MODAL REDUCTION AXIOMS IN EXTENSIONS OF Si1

H. MonNTGOMERY and R. ROUTLEY

Modal logics are commonly formulated with a primitive neces-
sity or possibility operator, though often they may equally well
have non-contingency or contingency as the sole modal primitive,
necessity and possibility being introduced by definition (*). Exam-
ples of normal modal logics with such bases are given in [2], and
similar foundations can easily be constructed for the weaker
classical systems such as S1, S2 and S3. One attraction of these
formulations is that non-contingency extension axioms often
provide very simple and illuminating relationships between
different modal systems, and another is that iterated modalities
are seen from a different aspect (*). For example, in contrast with
the possibility or necessity based versions, the Trivial A system
has proper irreducible modalities, McKinsey’s S4.1 o has fewer
irreducible modalities than S5,, and S4, and S5, have the
same irreducible modalities.

Theorems 4, 10, 14 and 23 of this paper answer some of the
questions left open at the end of [3].

The notation follows that of [3]: ‘=’ symbolises strict impli-
cation, ‘=" strict equivalence, and ‘SSE’ refers to the rule of
substitutivity of strict equivalents. ‘A" is used to denote »n itera-
tions of the operator ‘A’, A subscript ‘A’ is attached to system
labels when it is wanted to emphasise that the modal primitive
is ‘“A’, Such systems are said to be non-contingency based.

The system S1 is formulated as in Feys [1] but augmented by
the definition: AA = , OAv O~A.

(1) Sufficient conditions for this to be possible are that SSE is deri-
vable and that p.((Jpv [J ~p) = [Jp is provable. Example of systems
for which these conditions fail are SQ.5, S1°, S2°.

(3) By an ‘iterated modality’ we mean a sequence of zero or more
symbols each of which is either a negation symbol or a primitive monadic
modal symbol.
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A non-contingency based version S1 a results by taking ‘A’,

‘~’ and ' as primitive, using the postulates of S1 as in [1],
adding the axiom
3016 Ap= A~p (or

3017 Ap— A ~p)

and replacing the definitions F30.3 by the following set:
AVE =g ~(md.~B)
A>DB=, ~(A.~B)
OA =4 A. AA
OA =gf =~ O~A
A—B =ar O(A>B)
A=B=,;(A—>B).(B—>A)

Theorem 1. S1 and S1, are deductively equivalent.

Proof: The strict equivalences corresponding to the definitions
of ‘00’ and ‘A’ are derived in the respective systems, the remain-

der of the proof presents no difficulty.

(1) Op = p.Apis a theorem of S1
1. Ap—>p
2. Op—0OpvO~p
3. Op—p. Ap

O~(p.0~p)

p.U~p—0p

p.Op—Up
p.Opvp.O~p—>0Op
p.(OpvO~p)—p.0Opvp.0O~p
p.Ap— Op

Op=p.Ap

_
[SRCN- N E RN

F37.12.

SL, F34.1.

L2, F55.22, B§5.11,
Df A.

F36.C, F33.23, SSE.
4,F35.42,F35.11.
SL, F34.1.

5,6, F35.23, F35.11.
SL, F34.1.
8,7,F31.021, DfA.
3.,9,5L.

(2) Ap= Opv O~pis a theorem of S1,. (The derivability

of the postulates of S1 in S1, is assumed.)
l.p.Apv~p. A~p=0OpvO~p
2.p.Apv~p.Ap=0OpvO~p
3. p.Apv~p.Ap= Ap
4. Ap=0OpvO~p

SL, F34.1, Df[].
1, 30.16, SSE.
SL, F34.1.
2,3,SSE.
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Theorem 2. The systems (S1 + Op> O0Op) and (S1 + Ap>
A Ap) are deductively equivalent.

Proof: An examination of the proof sequence of theorem 1 of
[3] shows it is a valid deduction of Op>OOp in (S1 +
Ap> A Ap). Conversely, Ap> AAp is provable in (S1 +
Op>O0p) by the proof sequence of theorem 8 of [2]. How-
ever here the justification of line 3 must be altered. OOp v
O0~p>0O(0Opv O~p) is provable in S1 by F34.1, F33.311,
SD and SL, and this with line 2 and SL gives line 3.

Theorem 3. The systems (S1 + Op>O0Op) and (S1 + Ap>
A [Jp) are deductively equivalent.

Proof: The proof sequences of theorem 3 of [3] give the neces-
sary results as they are also valid proofs in these weaker systems.

Theorem 4. The deductively equivalent systems mentioned in
theorems 1 and 2, and now labelled system S4—
properly include T and are properly included in S4.

Proof: By a result of Yonemitsu [5] it is immediate that
Op>0O0p added to S1 gives a system that deductively in-
cludes T. However it is well-known that Op> OOp is not
provable in T. Hence S4— properly includes T.

It is also immediate that S4— is deductively included in S4,
and it remains to show that the inclusion is proper. The following
set of matrices

1 2 3 4 5 6 7 8|~ |0

T |12 3 4 5 6 7 8| 8 |1
*2 12 2 4 4 6 6 8 8|7 |8
313 4 3 4 7 8 7 8|6 |7
4 14 4 4 4 8 8 8 8|5 |8
515 6 7 8 5 6 7 8| 4 |8
6|16 6 8 8 6 6 8 8| 3 |8
717 8 7 8 7 8 7 8| 2 |8
8|18 8 8 8 8 8 8 8| 1 |8
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with values 1 and 2 designated, a modification of Parry’s F50.1,
satisfy S4— and show [(p— ['Op provable in S4, to be in-
dependent of 84— (fails for p = 3).

Theorem 5. The systems (S1 + A™p) all deductively include the
system T (where n=>1).

Proof:

1
2
3
4
5
6
7
8
9
10
11.
12
13
14
15
16
17

. Am"p

. DA#—IPV O~ An—lp

] DAH-—IPV _ An—lp

s A=lps [TA 1

. A*po>OA"

. OA"p

. O@Arpv O~ Ar1p)
COAT I p S OA™p

] A“_lpéOA"_IP

. Ap— O A"

Ap = 0OA"p

: A" = DOA"p

. O0OAm

. pop—> Anp

. A"p—.p>op

. A"p = _pDp

.O0A" = O(p—p)
18.

O(p—p)

Axiom

1, DfA

2,F37.12,SL.

3.:SLs

4,

5,1, MD.

6, DfA.

7,F33.23, SL, F34.1, SSE.
F36.0.

9, 8, F31.021.

10, F37.12, SL.

11, F31.19.

12, SL, 6, SD.
F35.41, 6, F35.11.
F35.41,F31.11, F35.11.
14, 15, SL,

16, F31.19.

17,13, SL, SD.

The theorem now follows from a result of Yonemitsu [5].

Theorem

Proof: 1
2
3.
4
5

Theorem

6. The system (S1 + An"p) each contain a correspond-

ing reduction theorem, A*p = Antlp (n>1).

s 18

] DAn+Ip
AfH-lp_) Anp
: Anp_) AnJrlp
. Anp = An+1p

As in theorem 5, line 6.
1.

F35.41, 1, F35.11.
F34.41, 2, F35.11.
3,4, SL.

7. For each n>1, the system (S1 + OO A) is

deductively equivalent to the system (S1 + An+lp

—>A"p).
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Proof: It is sufficient to derive A"+'p— A”p in the first set
of systems, and (O A”p in the second set.

ad A"tlp— Anmp

1. O AR Axiom
2. O~Amp— Amp F35.42, 1, DI<>, F35.11.
3. OAp— Arp F37.12.

4, OApvO~A"p— A'p  F35.23,2,3,SL, F35.11.
5. Antip— Anp 4,DfA.

ad OOAmD

1. Antip = Anp Axiom.

2. OApvO~A"p— A'p 1,SL, DfA.

3. O~ Anp—> Arp F35.231, 2, F35.11, SL.
4. O~A"p— ~Anp F37.12.

5. O~Amp—> A"p. ~A"p F35.22, 3,4, F35.11.
6. ~(Amp. ~A"p)—> OA™p F31.34, 5, SL, SD.
7. O~(Amp . ~A"p) o OO A F33.311, 6, SD.

8. O~(Amp. ~ Anp) SL, F34.1.

9. O A 7,8, MD.

Theorem 8. For each n>1, the system (S1 + Anp = An+ip)
deductively includes the system (S1 + O A"p)

and is deductively included in the system (S1 +
Arp).

Proof: The proof is immediate from theorem 6 and 7.

Theorem 9. (S1 + Ap) is deductively equivalent to the Trivial

system.
Proof: 1. OAp By theorem 5.
2. Op—0p 1, DfA, F33.23, SSE, SL.
3.p—>p F36.0.
4. p— Op 2,3,F31.021.
5. 0p=p 4,F37.12, SL.

Conversely, 1 follows from 5 by SL, SSE, and DfA.

Theorem 10. (S1 + A Ap) is deductively equivalent to S5.

Proof: (S1 + A Ap) deductively includes T by Theorem 5
above, and (T + A Ap) is deductively equivalent to S5 by
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theorem 13 of [2]. No problem arises over the necessitation rule
of T, since (S1 + A Ap) is deductively equivalent to (S1 +
O A Ap) by theorem 5 and hence all axioms may be considered
to be of the form JA, and Yonemitsu’s induction [6] holds.

Theorem 11. (S1 + AAAp)c (S1 + AAp)c(S1 + Ap).

Proof. That the inclusions hold is immediate. It remains to show
they are proper.

(1) (S1 + Ap) properly includes (S1 + A Ap) since Ap is
not provable in (S1 + A Ap) by the matrix F56.3 (Lewis group
I1I).

(2) (S1 + A Ap) properly includes (S1 + A A Ap) since
A Ap is not provable in (S1 + AAAp) by the matrix of
theorem 4.

Theorem 12. (S1 + A A Ap) neither includes nor is included
in either of S4 or S4.1.

Proof: A A Ap is not provable in S4 or S4.1 by matrix F56.2
(Lewis group II), and Ap— A Ap is not provable in (S1 +
A A Ap) by the matrix of theorem 4.

Theorem 13. (S3 + A A Ap) properly includes S4 and is in-
cluded in S5.

Proof: By line 13 of the proof of theorem 5, OO A A Ap is
provable in (S3 + A A Ap), hence by F63.51 (S3 + AAAp)
includes S4. The inclusion is proper by the proof of theorem 12
and it is immediate from theorem 8 that the system is included
in S3.

Theorem 14. The systems (S1 + Ap—> AAp) and (S1 +

Ap— AOp) are each deductively equivalent to
S4.

Proof: It is immediate from Theorem 2 above that Op> O Op
is provable in (S1 + Ap— A Ap). Furthermore, since in this
system all the axoms are necessitated, a necessitation rule is
derivable for the system as in Yonemitsu [6]. Hence Op —
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OOp may be derived in (S1 + Ap— A Ap) and the system
deductively includes S4. Conversely, since a necessitation rule
is derivable in S4 and Ap> A Ap is provable, Ap—> AAp
is provable and so S4 deductively includes (S1 + Ap—> A Ap).
A similar argument applies to (S1 + Ap— AOp) using
theorem 3 above.

Theorem 15. (S1 + AAp = A A Ap) is properly included in
S4 and S5.

Proof: It suffices to prove AAp = A A Ap in S4 and to show
Ap— A Ap is not provable in (S1 + AAp = AAAp).

ad AAp= AAAp.

1. Ap—> AAp Theorem 14.

2. AAp—> AAAp 1.

3. ~AAp—> ~Ap F31.34, 2, SD.

4, O~ AAp—s O~Ap 3, F46.1.

5. O~AAp— OApvO~A4p 4, SL, F34.1, F31.021.
6. O~AAp—>Alhp 5,DfA.

7. OAAp— L bp F37.12.

8 OAApvO~LAp— AAp  6,7,SL,F42.22,SD.
9. AAAp— AAp 8,DfA.

10. AAp= AAAp 2,9, SL.

The matrix F30.5 (Lewis group V) satisfies (S1 + AAp =
AAAp) but not A p— AAp.

Theorem 16. The system (S1 + Ap = A Ap) is deductively
equivalent to McKinsey’s S4.1 (Sobocinski’s
K1) (%).

Proof: By theorems 14 and 7 above, the system (S1 + Ap =
A Ap) is deductively equivalent to the system (S4 + OO Ap).
But by Df A and Sobocinski’s axiom K3 for S4.1 (see [4, p. 77)),
this latter system is deductively equivalent to S4.1.

(%) We are indebted to Professor G.E. Hughes for drawing our atten-
tion to the essential feature of this result with a proof that (S4 +
Ap— AAp) is deductively equivalent to S4.1.
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Theorem 17. For each n>1, the systern (S15+ A”p) has at
most 2(n + 1) irreducible modalities.

Proof: The system (S15 + A”p) has SSE and the following strict
equivalences:

p= ~m~p SL, F34.1.
Ap= A~p Axiom.
Arp = Artip by theorem 6.

It follows by induction that there are at most the following
irreducible modalities: p, ~p, Ap, ~Ap, ... Anp, ~ A"p.

Theorem 18. The Trivial system (S1 + A p) has four irreducible
modalities.

Proof: By theorem 17 the system has at most four modalities,
and by the characteristic matrix for the system namely

|t ]2~ | A
*1 1|2 211
2 |2 2 1

no pair of these is strictly equivalent.

Theorem 19. The non-contingency based S5 system (St AT
A Ap) has six irreducible modalities.

Proof. By theorem 17 the system has at most six modalities and
by the matrix F56.3 (Lewis group I11) no pair of these is strictly
equivalent.

Theorem 20. The system (S1p + A A Ap) has eight irreducible
modalities

Proof: By theorem 17 the system has at most eight modalities
and by the matrix of theorem 4 no pair of these is strictly
equivalent.

Theorem 21. The non-contingency based S4, system (S1p +
Ap— A Ap) has six irreducible modalities.

Proof: By theorem 15 and following the proof of theorem 17,
the system has at most six modalities, and since it is included
in (S1p + A Ap), by theorem 19 there are exactly six.
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Theorem 22. The non-contingency based S4.1 system (S1p +
Ap = A Ap) has four irreducible modalities.

Proof: By the same proof as theorem 17 the system has at most
four modalities, and by the matrix F56.2 (Lewis group II) it
follows that these are distinct.

From theorems 17, 18, 19, 20 we conjecture the system (S1 +
Avp) has 2(n+1) irreducible modalities. If this conjecture is
correct, then by theorem 5 the system T, has an infinity of
irreducible modalities.

Finally we note that the system (S1 + A[Op) is also de-
ductively equivalent to S5, but this basis can be further weak-
ened. The system (S1° + Op>p), which is properly included
in S1, is labelled “S1°”’. Then we have:

Theorem 23. The system (S1°+ A Op) is deductively equi-

valent to S5.

Proof: We first prove some theorems of (S1¢ + A Op):

1. OOp>20Op Axiom Opop

2. o0Opo0O0p Axiom AQOp, Df A,
Df O, SL.

3. o0podp 1,2, SL.

4. O~poO(~pvOp) SL, F34.1, F33.311,
SD.

5. OCpo>O(~pv Op) SL,F34.1,F33.311,SD.

6. OCpv O~poO(~pvp) 4,5, SL.

7. O0~po0~po .p—=>p 6, F33.2, SL, F34.1,
SSE, Df —.

8. p—><p 7, 3, MD.

9. Opo><Op 8, F37.12, SD.

10. Opo>0O0Op 9, 2, SL.

11. OO0OpoO0(O0Opv O~ 0Op) SL, F34.1, F33.311,
SD.

12. OO~0Opo(O0OpvO~0Op) SL, F34.1, F33.311,
SD.

13. OOOpvOO~OpoOAOp 11; 12, 8L, Df &,

14. OOpv O~0Op Axiom, Df A,
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15. OOOpv OO~0Op 14, 10, SL.
16. OAOp 13, 15, MD.
17. O(p — p) 10, SL, F34.1, MD.

By lines 8 and 16, (S1° + A Op) is deductively equivalent
to (S1 + OAOp). By line 17 and the results of Yonemitsu
referred to earlier a necessitation rule is derivable in this system,
and hence the S5 axiom {Op— Op follows from line 3.
Hence (S1° + A Op) deductively includes S5 and the converse
follows from theorem 4 of [3].

University of Canterbury H. MONTGOMERY
Monash University R. ROUTLEY
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