A SIMPLE TREATMENT OF CHURCH’S THEOREM
ON THE DECISION PROBLEM

Thomas SCHWARTZ

The proof I will give of Church’s undecidability theorem for
quantification theory is simpler than any other known to me,
and it is more direct: the non-effectiveness of quantificational
validity is not inferred from some other unsolvability result.

Church’s Theorem is deduced from his Thesis (CTh) that every
computable function in the set Z of natural numbers is recursive.

To define recursiveness we set up a formal system whose
vocabulary consists of o, S, =, the parentheses and comma,
the variables x, y, z, w, w,, w,, etc. and for all i, k, the k-ary
function letter *f;.

S and the *f; are function symbols.

Terms are defined thus: variables and o are terms, and if
Ty, ..., T are terms, so are S(r;) and *f(xy, ..., 15).

o, S(0), S(S(0))) etc. are numerals. For n in Z, the numeral n
is defined by setting 0 = 0 and k + 1 = S(k).

An equation is = flanked by terms.

If E is a set of equations, an E-letter is a function letter in E.

“Ere” means e belongs to the set E of equations or is de-
rivable from E by these rules:

R1. If B results from substituting numerals for variables in
A, from A to infer B.

R2. If A(b) results from replacing one occurrence of a in
A(a) by b, from a = b and A(a) to infer A(b).

A recursion is a finite set E of equations such that (1) for
all numerals a, b, if E+~a = b then @ = b, and (2) for all E-let-
ters *f; and ny, ..., n; in Z, there is a unique n for which
El—kfi(ﬁl,..., ﬁ}l)Eﬁ ' _ )

If E is a recursion and # a k-ary E-letter, A% is the function
defined on Z* thus: h%(ny, ..., ny) = n iff Evh(f,, ..., i) = 7.

A function ¢ is recursive iff ¢ = ¥ for some recursion E
and E-letter A.
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If T Z, the characteristic function I'ry of Iis defined on Z
by setting I'j(n) = 0 if nell and T'(n) = 1 if not nepy-

Clearly, if ITis effective, I'[ is computable, and so, by CTh,
I' is recursive.

I will show there is no effective test of (quantificational)
validity for the language L whose well-formed formulas (wffs)
are generated in the usual way from the parentheses and comma,
the universal quantifier ¥ and conditional sign —, the terms in-
troduced above and the 2-place predicate = and 1-place pre-
dicate P.

“=—=A"" means A is a valid wff.

LEMMA. If I is an effective subset of Z, there is an A such
that for all n in Z, |—= A—P(n) iff neyl.

Proof. By CTh there is a recursion E with E-letters hy, ..., h,,
such that hf = ['p for some p =1, ..., m.

Let L be L shorn of all function letters but E-letters and in-
terpreted in Z by assigning O to o, the successor function to S,
identity to =, [T to P and hE; to h; (i = 1, ..., m).

Let A be a conjunction of universal closures of the wffs in E
plus these wifs:

(1) hy(x) = 0> P(x), (2) x=y—>(x=z—>y=2).

(B) x=zy=2)>(z=x2z=y),

(4g) (x = z—y = 2)>@(Wy, oo, Wis1, X, Wicy, ..., w,) = z5g
(Wi, ..o, Wio1, ¥, Wisq, ..., w,) = z), for all function symbols g of
Land i=1,...,r (r = the number of arguments of g).

L and A have these two properties:

(I) (@) If E-1=0, 1=0 is true for all values q, ..., q, of its
variables t;, ..., t,. (B) A is true.

Proof. (a) By induction on v plus the number 1 of occurren-
ces of E-letters in T = o.

If v=1=0, v and o are numerals; thus, since E is a recursion,
T=0, SO T = ¢ is true.

)If v=0 and 1>0, t=o has a part h(F,, ..., ;). Let RE(ry, ...,
rp) =r.

Then EF—h{(F;, o Fk) =F
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Let v'=¢’ result from replacing one occurrence of A7, ..
F)int=o0 by F

Since h{7, ..., 7;) and F both name r, T = o is true if v = ¢
is.

But by R2, E+1' = ¢, so by inductive hypothesis, 7" = o’ is
true, hence so is v = o.

If v>0 and t*=0* results from substituting each g for ¢; in
T =0, Ert"=0" by Ry, so t*=0* is true by inductive hypo-
thesis, so t=o is true for qy, ..., q,.

(B) (1)-(4gi) are obviously true for all values of their variables,
and by (a), so are the wiffs in E. So A is true.

(D () If [FA—>a=b and «(b)=0 follows from a=b and
wa)=0 by R2, |= A->((a)=0—>1(b) = ¢).

B)If =—A—>a=0b and t=0(b) follows from a=b and
1=0d(a) by R2, =— A—=>(r=0(a)—>1=0(b)).

Hence, (y) if = A—a=b, |= A—>1=0¢ and ' =0’ follows from
a=b and 1=0¢ by R2, |—= A—>1v'=¢". _

Proof. (a) By induction on the length of t(a).

If a = t(a), b = 1(b), so = A—>1(a)=1(b), whence |= A—>
(t(a)=0—1(b)=0) by (2).

If a is a proper part of t(a), (a) has the form g(d,, ..., d;_,,
Q(a),di+1, ceey d,.) and T(b) the form g(dl! ...,d,-fi, Q(b),d,‘+1, .
d,).

By inductive hypothesis, = A—(g(a)=0—0(b)=0), so by
(4gi), = A—>1(a)=0->1(b)=0).

(B) = A—=(o(@)=1—0(b)=1) by (a), so = A—{r=0(a)—>1
=a(b)) by (3).

The set of consequences of A includes E and is closed under
R1 (since R1 is valid) and R2 (by (Ily)). So if E e, |[—A—e.
But if nell, T, I'p(n) = hEp(n) = 0, whence E hy(#)=o,
so [= A—h,(A)=o0, and thus |= A—P(7#) by (1). Conversely,
if |= A—>P(7), P(7A) is true by (IB), so nell.

.

*:

Theorem. The class of valid wffs of L is not effective. -

Proof. Suppose the theorem false. Treating each superscript
and subscript digit as a separate symbol, L has a finite vocabu-
lary, so we get an effective enumeration A,, A,, A; etc. of L’s



156 THOMAS SCHWARTZ

expressions by listing L’s symbols in some chosen “alphabetic”
order, then the 2-symbol expressions in lexicographic order,
next the 3-symbol expressions etc. Thus, since validity is ef-
fective, we can effectively tell for each n in Z whether or not
= A,—P(71). Hence I1 = {neZ | not |= A,—P(f)} is effective.
So by the Lemma, there is a k such that for all n in Z,
= A,—P(7) iff nell. So |= A,—>P(k) iff keIl, i.e. = A,—P(k)
iff not = A,—>P(k), a contradiction !
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