variable x, so that we need only prove that R.((x)A)eF
iff R.((y/x)A)eF for all variables y. But R.((x)A) < R.((y/x)A)
and (R,-R_((x)A)) € (R.-R ((yx/x)A)) where (x)A is alpha-
betically the k™ sentence to begin with a universal quantifier,
by the definition of regular valuations. This ends the proof.

QED.

By Theorem 6, this implies that L., has finitary entailment; in
addition the following Lowenheim-Skolem theorem is a corol-
lary to theorem 7.

Theorem 8. A set of sentences of L., is satisfiable only if it is
satisfiable by a valuation over a tq-ms with de-
numerable domain.

It is easy to see that this theorem can be generalized to the
cardinality of the set of variables, which need not to kept de-
numerable. The extension to identity theory can also be carried
out in the usual manner.

Yale University/Indiana University B. C. VAN FRAASSEN
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