A SIMPLE TREATMENT OF CHURCH'S THEOREM ON THE DECISION PROBLEM

Thomas SCHWARTZ

The proof I will give of Church's undecidability theorem for quantification theory is simpler than any other known to me, and it is more direct: the non-effectiveness of quantificational validity is not inferred from some *other* unsolvability result.

Church's Theorem is deduced from his Thesis (CTh) that every computable function in the set Z of natural numbers is recursive.

To define recursiveness we set up a formal system whose vocabulary consists of o, S, \equiv , the parentheses and comma, the variables x, y, z, w, w_1 , w_2 , etc. and for all i, k, the k-ary function letter ${}^k f_i$.

S and the kf_i are function symbols.

Terms are defined thus: variables and o are terms, and if τ_1, \ldots, τ_k are terms, so are $S(\tau_1)$ and ${}^kf_i(\tau_1, \ldots, \tau_k)$.

o, S(o), S(S(o))) etc. are numerals. For n in Z, the numeral n is defined by setting $\overline{O} = o$ and $\overline{k+1} = S(\overline{k})$.

An equation is \equiv flanked by terms.

If E is a set of equations, an E-letter is a function letter in E. " $E \vdash e$ " means e belongs to the set E of equations or is derivable from E by these rules:

R1. If B results from substituting numerals for variables in A, from A to infer B.

R2. If A(b) results from replacing one occurrence of a in A(a) by b, from $a \equiv b$ and A(a) to infer A(b).

A recursion is a finite set E of equations such that (1) for all numerals a, b, if $E \vdash a \equiv b$ then a = b, and (2) for all E-letters kf_i and n_1, \ldots, n_k in Z, there is a unique n for which $E \vdash {}^kf_i(\overline{n}_1, \ldots, \overline{n}_k) \equiv \overline{n}$.

If E is a recursion and h a k-ary E-letter, \overline{h}^E is the function defined on Z^k thus: $\overline{h}^E(n_1, ..., n_k) = n$ iff $E \vdash h(\overline{n}_1, ..., \overline{n}_k) \equiv \overline{n}$.

A function φ is recursive iff $\varphi = \overline{h}^E$ for some recursion E and E-letter h.

If $\Pi \subset Z$, the characteristic function Γ_{Π} of Π is defined on Z by setting $\Gamma_{\Pi}(n) = 0$ if $n \in \Pi$ and $\Gamma_{\Pi}(n) = 1$ if not $n \in \Pi$.

Clearly, if Π is effective, Γ_{Π} is computable, and so, by CTh, is recursive.

I will show there is no effective test of (quantificational) validity for the language L whose well-formed formulas (wffs) are generated in the usual way from the parentheses and comma, the universal quantifier V and conditional sign \rightarrow , the terms introduced above and the 2-place predicate P.

"=A" means A is a valid wff.

LEMMA. If Π is an effective subset of Z, there is an A such that for all n in Z, $\models A \rightarrow P(\vec{n})$ iff $n \in \Pi$.

Proof. By CTh there is a recursion E with E-letters $h_1, ..., h_m$ such that $\overline{h}_p^E = \Gamma_{\prod}$ for some p = 1, ..., m.

Let \overline{L} be L shorn of all function letters but E-letters and interpreted in Z by assigning 0 to o, the successor function to S, identity to \equiv , Π to P and \overline{h}^{E}_{i} to h_{i} (i = 1, ..., m).

Let A be a conjunction of universal closures of the wffs in E plus these wffs:

- (1) $h_p(x) \equiv o \rightarrow P(x)$, (2) $x \equiv y \rightarrow (x \equiv z \rightarrow y \equiv z)$.
- $(3) (x \equiv z \rightarrow y \equiv z) \rightarrow (z \equiv x \rightarrow z \equiv y),$
- (4gi) $(x \equiv z \rightarrow y \equiv z) \rightarrow (g(w_1, ..., w_{i-1}, x, w_{i+1}, ..., w_r) \equiv z \rightarrow g$ $(w_1, ..., w_{i-1}, y, w_{i+1}, ..., w_r) \equiv z)$, for all function symbols g of \overline{L} and i = 1, ..., r (r = the number of arguments of g).

 \overline{L} and A have these two properties:

- (I) (a) If $E \vdash \tau \equiv \sigma$, $\tau \equiv \sigma$ is true for all values $q_1, ..., q_v$ of its variables $t_1, ..., t_v$. (b) A is true.
- Proof. (a) By induction on ν plus the number 1 of occurrences of *E*-letters in $\tau \equiv \sigma$.

If v = 1 = 0, τ and σ are numerals; thus, since E is a recursion, $\tau = \sigma$, so $\tau \equiv \sigma$ is true.

If $\nu = 0$ and 1 > 0, $\tau \equiv \sigma$ has a part $h_i(\overline{r}_1, ..., \overline{r}_k)$. Let $\overline{h}^{E}_i(r_1, ..., r_k) = r$.

Then $E \vdash h_i(\bar{r}_1, ..., \bar{r}_k) \equiv \bar{r}$.

Let $\tau' \equiv \sigma'$ result from replacing one occurrence of $h_i(\overline{r}_1, ..., \overline{r}_k)$ in $\tau \equiv \sigma$ by \overline{r} .

Since $h_i(\bar{r}_1, ..., \bar{r}_k)$ and \bar{r} both name $r, \tau \equiv \sigma$ is true if $\tau' \equiv \sigma'$ is.

But by R2, $E \vdash \tau' \equiv \sigma'$, so by inductive hypothesis, $\tau' \equiv \sigma'$ is true, hence so is $\tau \equiv \sigma$.

If $\nu > 0$ and $\tau^* \equiv \sigma^*$ results from substituting each \overline{q}_i for t_i in $\tau \equiv \sigma$, $E \vdash \tau^* \equiv \sigma^*$ by R_1 , so $\tau^* \equiv \sigma^*$ is true by inductive hypothesis, so $\tau \equiv \sigma$ is true for q_1, \ldots, q_v .

- (β) (1)-(4gi) are obviously true for all values of their variables, and by (α), so are the wffs in E. So A is true.
- (II) (a) If $\models A \rightarrow a \equiv b$ and $\tau(b) \equiv \sigma$ follows from $a \equiv b$ and $\tau(a) \equiv \sigma$ by R2, $\models A \rightarrow (\tau(a) \equiv \sigma \rightarrow \tau(b) \equiv \sigma)$.
- (β) If $\models A \rightarrow a \equiv b$ and $\tau \equiv \sigma(b)$ follows from $a \equiv b$ and $\tau \equiv \sigma(a)$ by R2, $\models A \rightarrow (\tau \equiv \sigma(a) \rightarrow \tau \equiv \sigma(b))$.

Hence, (γ) if $\models A \rightarrow a \equiv b$, $\models A \rightarrow \tau \equiv \sigma$ and $\tau' \equiv \sigma'$ follows from $a \equiv b$ and $\tau \equiv \sigma$ by R2, $\models A \rightarrow \tau' \equiv \sigma'$.

Proof. (a) By induction on the length of $\tau(a)$.

If $a = \tau(a)$, $b = \tau(b)$, so $\models A \rightarrow \tau(a) \equiv \tau(b)$, whence $\models A \rightarrow (\tau(a) \equiv \sigma \rightarrow \tau(b) \equiv \sigma)$ by (2).

If a is a proper part of $\tau(a)$, $\tau(a)$ has the form $g(d_1, ..., d_{i-1}, \varrho(a), d_{i+1}, ..., d_r)$ and $\tau(b)$ the form $g(d_1, ..., d_{i-1}, \varrho(b), d_{i+1}, ..., d_r)$.

By inductive hypothesis, $\models A \rightarrow (\varrho(a) \equiv \sigma \rightarrow \varrho(b) \equiv \sigma)$, so by (4gi), $\models A \rightarrow \tau(a) \equiv \sigma \rightarrow \tau(b) \equiv \sigma$).

 $(β) \models A \rightarrow (σ(a) \equiv τ \rightarrow σ(b) \equiv τ)$ by (α), so $\models A \rightarrow (τ \equiv σ(a) \rightarrow τ \equiv σ(b))$ by (3).

The set of consequences of A includes E and is closed under R1 (since R1 is valid) and R2 (by (II γ)). So if $E \vdash e$, $\models A \rightarrow e$. But if $n \in \Pi$, Γ_{Π} , $\Gamma_{\Pi}(n) = \bar{h}^{E}p(n) = 0$, whence $E \vdash h_{p}(\bar{n}) \equiv o$, so $\models A \rightarrow h_{p}(\bar{n}) \equiv o$, and thus $\models A \rightarrow P(\bar{n})$ by (1). Conversely, if $\models A \rightarrow P(\bar{n})$, $P(\bar{n})$ is true by (I β), so $n \in \Pi$.

Theorem. The class of valid wffs of L is not effective.

Proof. Suppose the theorem false. Treating each superscript and subscript digit as a separate symbol, L has a finite vocabulary, so we get an effective enumeration A_0 , A_1 , A_2 etc. of L's

expressions by listing L's symbols in some chosen "alphabetic" order, then the 2-symbol expressions in lexicographic order, next the 3-symbol expressions etc. Thus, since validity is effective, we can effectively tell for each n in Z whether or not $\models A_n \rightarrow P(\bar{n})$. Hence $\Pi = \{n\epsilon Z \mid \text{not} \models A_n \rightarrow P(\bar{n})\}$ is effective. So by the Lemma, there is a k such that for all n in Z, $\models A_k \rightarrow P(\bar{n})$ iff $n\epsilon \Pi$. So $\models A_k \rightarrow P(\bar{k})$ iff $k\epsilon \Pi$, i.e. $\models A_k \rightarrow P(\bar{k})$ iff not $\models A_k \rightarrow P(\bar{k})$, a contradiction!

University of Pittsburgh

Thomas Schwartz