ENTAILMENT AND RELEVANT IMPLICATION

Robert K. MEYER

In [2], Anderson and Belnap claim that two kinds of fallacies
are involved in the well-known paradoxes of implication — (1)
fallacies of modality, which “arise when it is claimed that en-
tailments follow from, or are entailed by, contingent proposi-
tions,” and (2) fallacies of relevance, which sanction “the in-
ference from A to B even though A and B may be totally disparate
in meaning” (*). The system E of entailment, as defined for
example in [1], is presented by these authors as a sentential
logic free from both kinds of fallacies.

It has been observed by J. Michael Dunn, however, that the
discussion in [2] of relevance is more or less independent of the
accompanying discussion of modality. For Anderson and Belnap
use that part of the discussion of [2] which hangs on relevance
alone to motivate, in the pure theory of implication, not the
implicational part of E but rather the weak theory of implication
of Church’s [7]. By adding those axioms and rules of E which
govern conjunction, disjunction, and negation to Church’s sys-
tem, Anderson and Belnap have constructed a system R, first
defined in [4], which avoids fallacies of relevance in their sense
but not fallacies of modality. And indeed, one might think of R
not as formalizing a theory of entailment in any sense, but merely
as the formalization of a kind of conditional which requires
relevance of antecedent to consequent as a necessary condition
for its truth. And it is hoped that R will be of service in the
logical analysis of various kinds of conditional which have
hitherto been accounted wayward — counterfactual, subjunc-
tive, lawlike, and so forth.

The question now arises, “Can R be used to support a theory
of entailment ?” In a limited sense, the answer is clearly “Yes”,
for we may proceed along lines well-marked by Quine and others.
Indeed, we may distinguish between those systems, like the Lewis

(*) Cf. [2], esp. pp.42ff.
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calculi, which attempt to express a formalized entailment, and
those systems, like classical logic, which are content to indicate
entailment according to the recipe, “If A — B is logically valid,
A entails B.” R, like the classical system HK, expresses not en-
tailment but a variety of the conditional; however, if ever
A—B is a theorem of R, it can presumably be so only on
grounds that are purely logical; if we go on to view R as in-
dicating entailment in this situation according to the classical
recipe, we can then ask what theory of entailment it is that R
supports.

The answer is rather satisfying; R supports exactly the theory
of entailment which E expresses, in the area where the two
systems coincide. To explicate this last remark, let me note that
both R and E are built up from a denumerable stock of sentential
variables by means of the sentential connectives ‘&’, ‘v’, “—,
and ‘—’. But though the truth-functional connectives get their
usual readings in both systems, the arrow of E has built into
it a modal character absent from the arrow of R; a suggested
reading for the former is ‘that ... entails that ---’, while the
latter is simply a hardy version of ‘if ... then ---’ (3.

In virtue of the above remarks, it is clear that although sen-
tences of the form A — B say different things in the two sys-
tems, such sentences should be logically true under the same
conditions provided that no arrows occur in either A or B. And
indeed, in proving a somewhat stronger result in [4], Belnap
has showed this to be the case.

On the other hand, when arrows occur nested within arrows
the differing interpretations associated with R and E assure
that in general it is not sufficient for a sentence to be marked
logically true in E that it is logically true according to R. Take,
for example, the R-theorem p—.p—>q—>q (®). This neets An-

() In fact, more familiar classical and intuitionistic versions of ‘if ...
then ---’ may be defined on the basis of the arrow of R, as was noted
in part in the abstract 10 and will be explored more fully in a sub-
sequent paper. The stilted construal of the arrow of E is a concession
to use-mention fans and will henceforth be abandoned.

() ‘p’, ‘q’, etc., shall henceforth be used as syntactical variables for
sentential variables; ‘A’, ‘B’, etc., for arbitrary formulas. Among other
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derson-Belnap relevance requirements, but since p may be con-
tingent it clearly fails to meet their criteria for avoiding modal
fallacies.

One way to pass from a theory of the conditional to a theory
which expresses entailment lies in the excision of those theorems
of the first theory which commit modal fallacies. This is es-
sentially the course taken by Anderson and Belnap in [2].
Another, and more traditional, approach lies in the addition of
modal operators to the underlying theory of the conditional,
whatever it may happen to be. The result of such explicit en-
richment of the underlying system, as in the Godel-von Wright-
Feys construction of Lewis modal logics, has resulted in systems
in which both the conditional and entailment can be expressed;
the former as A — B, the latter as N(A — B). We ask whether
R also can be enriched with modal operators in a natural way
so that the resulting theory of entailment meets the conditions
set down for such a theory by Anderson and Belnap.

The answer again is “Yes”; indeed, such systems were con-
sidered independently by Bacon in [3] and by me in my dis-
sertation. Bacon has an interesting hierarchy of such systems,
based on the addition of the kind of alternative axioms govern-
ing necessity explored by Lewis. Of these systems, however,
the one which makes interesting connections with E is the theory
which results by imposing an S4-like structure on the underlying
non-modal logic R; this is hardly surprising, since the motivating
conditions for E give that system the modal character of S4. It
is the S4-like version of R, called here NR, which I now define
and investigate.

NR is built up by the usual formation rules from ¥, sen-
tential variables, the sentential constant f, (*) and the connectives

conventions, I rank the connectives thus in order of increasing scope: ‘&’,
‘v’, ‘=, indicating the first by simple juxtaposition on occasion. Other-
wise association shall be to the left, and the conventions of Church shall
be employed for the replacement of parentheses by dots.

(*) Usec of the sentential constant enables us to define A as A—sf and
to avoid several negation axioms. The extension is conservative with
respect to R as defined by Belnap, which is proved in my dissertation
(U. of Pittsburgh, 1966) building on Anderson-Belnap resuits reported
in [5] and elsewhere,
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‘&', ‘v', ‘=, and ‘N’. The axiom schemes and rules are the
following:

NR1. A—A Identity

NR2. A—B—B—C—.A—C Transitivity
NR3. (A—.A—B)—.A—B Contraction
NR4. A—.A—B—B Assertion
NR5. AB—A &E

NR6. AB—B &E

NR7. (A—B) (A—C)—=(A—BC) &I

NR8. A—AvVB vl

NR9. B—AvVB vl

NR10. (A—>C)(B—C)—=(AvB—=>C) vE

NR11. A—>f->f—A Double negation
NR12. NA—-A NE

NR13. N(A—B)—.NA—NB N Distribution
NR14. NANB—N(AB) N&I

NR15. NA—NNA NNI

NR16. A(BvC)—ABVAC & Distribution
NR17. A, A>B-B Modus ponens
NR18. A, B~ AB Adjunction
NR19. A-NA Necessitation

Inspection of the non-modal axioms shows them to yield the

system R (cf. footnote 4), while the modal axioms and the rule
NR19 are the usual ones which produce S4 from the set of clas-
sical tautologies. (But NR14 is redundant in that case.) In fact,
NR would turn into S4 were we to add in addition the axiom
of paradox B—.A—A; though this axiom is consistent with and
independent of the other axioms, these facts seem to me no
argument on its behalf.

It is readily established that every theorem of E is a theorem
of NR when ‘A entails B’ is defined as ‘N(A—B)’. To show
this, it suffices to show that all axioms of E are theorems of NR
on translation, and that the rules of E are admissible in NR. It
would be nice to show also that all non-theorems of E are non-
theorems of NR on translation, but of this I have no proof. It
is, however, the case that the principal motivating condition for
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the E theory of modality is met in NR, and indeed in a somewhat
strengthened form. The key theorem is the following:

Theorem 1. Suppose A contains no occurrences of the sign N.
Then A—NB is a non-theorem of NR.

Proof. Consider the following matrix:

+3 42 ¥t ~f —2 —F | & +3 4+2 +t —F -2 =3 |N
+3 +3 —3 =3 —3 -3 -3 +3 +2 +t —f —2 —3 [+t
+2 +3 +2 ~3 -2 -2 -3 +2 +2 4+t —2 —2 =3 |+t
+t +3 +2 +§ —f -2 —5§ +t +t +t —3 —3 =3 [+t
—f +F =5 =3 bf =5 ~3 —f -2 -5 —f -2 -3 |-5
—~2 +35 +2 —3 +2 42 —3 —% —2 —3 -2 —2 -3 |3
~3 +3 +3 +3 +3 43 +3 -3 —8 —% -3 —35 —3 -3

Let +3, +2, and +t be designated, let formulas AvB be
evaluated as (A—f) (B—f)—f, and let the sentential constant f
be assigned the matrix value —f on all evaluations. Then it is
readily seen that axioms of NR are always designated and that
this property is preserved under the rules of NR. But for A
which satisfies the hypothesis of the theorem, its value on an
assignment which gives each sentential variable the value +2
will be =2; on the other hand, on all assignments NB will have
either the value +t or —3; inspection of the table for — shows
that if A does not contain N, A—NB will accordingly have the
value —3 on an assignment of +2 to all sentential variables;
hence no sentence of the suggested form is a theorem of NR.
This concludes the proof of theorem 1. (I note that the suggested
matrix is an adaptation of matrices due to Ackermann and to
Belnap.)

It is also the case in E that no negated entailments entail
entailments. We state the corresponding fact for NR as a corol-
lary to the previous theorem.

Corollary 1.1. For all A and B, NA—NB is a non-theorem of NR.
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Proof. Consulting the previous matrix, we note that NA must
take the value —f or +3 on all assignments, while NB must
take the value +t or —3. In any case, the value of NA—NB
on any assignment will be —3.

The semantical situation of E is unclear, as Anderson reported
in [1]. There are, however, some important partial results, and
we now ask whether these results apply to NR also.

First, Belnap and Wallace investigated in [6] the fragment
E; of E determined by its axioms which contain only occur-
rences of ‘=’ and ‘— and the rule of modus ponens; by pro-
viding a Gentzen consecution calculus for E7, they were
able to show this system decidable. The corresponding fragment
NR7T is that determined by NRI1-NR4, NR11-NR13, NR15,
NR17, and NR19. If we consider only such formulas involving f
as are definitional abbreviations for formulas involving negation,
we obtain a Gentzen system from axioms A A and the rules
*C*, *W*, *P* *N*, and *Y* of formulation II of LKY in
Curry’s [8]. By examining a proof of a translation of a formula
of ET in this system, it is easy to show that the same formula
can be proved in the Belnap-Wallace consecution calculus for
E7. Since it continues to be the case that all theorems of ET
are theorems of NRT, it follows that the negation-entailment
fragments of E and NR are identical, in the sense in which these
fragments have been specified above.

A second area in which the semantical character of E is clear
lies in its set of first-degree formulas — formulas in which
no subformula of the form C— D contains as its proper sub-
formula an item of the form A — B, or, briefly, formulas in
which no entailments are nested within entailments. Belnap
provided in [4] a complete semantics and a decision procedure
for the first-degree fragment of E and of R; in fact, the set of
first-degree theorems of these two systems is the same. Our
second theorem records the fact that this fragment of E is exactly
translatable into NR.

Theorem 2. Let A be a first-degree formula of E. Then A is a
theorem of E iff A is on translation a theorem of NR.
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Proof. Suppose that A is on translation a theorem of NR. Let
Ay, ..., A, be a proof of the translated A, and let A;* result from
A; by deleting all occurrences of N. Noting that all axioms of
NR remain axioms of R when all N’'s are erased, and that the
rules continue to hold after erasure, it is clear that A * is a
theorem of R. But A,* with all the N’s erased is just A. Hence
A is provable in R; if A is first-degree, it is by Belnap’s result
also provable in E. Hence if A is on translation a theorem of
NR, A is a theorem of E if it is a first degree formula of E. On
the other hand, all theorems of E are theorems of NR on trans-
lation, as noted above, thus concluding the proof of theorem 2.

So far as can be presently ascertained, accordingly, E and
NR express the same theory of entailment. A choice between
the two systems is accordingly to some degree a matter of taste,
but it seems to me that the following considerations favor NR.
First, NR separates those issues in the critique of classical logic
which are generated by the classical analysis of the conditional
from the issues which lead to the explicit introduction of modal
operators. Since as Quine has rightly pointed out, it is the clas-
sical analysis of the conditional — not the absence of squares —
which leads to what is felt to be strange in the classical doctrine
of entailment, one might expect a full-fledged theory of en-
tailment to include a theory of the kind of conditional which,
in the vocabulary introduced here, indicates entailment. Second,
since the question, “Which axioms shall govern the modal
operators ?”" is notoriously in doubt, formulating one’s theory
of entailment via NR leaves open the possibility of changing
one’s assumptions about the modalities while leaving one’s
underlying theory of the conditional alone (*). Third, however,
those attempts to motivate modal logic which rest on the analysis
of deduction rather than on classical semantic analysis seem very
frequently to motivate a system in the neighborhood of S4; one
thinks not only of [2] but of Curry’s analysis in [8], and in a
certain sense of McKinsey’s [9]. NR shows that it is possible to

(®) It is important in this connection again to note that the kind of
conditional which indicates entailment in the Anderson-Belnap sense is
not the only conditional expressible in R. Cf, footnote 2 and the remarks
to which it is appended.
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preserve these insights in a semantical frame otherwise highly
non-classical.

I conclude, as I began, with an observation of Dunn. In his
dissertation, Dunn provides an algebraic semantics for R, and
he notes that axioms like my NR12-NR15 turn the algebra of
R into a closure algebra. For those who, unlike Dunn and me,
consider non-classical logics philosophically meaningless but
worth investigating for the mathematical structures to which
they give rise, I submit NR also (*).

Bryn Mawr College Robert K. MEYER

(®) My thanks are due to the National Science Foundation of the
U.S.A., whose partial support of Anderson and Belnap’s studies of en-
tailment at one time partially supported me as well. Since I have
depended throughout on Belnap’s work and occasionnally on his advice,
any errors are probably his fault; errors not so traceable may perhaps
be blamed on my conversations with Dunn; cf. his dissertation (U. of
Pittsburgh, 1966), before crediting me with original folly.
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