A SIMPLE NATURAL DEDUCTION SYSTEM

R. ROUTLEY

A natural deduction system ND is introduced and proofs in
it illustrated. This system is much simpler and more flexible
than familiar natural deduction systems: it avoids completely such
complicating devices as subscripting, flagging, ordering of vari-
ables, and distinctions of several sorts of variables or parameters.
Furthermore proofs are valid line by line.

ND is presented as a formal system. It still needs emphasizing
that natural deduction systems can be made just as formal as
Hilbert-type systems. The precise conditions on substitution —
quite important for natural deduction but often suppressed —
are made explicit in the rules of ND.

The correctness of ND is shown by comparing ND with a
Hilbert-type system H. H has as formal theorems effectively the
theorems of restricted predicate logic and of Hilbert’s e-system.
Both ND and H have as primitive symbol the term-forming in-
definite description operator ‘e’. ‘e’ is formally similar to
Hilbert’s e-symbol, (*) but it is intended to have a quite different
interpretation, ‘exf(x)’ is read ‘any x which is f’, not ‘an x which
is f provided there exists an x which is f’. An item x may not
exist or even be possible. Likewise the quantifiers ‘A’ and ‘S’,
though formally similar to ‘V’ and ‘d’, have different intended
interpretations. The non-ontological quantifier ‘S’ reads ‘for
some’, and not ‘there exists a’.

A well-formed formula A of ND or of H is &-free if no e-term
does occur in A. It is shown that the e-free theorems of ND
coincide formally with the theorems of restricted predicate logic.

In the final section ND and a simpler system ND, are investi-
gated independently of classical predicate logics. Interpretations

(1) For details see D. HILBERT and P.BernAys, Grundlagen der Ma-
thematik, vol. 11, Berlin (1939), §1.
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and validity are defined for these systems; consistency, complete-
ness and Skolem-Lowenheim theorems are easily reached.

1
The primitive frame of ND
Vocabulary > ~ A S & ()
x y z x ¥y Z,
j g h J(! gp hl’ f”
p g rp

Formation rules

1. A sentential variable p is a wiff.

2. If f is an n-ary predicate and z, ... z, are n individual vari-
ables or wf terms, then f(z; ... z,) is a wff.

3. If Ais a wff, ~A is a wif.
4. If A and B are wff, then (ADB) is a wif.

5. If Ais a wif and x an individual variable, then exA is a
wif term.

6. If A is a wff and x an individual variable, then (Ax)A and
(Sx)A are wiff.

Transformation rules

1. Hypothesis introduction: —A——-— (A)
& P : Al ’ A2 .
2. Hypothesis elimination: ———= ., ~(A,), where A, is the
ADA;
last hypothesis of A,.
B
3. A-introduction: '—("A'x)_B

provided variable x is not free in an hypothesis of B.
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. (Ax) B
4, A-el tion: ———
elimination S’; B
where z an individual variable or wf term.
S* B|
5. S-introduction: ————
(Sx) B
where z an individual variable or wf term.
6. S-eliminati ) 8
. o-elimination: ——————.
B, (¢,B)
AL Ay .. A,

7. Sentential derivation: B

provided A;> .A;D ... ©. A, DB is a substitution-instance
of a tautology of sentential logic. ;

(By admitting the case where n = 0 some trivial steps could
be removed from later derivations.)

ND has no axioms.

A deduction in ND is a finite sequence of wff each of which
is derived from preceding wff in the sequence (including null
wif) according to the transformation rules of ND. A deduction
is a completed deduction if all hypotheses (introduced by hypo-
thesis introduction) have been eliminated (by hypothesis elimi-
nation) by the end of the sequence.

A wif A is a theorem of ND iff A is the last member of a
completed deduction.

The substitution notation is explained as follows:
1. S‘;TAJ is the wff resulting from substituting variable, wf term

or wff N for all free occurrences of variable u in A, provided
that no free occurrence of u in A is in a wf part (Aw)C or
(Sw)C or ewC of A, where w is a free variable of N (or is N
if N is a variable); and otherwise is A.

2. S'A| is the wff resulting from substituting variable v for
all (free) occurrences of variable u in wff A, provided v is free

in the resulting wif where and only where u is free in A; and
otherwise is A.
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3. Bx(gyC) = &= B!
eyS’;CI

4. A is a substitution-instance of wif B of sentential logic iff

A results from B by simultaneous substitution of e-variants

Cr%, ..., Cx of wff Cy, ..., C, for distinct variables pu, ..., p, in

B, where S* __ A|is an e-variant of $* _A|. For example,
cyS;C | ezC

f(eyg(y)) = f(ezg(2)) is a substitution-instance of p = p.

Sample theorems of ND

(Sy)Ax)f(x,y) D (Ax)(Sy)f(x,y)
Proof: (SyXAx)f(x,y) ((Sy)(Ax)f(x,y)
(Ax)f(x, ey(AX)f(x,y))
f(x, ey(Ax)f(x,y))
(Sy)(x,y)
(Ax)(Sy)f(x,y)
(SYXAX)f(x,y) D (Ax)(Sy)f(x,y) ~ ((Sy)XAx)f(x,y))

2 (Ax)g(x) > (Sx)g(x)

Proof: (Ax)g(x) ((Ax)g(x))
g(x)
(Sx)g(x)
(Ax)g(x) > (Sx)g(x) ~((Ax)g(x)).

Proofs can be presented more perspicuously by using a lining
technique to show the extent of hypotheses. In place of expres-
sions written to the right of a (vertical) proof in hypothesis in-
troduction and elimination, a line ‘[’ will be introduced, when
an hypothesis A is introduced, to the left of the proof but to the
right of all lines already appearing to the left of the proof
sequence. This line will be continued down the proof until the
last member of the sequence before hypothesis A is eliminated
at which stage the line will terminate. Because of the condition
on hypothesis elimination, lines will never cross. The lining
technique has a similar status to familiar conventions for simpli-
fying primitive bracketing notation. Derivations can also be
clarified by writing in the margin to the left of a sequence
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element indications as to how that element is obtained. These
techniques will be illustrated in succeeding proofs.

3. (Sx)pvf(x)) . p v (Sx)f(x)

Proof: ’f(Sx)(pr(x)) H-introduction
pvf(ey(pvi(y))) S-elimination
[Hey(pvi(y)) H-introduction
(Sx)f(x) S-introduction
fey(pviy))) o (Sx)f(x) H-elimination
pv(Sx)f(x) S-derivation
(Sx)(pvi(x)) o. pvSx)f(x) H-elimination

4, ~(Ax) ~ f(x)=. (Sx)f(x)

Proof: P(x)
(Sx)f(x) S-introduction
f(x) 2 (Sx)f(x)
~(Sx)f(x) o ~f(x) S-derivation
[~ (Sx)f(x) '
~ f(x) S-derivation
(Ax) ~ f(x) A-introduction
~(Sx)f(x) o (Ax)~f(x)
~(Ax)~ f(x) D (Sx)f(x) S-derivation
[(Sx)f(x) & (Ax) ~ f(x)
(Sx)f(x)
fleyfy) S-elimination
(Ax) ~ f(x) S-derivation
~ f(eyf(y)) A-elimination
feyf(y)) & ~ f(ey f(y)) S-derivation

(Sx)f(x) & (Ax) ~ f(x) o. f(eyf(y)) & ~ f(eyf(y))
f(eyf(y)) o feyf(y)) o. (S0)f(x) D ~(Ax) ~f(x)

S-derivation

|'f(€yf(y)) .
f(eyf(y) S-derivation
feyf()) o fleyf(y))

(Sx)f(x) o ~(Ax) ~ f(x) S-derivation

~(Ax)~ f(x) =. (Sx)f(x) S-derivation
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These proofs illustrate several of the techniques used in ND
proofs. In practice the proofs would be written in a much ab-
breviated form.

Two derived rules of ND.
~(Ax)~B

(Sx)B

The proof directly generalises upon 4. above.

1. A quantifier conversion rule:

S/ B|
2. Extended A-introduction: —0m7m —— .
(Ax)B

provided variable y is not free in an hypothesis of the premiss.

Proof: Case 1. S’;‘fB1 is B. Then the result is immediate from

A-introduction.

Case 2. S’iBW is not B.

(Ay)S"B |'

SYS*B || A-elimination
7 S'yS'*B || is B

B X ¥

(Ax)B A introduction;

in this case x is
not free in the

hypothesis
(Ay)S*B| > (Ax)B
Now (1) S’-;‘_ B|
(Ay)S’*B |, provided y is not
! free in an hypothesis
of (1)

(Ax)B S-derivation
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Pathological examples which illustrate typical violations of
flagging, ordering and related restrictions in familiar natural
deduction systems.

1. (Sx)g(x) o (Ax)glx)

Attempted proof: [(Sx)y-(x)

gleye(y))
(Ax)g(x)

This last step is illegal: no rule permits generalisation on a wf
term.

2. f(y) o (Ax)f(x)

Attempted proof: I'f(y)
(Ax)f(x)

This step is invalid; for generalisation has been made on a
variable free in the hypothesis.

3. (Sx)f(x) & (Sx)glx) . (Sx)(f(x) & g(x)).

Attempted proof: [(Sx)f(x) & (Sx)g(x)
(Sx)f(x)

f(eyf(y))

(Sx)g(x)

g(eyg(y))

Heyf(y) & g(eyg(y))
(Sx)(f(x) & g(x)).

But no rule permits S-introduction on different e-terms.

4. (Ax)Sy)f(x,y) o (Sy)(Ax)f(x,y).

Attempted proof: T(Ax)(Sy)f(x,y)
(Sy)f(x,y)
fx,eyf(x,y))
(Ax)fCx, eyf(x,y))
(SyXAx)f(x,y)
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This step is invalid: the introduction of ‘S’ here does not ac-
cord with the S-introduction rule. (Ax)f(x, eyf(x,y)) is not
Sy (Ax)f(x,y) |, since x would be bound under the sub-

eyflx, )
stitution. This kind of failure can be foreseen: it is preceded by
the binding up of a variable free in an e-term, in particular by
A-introduction. Note that:

(Ax)(Sy)f(x,y) o (Ax)f(x,eyf(x,y)) is an e-theorem.

In 1955 Wang (*) suggested combining use of Hilbert’s e-sym-
bol with the method of natural deduction as developed by Quine.
But the system Lg which Wang proposed is inadequate: for
either it permits the derivation of pathological examples like 2.
and 4., or, interpreted differently as suggested by the assertion
signs, it sanctions very few theorems.

II

The system H. The vocabulary and formation rules of H are
like those of ND except that quantifiers ‘A’ and ‘S’ are omitted
throughout.

Axiom schemata

H1: A, provided A is a substitution instance of a tautology of
sentential logic.

H2: S’;Bl O Bx(eyB), z an individual variable or wf
- term (weak e-scheme).
Transformation rules

RH1: A,A>B—B. (modus ponens)
RH2: B — Bx(ey ~B). (generalisation)

H1 could be extended to include RH2.

() See Hao WanG, A Survey of Mathematical Logic, Science Press -
Peking and North-Holland Publishing Company - Amsterdam (1963), 315-
316. A related idea was introduced by Hailperin: see T.HAILPERIN, ‘A
Theory of Restricted Quantification I1I’, The Journal of Symbolic Logic,
Volume 22 (1957), 118-126.
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Definitions
1. (Sx)B = Dt Bx(eyB).
2. (Ax)B =p; Bx(ey ~B).

Theorem 1: Every theorem of H is a theorem of ND.

Proof: The axioms, rules and definitional equivalences of H
are derived for ND.

Hi1 |’B
B
BoB

A , provided A is a substitution instance of a
tautology of sentential logic: by S-derivation.

H2 [S*B|
(Sx)B S-introduction

Bx(eyB) S-elimination
S’; B | o Bx(eyB).

RH1. If A and A DB are theorems of ND then B is a theorem
of ND. For the completed deductions of A and A DB can be
combined. Then, using S-derivation, B can be obtained as the
conclusion of a completed deduction.

"RH2. If B is a theorem of ND then B is the conclusion of a
completed deduction. To this deduction the following elements
are added:

B
(Ax)B A-introduction, since B has no
hypotheses.
(2) Bx(ey ~B) A-elimination.

Since (2) is the conclusion of a completed deduction, (2) is
also a theorem of ND.

Definition 1. [(Sx)B
Bx(eyB)
(Sx)B o Bx(eyB)
|‘Bx(ayB)
(Sx)B S-introduction
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Bx(eyB) o (Sx)B

(Sx)B =. Bx(eyB) S-derivation
Definition 2. [(Ax)B

Bx(ey ~B)

(Ax)B o Bx(ey~B) A-elimination
[~B "~(Ax)B o (Sx)~B
(Sx)~B ~(Ax)B

~B o (Sx)~B (Sx)~B

~(Sx)~B o B ~ Bx(ey ~ B)
[~ (Sx)~B ~{(Ax)B o ~Bx (ey~B)
B Bx(ey~B) o (Ax)B
(Ax)B

~(Sx) ~B o (Ax)B  (Ax)B = Bx(ey~B)

Thus every proof in H can be replaced by a completed de-
duction in ND.

An e-free formula (sequence) A of H is a relettered wff
(theorem, proof) of Church’s F'' if A is obtained from a wff
(theorem, proof) A’ of F'' by replacing each symbol in A’ by
its corresponding symbol in the vocabulary of H, e.g. ‘F’, by ‘f’,
‘G’ by ‘g’, ‘V’ by ‘A’ ().

Theorem 2: If A is a relettered wff of Church’s F'F, then A is a
wif of H.

Proof: By induction over the formation rules of F!* and H once
the correlation between symbols is set up explicitly.

Theorem 3: Every relettered theorem of Church’s F'f is a
theorem of H.

Proof: The propositional postulates of F!F follow directly from
H1;the rules of F'* are immediate. It remains to establish re-
lettered quantificational schemata of F!P:

(®) For details of FIP see A. CHURCH, Introduction to Mathematical
Logic, vol. 1, Princeton (1956), 169-173,
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(1) (Ax)A o S: A |, z a variable or wf term;

(2) (Ax)A o B) o.A o (Ax)B, x not free in A;
and the scheme
(3) (Sx)A = ~(Ax)~A.
ad (1) S*~A > .~A ~A),
(1) » = x(ey~A) Ho.
Result by contraposition and definition 2.

ad (2) S"e g (A>B)| o. ~(A o Bx(ey ~(A D B))),
y

~

x not free in A. H2.
#x ~(A D Bx(ey~B)) o. ~(A DBx(ey~(A > B))), x not free
in A.
#+ A D Bx(ey~B(A D B)) ©. A D Bx(ey~B), x not free in A.
#+ (AX)(A © B) ©.A D (Ax)B, x not free in A. Definition 2.

ad (3). 1. ~(Ax)~B = ~ ~Bx (ey~ ~B) Definition 2.
2. = (Sx)~ ~B | Definition 1.
3. Bx(ey~ ~B) o.Bx(ey~ ~B) H2.
4., ~ ~Bx(eyB) . ~ ~Bx(ey~ ~B) H2.
5. ~ ~Bx(ey~ ~B) =. Bx(eyB) 3, 4.
6. (Sx)~ ~B =.(Sx)B 5, Definition 1.
7. (Sx)B = ~(Ax)~B 2,6.

Theorem 4: Every relettered theorem of Church’s F'* is a
theorem of ND. By theorems 1 and 3.

A deduction theorem for H

A finite sequence of wff B, B,,... B, of H is a proof from
hypotheses A,, A,...A, in H if for each i either
(1) B; is one of A, As...A,,
or
(2) B; is an axiom,
or
(3) B; is inferred by modus ponens from major premiss
B; and minor premiss B,where j<<i, k<<i,
or
(4) B; is inferred by A-elimination from B;, where j<7i,
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or
(5) B, is inferred by S-introduction from B;, where j<<i,
or
(6) B; is inferred by A-introduction from B;, where j<lj,
or
(7) B; is inferred by S-elimination from B;, where j<<i.
‘A;...A,~B,’ symbolises ‘there is a proof of B, from hy-
potheses A,...A,’".

Theorem 5 (Deduction theorem): If A, ... A—B,, then A, ...
An_l,I—An:}B.

Proof: Let By, By, ... B,, be a proof of B(=B,) from hypotheses
Ay, ... A,. Construct the finite sequence of wif A, 5B, A, DB,,
A,DB,. It is shown how to insert a finite number of additional
wif into this sequence so that the resulting sequence is a proof
of A, o B from hypotheses A,, ... A,. The following cases are
exhaustive: :

Cases 1a, 1b, 2, 3: as in Church (‘) apart from minor modifica-
tions.

Case 4: B, is S’z‘ B | and B; is (Ax)B. Insert before A, o B; the
theorem (Ax)BoS*B| and its consequence A, D (Ax)B D.
A, D S’; B]|.

A, D B; then results by RH1.

Case 5. B; is (Sx)B and B; is S:B] , for some B. Insert before
A, D B; the theorem S*B|>(Sx)B. an immediate consequence
of H2, and its consequence A, D S’;B] 5.A, D (Sx)B. A, o B,
results by RH1.

Case 6: B; is (Ax)B;, where x is not free in A, A,...A,. Insert
before A, o B; the theorem (Ax)A, o B;) >.A, o B;, and
(Ax)(A, o B;) which results by RH2. A, o B; then' follows
by RHI1.

(Y) A.CHuRCH, op. cit, 197-198.
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Case 7: B; is Bx(eyB) and B; is (Sx)B. Insert B; o B; (from
definition 1) and A, > B; . A, o B; before A, o B;. Then
apply RHI1.

Theorem 6: If every wif in the set A, A,, ... A, also occurs
in the set C;,C,, ... C, and if A, As, ...A,+B, then C;,Cs, ...
C.—~B. The proof is an adaption of Church’s *362 (). Only
generalisations upon individual variables need however be con-
sidered.

Theorem 7: A is a theorem of H iff there is a proof of A from
null hypotheses in H.

Proof: If A is a theorem, then the proof of A provides a proof
of A from null hypotheses. Conversely if there is a proof of A
from null hypotheses, then the proof of the deduction theorem
specifies effective methods for converting this proof sequence
in a proof of A. For each derived rule, used in cases (4)-(7), is
there vindicated by derivation from rules and theorems of H.
The result then follows using the definition of ‘theorem of H’.

Theorem 8: Every theorem of ND is a theorem of H.

Proof: It is shown that a completed deduction with A as last
member in ND can be effectively replaced by a proof of A in H.
The argument is by induction over the length of deductions in
ND. The theorem then follows by generalisation.

Suppose, for induction hypothesis, that a deduction B,, B,, ...
Bmkin ND of B, kfrom hypotheses A4, As, ... Al1k can be replaced
for H by the set of proofs from hypotheses:

AI’ Anl |"Bm1 ’ (ll)

Al, nee Ankl— Bm k (121()!

where the set of hypotheses A;, A,, ... Ay, of (1)) is included
(properly or improperly) in the set of hypotheses of (1;.,) for

(3) A.CHURCH, op. cit., 199-200.
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2

each i, and B, ,... B, belong to the proof sequence B, ..
B s
my

On this induction hypothesis it is shown that a deduction
sequence in ND to B(mmk, the successor, in the deduction of A

to By, can be replaced for H either (i) by the set of proofs from
hypotheses
All see An '_Bml’ (11)

1

Al!"'Ankr'B(mi-l)k’ (Ik')
where A, ... A,,kand By, , ... Buk_y are as before:

or (ii), just in the case that an hypothesis is eliminated in the
ND proof sequence, by the set of proofs from hypotheses

Ay, ... Ay By, a1y

Aln e Anj |_B(m+1)ks (lj),
where By, 1), is A“k > By, and where Anjis the last hypothes-

is introduced in the ND sequence before Ay

or (iii), just in the case that a new hypothesis is introduced in
the ND proof sequence, by the set of proofs from hypotheses:

Al’ Anl'— Bm1 ’ (11)
Al! Ankl_ erk (lk)
AI....Ank,B(_m.,.l)k I—B(m+|)k (lk+1)

The complication can be attributed to the occurrence of sub
proofs. There are three cases to consider:-

(a) B(m+1)k is joined to the deduction sequence in ND of A by

sentential derivation, A-elimination, S-introduction, A-introduc-
tion or S-elimination. Then case (i) obtains, and (1’%) is obtained
from (1) and/or (1;)—(I;_,) by corresponding steps permitted



A SIMPLE NATURAL DEDUCTION SYSTEM 143

in a proof of B, ., from hypotheses in H and by application
of theorem 6. For example, if ij is (Ax)C and B+, I8 S"ZCI

and By 18 obtained from ij in ND by A-elimination, then

(") is obtained from (1;) by case (5) given under the character-
ization of a proof from hypotheses and theorem 6. Note that the
conditions on A-introduction are guaranteed by the ND proof
sequence.

(b) B<m+1)k is Ank = Bmk, and is joined to the deduction of
A in ND by elimination of hypothesis Ay, - Then case (ii) ob-

tains, and (l;) is derived from (1) by the deduction theorem

for H. In case (ii) exhausted proofs from hypotheses are discard-
ed.

(c) B“‘“Uk is joined to the proof sequence of A in ND by

hypothesis introduction. Case (iii) obtains. Since (I, ;) is a proof
from hypotheses for H, it can be added to the set of proofs from
hypotheses.

Case (a) also takes care of the induction basis.

It follows by induction that every stage in the proof sequence
of A in ND can be effectively replaced for H by a set of proofs
from hypotheses. Therefore the last stage, where A is obtained
as the conclusion of a completed deduction, can be effectively
replaced for H by a proof of A from zero hypotheses. For an
hypothesis is introduced and eliminated in the representing sets
of proofs from hypotheses for H, when and only when an
hypothesis is introduced or eliminated in the ND proof sequen-
ce. But, by the proof of theorem 7, a proof of A from zero
hypotheses effectively yields a proof of A in H.

Theorem 9: ND and H are deductively equivalent, i.e. thelr
theorem sets coincide. By theorem 1 and 7.

By eliminating quantifiers as in H, the primitive rule structure
of ND could be much reduced. Consider the natural deduction



144 R. ROUTLEY

system ND; which has the same primitive and defined symbols
as H and the following rules: Hypothesis introduction and
elimination, sentential derivation, and

3 B _ provided x is not free in an
Bx(ey ~ B) hypothesis of B.
S*BI
6. —_—
Bx(eyB)

Rules 3’ and 6’ can be combined in one artificial rule scheme.
‘Deduction’, ‘completed deduction’ and ‘theorem’ are defined
as for ND.

Theorem 10: ND;, ND and H are deductively equivalent.

Theorem 11 (): If B and A, A,,... A, are efree and there
is a proof of B from hypotheses A, ... A, in H, then there

is a relettered (e-free) proof of B from hypotheses A, A, ... A,
in F'P,

Proof: Let B be e-free and let the proof of B from e-free hy-
potheses Ay, Ag, ... A, consist of the sequence

B, Bs, ... By, (o)
where B, = B. In this proof sequence make the following re-
placements:-

(i) Replace each e-term introduced by S-elimination system-
atically, in an order determined by the first appearance of the
e-term in the proof-sequence, by the first variable alphabetically
later than any variable already occurring in the proof sequence

(). Terms exA and €yB are replaced by the same variable
iff A is S’;{BI.

(ii) Do the same for remaining e-terms introduced by A-elimi-

nation. Then a new sequence

B,/,B’, ... B, ®
is obtained.

(°) This theorem embodies the main part of Hilbert’s second g-theorem:
see HILBERT and BERNAYS, op. cit., 18,
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With the exception of finitely many, say k, applications of
(Sy)C;

w 1

the sequence (B), after supplementation by finitely many in-
sertions, satisfies Church’s requirements on a proof from hy-
potheses in F/”. First, occurrences of cases (1), (2), (3) and (6)
under a proof from hypotheses in H in the sequence (a) are
guaranteed in the sequence (B) by cases (1), (2) and (7), (3) and
(4), respectively, of a proof from hypotheses in F'P. The substi-
tutions made in going from (a) to (B) provide no obstacle,
because of the choice of new substituted variables. It remains
to consider cases (4) and (5) under a proof from hypotheses
in H.

ad (4): Suppose B; in sequence (u) is obtained from B; (where
i<j) by A-elimination; so B; and B; are of the form $*B|,
and (Ax)B respectively. Then B’ is subst SXB|, where

the changes made under Subst. in B are those, specified in
(i) and (ii) above, and where u is z if z is a variable and an
appropriately chosen new variable if z is a term. Thus B; is
S’l‘1 Subst B|. Also B;’ is Subst (Ax)B, i.e. (Ax) Subst B. Con-

S-elimination of the form

1<i<k),

sequently B;" follows from B, by A-elimination. Now insert
before B;" into (8) By > B’ as permitted by (2) in the re-
quirements on a proof from hypotheses in F'’. Then B, results
from B;’ in the supplemented sequence (B) by proof steps per-
mitted in a proof from hypotheses in FIF,

ad (5): Suppose B;’ in (u) is derived from B; by S-introduction.
The case is similar to (4) except that further insertions must
be made in (8), namely & proof of S¥ > (Sx) B| before Bj'.

Consequently

Al:---An! S"'-.c1|) S-"-k Cl“l—B

k

holds for F'P, where a proof of B from these hypotheses is

provided by the supplemented sequence (B), and where w; is

the i"™ variable alphabetically later than any in (a), for each

i— (I<<i<k) — except variables free in hypothesis S¥; C; |
w,

1
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for some i. Suppose there are m cases of generalisation upon
variables free in hypotheses of the proof sequence, where the
i" (1<j<m) is of the form:

——___ and z; is not free in A, ... A,.

(AZJ) DJ, ] 1 n

Then the supplemented sequence (f) guarantees for F'¥ the

following proof of B from hyoptheses:
A1 An, (Azm)Dm, (Azl)Dl,

Syl C1|,...Syk Ck“—B (U)
"y "k
Now each of the hypotheses S¥, Cy|, ...
Yk

v
S‘: C;| of (a) can be eliminated in turn. Suppose for induction

1

basis and step the elimination has been completed up to S¥;.;
i+1

Ci+l | , S0 that Al, A,l, (Az,,,)bm..., S*'ICI [ — S"'i+1 Ci+1 ]I—B

w W‘i“‘1
It follows by the deduction theorem for F'*.
A; S;1C1 [I— Syi-{—l C“I |DB
w,

i+l

”
Since w;, ,, by its choice, does not occur in the premisses Sw1
Cil|,...S% C;| of this proof from hypotheses, it follows by

generalisation (7).
A ...8%Cil~ (A% +1XS%,1 Ci.1|DB).
w. Vis1
Since, further, w;.; has no free occurrences in B, by relettered
*364,
Ay .. s S% G = (8%,9) 8%+, IDB.
W, w

i i+l

(") This step is not permitted in a proof from hypotheses for FIP
since (Az;)D,, for some j, may contain w,,, free. However the step is
permissible since hypotheses (Az )D , (Az,)D, are not eliminated
by the deduction theorem. For the more general deduction theorem used,
see S.C. KLEENE, Introduction to Metamathematics, New York (1952),
p.97.
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As w;. does not occur free in C;, ;, by choice of w;.,, it follows
by relettered *378 and by substitutivity of equivalents,

Al, vai Cj [r—(Sl'iﬂ) Ci+1:DB.

1
Since, however, (Sy;,;) C;., has already been derived at an
earlier stage in the deduction sequence (B), it follows by *362,

AI, Sjl Ci ,I—(SYHI) Ci*'l'

1
Thus, by modus ponens
A1 Syi Ci |!—B,

and by iteration
A], sy An: (AZm)Dm, (AZ])D; I—B (6)
But the proof from hypotheses (3) at the same time supplies

premises (Az,)D,, ... (Az))D,, by generalization from the al-
ready available D,, ... D,, respectively, since variables z,, ... z;

are not free in hypotheses Ay, ... A,. Thus the proof sequence
which guarantees (3) at the same time guarantees
Al,...AnD—B. (8)

Finally, (¢) satisfies the requirements of a proof of B from hy-
potheses A,, ... A, for F'P, since its proof sequence does satisfy
requirements for a proof from hypotheses for F'P,

Theorem 12: If A is an e-free theorem of H then A is a relet-
tered theorem of FIF.

Proof: If A is an e-free theorem of H then, by theorem 7, there
is a proof of A from null hypotheses. Therefore, by theorem 11,
there is an e-free proof of A in F' from null hypotheses.
Therefore there is a proof, necessarily e-free of relettered A in
F'P; so A is a relettered theorem of F!P,

Theorem 13: A is an e-free theorem of ND and of ND, iff A
is a relettered theorem of F'F,

Proof from theorems 12, 10 and 4.
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Theorem 14: ND, ND, and H are consistent.

Proof: As F'F is consistent, relettered F!¥ is consistent. There-
fore, by theorems 10 and 13, ND, ND, and H are consistent.

IIT

Consistency and completeness of ND are now studied direct-
ly. Proofs are truncated by proving results for ND,.

From any wff of ND; (or of H) an associated e-free wiff is
obtained by deleting (or eliminating definitionally) all quan-
tifiers and replacing every occurrence of the form ezA, where
A is a wff, by an individual variable. From any wiff an as-
sociated wff of sentential logic (an aws) is obtained by first
forming the .associated e-free wff and then, in the latter, re-
placing every wif part f(z,, ... z,) by a sentential variable not
previously occurring in the wff, in accordance with the require-
ment that two wf parts f(zy, ... z;) and g(y;, ... y,) are replaced
by the same sentential variable iff f and g are the same predicate.

Theorem 1: Every theorem of ND, (and of H) has a theorem
of classical sentential logic as aws.

Theorem 2: ND and ND, are simply and absolutely consistent.

Proof: If ND, is simply inconsistent, then for some wff B both
B and ~B are theorems of ND,. Therefore by theorem 1 their
aws B* and ~B* are theorems of classical sentential logic. As
this logic is however simply consistent ND, is simply consistent.

The semantics for ND; now introduced presupposes some non-
ontological set theory.

A semantical basis for ND; (or H) is a triple S = <d, e, ¢,
where (i) the individual domain d is a set (possibly null) of
items, (ii) e is a class of relation-in-extension over d, and (iii) c
is a choice function over d, such that, for each non-null subset
d’ of d, c(d’) is an item of d’, and such that otherwise c(A) =
cd), and if d = A, c(d) = A. A basis S is usual if e is the
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class of all relations over d. The null domain is not excluded:
over this domain f(x), (Sx)f(x) and (Ax)f(x) have truth-value F,
since (Aw)(Agw), while ~f(x), (Sx)~f(x) and (Ax)~f(x) have
value T.

An interpretation I of ND, and its applications over basis S
is an assignment I which assigns to each sentential constant one
of the truth-values T or F, to each individual constant an
element of d, and to each n-place predicate constant an n-place
relation of e. Thus sentential variables are variables having T
and F as their range; individual variables are variables having
items of d as their range; and n-place predicate variables are
variables having n-place relations of e as their range. For each
constant and variable u, I(u) is the assignment-value of u under
I. *A has truth-value T’ is abbreviated ‘TA’. Truth-value assign-
ments are relative to a given interpretation. Now, given I, truth-
values and further assignment-values are defined inductively,
relative to given assignments to free variables, as follows:

(i) A wiff consisting of a sentential variable p alone has
value T iff I(p) is T;
(ii) A wif f(s;, ... s,) consisting of n individual subject terms

Sy, ... 8, and of n-place predicate f has value T iff

<l(sy), I(ss), ... I(s,))> e I(f), ie. Tf(sy, ... sn) = IOy,
O ()T

(iii) I(exA) = c({I(x): TA});

(iv) T~A = ~TA;

(v) T(AoB) = ~TAvTB.

A wif is valid for 1 iff it has truth value T under interpretation
I for every assignment of values to its free variables; satisfiable
for I if it has value T for some assignment of values to its free
variables. A wff of ND, is valid iff it is valid for every inter-
pretation over usual bases. An interpretation I over S is a model
for a set I" of wff iff every wff in I" has value T under inter-
pretation I over S for some simultaneous assignment of values
to free variables of wff of I'. A model is denumerable iff the
individual domain of the semantical basis is denumerable.
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Theorem 3: Every theorem of ND, is valid.

Theorem 4: (Skolem-Lowenheim): Every consistent set of wff
of ND and of ND; (and of H) and of applied NDy has a de-
numerable model.

Proof: Let A be a consistent set of wff of ND, or of an applied
ND, by adding constants. Let I" be obtained from A by substi-
tuting for free variables of wff of A constant e-terms distinct
from any occurring in wff of A, in such a way that a different
constant e-term is substituted for the free occurrences of each
different individual variable and no variables are bound by the
substitution. Then, if I" has a denumerable model, A also does.
Because I consists of closed wff, since constant e-terms are
those that contain no free variables, it suffices to prove the
theorem for closed consistent sets of wff.

Let I' be a consistent set of closed wff of ND, or of an applied
ND,. By Lindenbaum’s lemma (%), I" has a maximal consistent ex-
tension, say J.

A semantical basis S, = <ldi, e, ¢i.=> for a model I, is
specified thus: d, is the domain of closed terms (e-terms and in-
dividual constants) of NDy, e, is the class of all relations-in-ex-
tension over d,, and c, is so specified in terms of the interpre-
tation I; over s; that ci({Ii(x): TA}) = exA. I, is as follows:
A sentential constant p is assigned T iff  ;p; an individual
constant is assigned itself under I;; and an n-place predicate
constant f is assigned an n-place relation I,(f) of e, such that
for closed terms sy, S5, ... §,:

Li(HN(ysy), ... Ii(sy)) has value T iff —, f(sy, ... s,).
Hence (i) Ii(exA) = c¢; ({Ii(x):TA}) = exA; and
(ii) TI](f)(Sp 825 «en S") = by f(Sl, 53, 8p).

The specification of c, is consistent: for if T(Sx)A then TA(exA),
while if ~T(Sx)A then, as {I;(x): TA} is null, exA can be
selected from d,. Now

(°) See A.CHuRcH, op.cit, **452. The simplification of Henkin’s
proof of the Skolem-Lowenheim theorem used here is suggested by Wang’s
work: see H. Wang, op. cit., p.318.
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(*) A closed wif A of I' has truth-value T for I, iff  A.
The proof is by induction over the number n of occurrences of

¢’, “~"and ‘D’ in A. For induction basis, let A be a wif where
n = 1. Since A is closed A must be of the form f(exg(x)). Then

Tf(exg(x)) = L((1exg(x)))
L (f)(exg(x)) by @)
o f(ex g(x)) by (i)

(]

Otherwise, in the case of certain applied ND; systems, the basis
for n = 0 is immediate from (ii). To complete the induction
there are three uses to consider:

Case 1. A is of the form f(sy, ... s;-y, €xB, ... 5,),
where B contains at most x free. Then
Tf(sy, ... si-1, €xB, ... s, = Li(U,(sy), ... Li(exB), ... I,(s,)
= 4 f(sy, ... S§i-1, €xB, ... s,) by (ii)

Case 2. A is the form ~B. Then

TA=T~B since B is closed
= ~TB = ~ B, by induction hypothesis
= t+,~B since ] is maximal consistent.
= I-—JA
Case 3. A is of the form (B> C). Then
TA = T(B>C)
= ~TBVvTC = ~ - ;Bv ,;C by induction hypo-
thesis
= yj~Bv ,C since | is maximal
consistent
= I ;~BvC since J is maximal

consistent and by
sentential logic
= I—JA

As (*) holds, I, is a model for I'. For every wif A of I' is
provable in J, and therefore has truth-value T for I,. Finally
I, is a denumerable model since the constant terms are de-
numerable, Since ND is deductively equivalent to ND, the
theorem also follows for ND.
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Corollary: The Skolem-Lowenheim theorem holds for F'P,

Theorem 5 (Completeness theorem): Every valid wff of ND,
is a theorem of ND; (and of ND) (*).

Theorem 6 Every valid wif of F'’ is a theorem of F'F,
Proof: Similar to the proof of theorem 5, applying the corol-
lary of theorem 4.

Certain alternative completeness proofs can also be shortened
in ND, using e-terms (*°).

Monash University, Australia R. ROUTLEY

(") For a proof, using theorem 5, see A. CHURCH, op. cit., p.245. Note,
however, that a different definition of validity is adopted.

(1% For instance the Quine-Dreben proof and R. Smullyan’s simplifi-
cation of this: see W.QuUINE, Methods of Logic revised edition, New
York (1959), 253-259, B. DREBEN ‘On the completeness of quantification
theory’, Proceedings of the National Academy of Science, vol. 38 (1952),
1047-1052.



