A FUNCTION WHICH BOUNDS TRUTH-TABULAR
CALCULATIONS IN S5

M. K. RENNIE

(0). In this paper I define a function for all formulae in a
standard formulation of modal logic, and using this function
prove that every such formula has a finite characteristic matrix
for S5-validity. I then investigate the practical applicability of
the decision procedure for S5 which results from the main theo-
rem.

(1). Firstly we define S5-Validity. The semantics involved is
a theoretically inessential modification of that in Kripke’s [4],
which is presupposed for this whole paper. We assume that our
modal logic has primitive logical constants ~,.,[J, propositional
variables p;, ps, ..., and standard formation rules. Let o be a
wff of this modal logic containing propositional variables
Pis ..., Px- A model for a is a matrix (in the algebraical sense of
the word) ®, where

= [o] Ipo.Pd =[qu pro...op pi ]

.

®n P1-o. o @n Pk

s
Each g; is a function from the set {py, ..., p,} of propositional
variables to the set {1, 0}. So ®, is an n X k matrix each of whose
elements is either 1 or 0. For a given n and k, there are 20Xk
separate models ®,: if needed we will denote these by ®",,
where 1<m<20Xk),

Given a particular model ®,, we define a semantical valuation
function for a with respect to the model ®,, nd in terms of this
[unction we define S5-Validity. The clauses in the definition are:
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n k
(1.1) 1_:"1* 1’:‘1“ (@, Val(p) = ¢.p)

(1.2) /I_I“T (@, Val, () = 1.5.®, Val, (~f) = 0) .&.
i

(@, Val, (B) = 0.2.0, Val, (~f) = 0))

(1.3) /E*I ((®, Val, () = 1.&.®, Val, (y) = 1 :>:
e

®, Val, (B.y) = 1) .&.(®, Val, (B) = 0 .v.
@, Val, (y) = 0:5: ®, Val, (B.y) = 0))

(1.4) TET ((i; (@, Val, (B) = 1).2. @, Val, (OB) = 1)

& (V (@, Val, (B) = 0).>. ®, Val, (CIp) = 0))
s=1

Clauses (1.1) - (1.4) define the n functions ®, Val,, for
1<r<n. (1.1) is the initial clause, linking the function to the
model ®,. (1.2) and (1.3) are standard truth-functional clauses,
and (1.4) is the peculiarly modal clause, being the recursive
clause for 0. From (1.4) it follows that

n n
27 Temq (@ Val. (OB) = @,Val, (OB,

that is, a well-formed part of o of the form OB will have the
same value for any of the functions ®, Val, for 1<r<n. This
leads, inter alia, to the well-known reduction theorem for
modalities in S5.

For the wff «, there will be n values, one for each of the
functions ®, Val,. Of these, we select ®, Val, as the value of a:
we put

(15) (Dn Val({l) = df(I)n Vall(a)

For each n, there are 20"XK geparate ®,’s: we define n-S5-
Validity for each n thus
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2nXxk)
(1.6) n-S5-Valid (a) = [,fm’:i (@", Val (o) = 1).

The notion of n-S5-Validity bears an obvious analogy to the
notion of k-validity in quantification theory, for which see
Hilbert and Bernays [3] vol. I §§4-5. Using the notion, we define
S5-Validity by

(1.7) 85-Valid (a) = 4~ ~(n-S5-Valid (a)).
n

The quantifier here is unbounded: n ranges over all natural
numbers > 1. Hence the definition (1.7) does not lead directly
to a decision procedure for S5-Validity.

It will be apparent that the given definition of S5-Validity
is equivalent to that of Kripke (4], p. 69. In proceeding to the
definition, we have diverged at the following points. Firstly, we
do not have a “model structure” and a separate “model”: the
part played by G and K in Kripke's model structures is played
by 1 and {1, ...,n} in our models. Secondly, we have separated
Kripke’s binary function ® into n monadic functions gy, ..., ¢,:
this emphasizes the fact that Kripke’s K, so far from being a set
of possible worlds, is simply an index-set for a set of functions.
Thirdly, we have not extended the model to form a semantical
valuation function as well, but instead have defined the valuation
function separately, tying it to the model via (1.1). Fourthly,
the intermediary definition of n-S5-Validity, (1.6), defines a
notion which Kripke nowhere needs.

The divergences from Kripke’s treatment allow us to state
our main theorem which leads to a decision procedure in terms
of familiar truth-tabular methods, and also make the transition
from classical formal semantics for propositional calculus to
formal semantics for modal logics a little smoother. There is the
incidental advantage, already noted, that they make apparent
the fact that talk of “possible worlds” is entirely dispensable,
and is only ever introduced for its heuristic value.
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(2). We define a pair of functions by simultaneous recursion
on the length of a wff u, with propositional variables py, ..., p.

k
(2.1) 1/:‘1‘ (nopon (p;) = 0)

k
(2.2) ‘;‘:‘i (nonon (p;) = 0)

(2.3) nopon (~f) = nonon (f3)

(2.4) nonon (~p) = nopon (f)

(2.5) nopon (B.y) = nopon (B) + nopon (y)
(2.6) nonon (B.y) = nonon () + nonon (y)
(2.7) nopon (OP) = 1 + nopon ()

(2.8) nonon (OB) = nonon (B)

The functions nopon and nonon are both syntactical functions
whose arguments are wffs of modal logic and whose values are
natural members. They are so-called because nopon (nonon)
counts the number of positive (negative) occurrences of necessity
in a formula, where a positive (negative) occurrence of necessity
is a O occurring within the scope of an even (odd) number of
~’s (in primitive notation).

An immediate consequence of the defmmon is that if « is a
wif of classical propositional calculus, then nopon (a) = nonon
(«) = 0. We may also note that these functions are independent
of the modal depth of a formula: for example we have

nopon (O"p>p) = 0, whereas the modal depth of O"pop
is n, and

n
nopon (p>V0Op) =n, whereas the modal depth of
e |

n
p> VOp is 1.
i=1
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The basic use of these functions is summed up in our main
theorem

(29) ((1+nopon(w)) -S5-Valid (1)) .>. S5-Valid (a),

that is, if « has the value 1 for all ®,’s, where n=1+nopon (u),
then a is S5-Valid. Since for any wff «, nopon (a) is finite, (2.9)
provides at least a theoretical decision procedure for S5-Validity.
Notice that although (2.9) entails ihat for every wff there is a
finite characteristic matrix for S5-Validity, this does not contra-
dict Dugundji’s familiar result (in his [2]) that there is no finite
characteristic matrix for S5, i.e. for all the wifs of S5. Dugund-
ji’s proof shows that for any n, there is a wff which is n-S5-Valid
but not (n+ 1)-S5-Valid, and hence there can be no finite matrix
which is characteristic for all wffs.

The next section is devoted to the proof of (2.9), and may be
omitted without loss of continuity.

(3.) For the proof of (2.9), we first prove lemma (3.1). This
proof is to be taken to be inserted at 3.05 in Kripke's [4], so
that the definitions and terminology for semantic tableaux are
established. We state

(3.1) In an S5-construction for « there are at most nopoh (o)
applications of rule Yr.

The proof proceeds in the first instance by a complete induction
on nopon (a). For the basis, we consider nopon (a«) = 0, and
now prove that in an S5-construction for « there are no ap-
plications of Yr. This proof proceeds by induction on the length
of wffs a such that nopon («) = 0. If o is a propositional
variable, then no rules are applicable, and a fortiori there are
no applications of Yr. If a is of the form ~f, then nonon (f)
= 0, and by application of Nr, B is placed on the left of the
tableau in which a is on the right. So now we need to prove
that if nonon () = 0 and { is on the left of the main tableau,
then there are no applications of Yr, and to do this we carry
out a «sub-induction» on the length of B. If B is a propositional
variable, then no rules are applicable, so there are no applications
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of Yr. If f is of the form ~y, then NI is applied: vy goes to the
right of the tableau and nopon (y) = 0. But now this falls under
our inductive hypothesis about «, since y is of less syntactical
length than a. If § is of the form (y .d), then we apply A1 so
that both y and b appear on the left. Since nonon (y.0) =
nonon (y) + nonon (d) = 0, we have nonon (y) = nonon (§) =
0. Hence ex. ind. hyp. on 3, neither y nor & will require any
applications of Yr. If §§ is of the form Oy, then we apply Y1.
Since there have been no applications of Yr, there is only one
tableau (or system of tableaux with alternatives within the sys-
tem), and so we place y on the left of that tableau (or on the
left of each alternative within the system). Now nonon (Oy) =
nonon (y) = 0, so ex. ind. hyp. on p there will be no ap-
plications of Yr caused by y. The sub-induction on B is complete,
and we return to the induction on o. If a is of the form (8 .v),
then we apply Ar to start two alternative tableaux, one with
[ on the right and one with y on the right. Now nopon (a) =
nopon () + nopon (y) = 0, hence nopon () = 0 and nopon
(y) = 0, and hence ex. ind. hyp. on « there are no applications
of Yr. If a is of the form [@, then nopon (¢) = 1 + nopon (B),
so nopon (u) #+ 0, so there is nothing to prove. Induction on
« is finished, and hence we have established the basis for the
complete induction on nopon (o).

Now make the complete inductive hypothesis that (3.1) holds
for all wffs « such that nopon (e)<<n. We require to prove that
(3.1) holds for all wifs « such that nopon (¢) = n. The structure
of this proof parallels the structure of the proof in the basis: we
begin by induction on the length of o, where nopon («) = n and
n=1. Under these conditions, a cannot be a propositional
variable, so we begin with the case where a is of the form ~§.
We apply Nr to place § on the left of the tableau, and we now
require to prove that if nonon (8) = n there are at most n ap-
plications of Yr in a construction begun with § on the left of
a tableau. As in the basis, we proceed by a sub-induction on
the length of . Since nonon (B)=1, § is not a propositional
variable. If § is of the form ~vy, we apply N1, y goes to the
right, nopon (y) = n, and now the inductive hypothesis about
o establishes what we want, since y is of less syntactical length
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than a. If § is of the form (y.d), we apply A1 and place both
vy and d on the left. Now nonon (y.%) = nonon (y) + nonon
(8) = n: hence either (a) nonon (y) = 0 and nonon (8) = n,
or nonon (d) = 0 and nonon (y) = n, or (b) nonon (y)<<n and
nonon (8)<<n. The two subcases of (a) are quite symmetrical,
so we treat just the first: if nonon (y) = 0 then, by the proof of
the major basis, y on the left causes no applications of Yr, and
if nonon () = n then ex. ind. hyp. on B, 3 on the left causes
at most n applications of Yr, so overall we have at most n ap-
plications of Yr. For case (b), it follows that nopon (~vy)<<n
and nopon (~9)<<n. So, by the complete inductive hypothesis,
there will be at most n applications of Yr overall in S5-construc-
tions for ~y and ~d. But there are no less applications of Yr
in constructions for ~y and ~?d than there are applications of
Yr in a construction beginning with a tableau with both y and
d on the right. Hence case (b) is established. If ( is of the form
Oy, we apply Y1 so that y appears on the left of all tableaux
in the set (since we are considering an S5-construction). Now
nonon (Oy) = nonon (y) = n. Ex. ind. hyp. on §, a single oc-
currence of y on the left will cause at most n applications of
Yr: given however that the, at most n, applications of Yr were
carried out for one occurrence of y on the left, or for more than
one occurrence of y on the left causing at most n separate ap-
plications of Yr, then there will be no further applications of
Yr because further applications would be superfluous. They will
be superfluous since the previous applications of Yr will have
created tableaux which are related to all others, in particular
those with y on the left, (because we are considering S5-construc-
tions), and which contain the appropriate formulae on the right
to make Yr superfluous. Now if a rule is superfluous then we do
not apply it, so for the several occurrences of y on the left there
are at most n applications of Yr overall. The sub-induction on
B is now finished, and we return to the induction on a.

If « is of the form (B .y), we apply Ar and start two alterna-
tive tableaux, one with § on the right and one with y on the
right. nopon (¢) = nopon () + nopon (y) = n, so either (a)
nopon () = 0 and nopon (y) = n, or nopon (y) = 0 and nopon
(B)= n, or (b) nopon ($)<<n and nopon (y)<<n. The two subcases
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of case (a) are symmetrical: say nopon () = 0 and nopon (y)
= n. Then by the proof of the major basis, the occurrence of
[} on the right causes no applications of Yr and ex. ind. hyp.
on «, that of y on the right causes at most n applications of
Yr. Hence case (a) is covered. In case (b) we apply the complete
inductive hypothesis, which immediately entails that there are
at most n applications of Yr caused by [} and y between them.
If u is of the form Of, then nopon («) = 1 + nopon (8) = n,
so nopon () = n—1. We apply Yr once to «u, starting out a
new tableau which starts a construction for f§ since {3 is on the
right. From the complete inductive hypothesis there are at most
n—1 applications of Yr from this point onwards, hence there
are at most n applications of Yr in the construction for a. The
induction on « is now finished, and with it the complete in-
duction on nopon (u), and hence (3.1) is proved.

In the proof just given, every one of the rules N1—Yr for
semantic tableaux have been appealed to, and every one of the
definitional clauses (2.1)—(2.8) has been used. Moreover, we
have used the condition that the construction for « is an S5-
construction. The “at most” proviso is necessary, since it is
possible for a set of tableaux to close before all n applications
of Yr have been carried out. To illustrate this, consider Op .>.
pv Op; its nopon is 2, yet since it is a substitution-instance
ol a tautology it will be validated by just one tableau thus:

Op Opv Op

These considerations show that there are no essentially weaker
forms of (3.1).

(3.2) There is one more tableau in an S5-construction for a
wlf « than there are applications of Yr in the construction.
This follows since the only rule which generates new tableaux
in the set of tableaux, as distinct from alternative tableaux
within a system of tableaux, is Yr, and because in a construction
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for u one sets out one tableau to begin with (with « on the right)
regardless of the form of a.

Hence there are 1+ nopon (a) tableaux in a set of tableaux
forming an S5-construction for the wff o. Now if « is not valid,
by Kripke’s § 3.2 Lemma 1, the construction for « is not closed:
by Kripke’s proof of Lemma 1, a will in this case be invalidated
by a model defined on a model structure <G, K, R>, where
the cardinality of K is equal to the number of tableaux in the
construction. Hence if o is to be invalidated, it will be in-
validated by a model defined on an m.s. <G, K, R> where

K=1+ nopon (a).
Now to prove (2.9), all that is required is a formal proof of
the remark in §1 that Kripke's K plays the same role in his

semantics as {1, ..., n} does in ours, and hence that K plays the
same role as n does in ours. Such a proof is totally tedious, and

will not be given: we now take (2.9) to have been proved.

(4). We now investigate the practical implications of the se-
mantics laid down in § 1, and the main theorem (2.9) of § 2,
for truth-tabular calculations in S5. If « has the k propositional
variables py, ..., pi, and if nopon («) = n, then we need to
demonstrate (n+ 1) -S5-Validity of a in order to demonstrate its
S5-Validity, and in order to do this we need to calculate the
value of a with respect to the 2"+Vxk different ¢™, . ’s, where
1 gmg2(|1+i)><k.
Each ¢",,; will have k columns and n+1 rows.

To illustrate the method of calculation, let « be O(p>q) .>.
Op>0Oqg. We calculate nopon (a) thus:

nopon (a) = nopon (O(p>q).>.0p>0q)
= nopon (~(O(~pvq). ~~(Op.~0q)))
= nonon (O(~pvgq) .(Op.~0Oq))
= nonon (O(~pvq)) + nonon (Op . ~0Oq)
nonon (~pvq) + nonon (Op) + nonon
(~0Oq)
= 0 + nonon (p) + nopon (q)
0+ 0+ 1+ nopon(q)
=1
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Hence by (2.9) we need to demonstrate 2-S5-Validity. The

calculation may be set out thus

=2 —— |~ —|—o|lc—=|o0o|lo—~|co|—=—|—~O|~—|—0O|lo—~|coo|lo—~|oo
O~ [ |~ |l o |l |lo e |- |lo |= |lo |lo |l |lo |o
O — — o o —_ - o o o o o ) (=] o < o
l p— — p— p— p— p— p— p— p— — p— — — — p— p—
Y

|l —— |~ |0 |lo— |0 |O—|00|——|—O|——|—0C|lo—|OcO|lOo~|CO
g |l =-—|-—|~0o|~0O|l~—|l—~|—~0O|—~Cc|lo—~|lOo—~|Cc0O|oOo|Oo—~|O—~|CO|oO
O — o — — o o o o — o —_ — — o — -
T ||| -~ |lo—|oco|lo—~|co|—~—|—O|——|—0C|OoO—|ooc|oc—~|co
g | ——|——|—~o|l~o|——|—~—|—0O|—~oc|Oo—~|Oo—~|c0o|o0|o—~|o—~|co|oo
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On the left hand side of the calculation, the columns are headed
by designations for each propositional variable occurring in a.
These columns are the columns of each matrix ®",. Each such
matrix occupies two rows: 20+DX2=2i=16, so there are 16
matrices and hence 32 rows in the whole calculation. The initial
clause (1.1) justifies the transference for each row and for each
propositional variable, of the value of that propositional variable
in the matrix to the value of that propositional variable as oc-
curring in the formula a on the right-hand-side of the calculation.
Clauses (1.2) and (1.3) justify the carrying out of ordinary
truth-tabular calculations on each row, and clause (1.4) provides
the means of calculating the value to appear under a O sign
in any row. By (1.5), the main column is only calculated in the
top row of each matrix and then by (1.6) the formula is 2-S5-
Valid since it has all I’s in its main column. Then by (2.9) the
formula is S5-Valid.

In general, for a wff « such that nopon (¢) = n and containing
k propositional variables, there will be (2"+PXk) X (n+ 1) rows
in the truth-table for o if the calculation is set out in the same
way as the given example. This number will become large very
rapidly: e.g. in the truth-table for O(pv q) .o. Opv Oq there
will be 192 rows, and in the truth-table for ~VVp, where V
is the sign for contingency, there will be 160 rows (since nopon
(~ v Vp) = 4). Even though shortened truth-table techniques
can be used and nopon can sometimes be reduced by making
strict-equivalence transformations on a, the class of formulae for
which (2.9) leads to a humanly feasible decision procedure is
fairly small. The decision procedure is of interest on two counts,
however. Firstly, it may be exhibited as a rather smooth ex-
tension of the familiar truth-tabular procedure for classical
propositional calculus: in algebraic terms the extension parallels
that from the notion of row-vector to the notion of matrix.
Secondly, it lends itself particularly well to a computer technique.
The nopon function may be easily calculated by a computer,
particularly if the program is written in a language like ALGOL,
and since all the calculations are purely Boolean (even that for
O, which is a logical ‘and’ on a column rather than a row of
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digits) there will usually be hardware functions available for the
calculations.

(5). We may reduce the labour of calculation somewhat if we
set out the calculation using many-valued logical matrices. If
we take the columns of a model @, and transpose them into rows,
we will have a row of n 1’s and 0’s. Now if we treat this as a
binary number, and convert to the decimal scale, we will have
2" decimal numbers ranging from 0 to 2"—1. These numbers
may be taken as the values of a 2"-valued logic, the connectives
of which are defined thus:

~p is defined as (2"—1)—p,

p.q is defined as the decimal value of the logical ‘and’ of the
binary representations of p and q,

Op is defined as 2"—1 if p = 2"—1 and 0 otherwise.

The logical matrices which result, with 2"—1 as the only
designated value, may be seen to be summaries of the truth-
tabular calculation process set out in 1’s and 0’s for all the ®" s,

as in § 4. With inessential reletterings, they are the powers of
the matrices

[t]o]~|0O

* 1
0

1 0 0 1
0 0 1 0

where the powers are formed according to methods of Lukasie-
wicz, as in his [6], p. 158ff. They are also, with different
primitive symbols, the Henle matrices, as referred to in Lewis
and Langford [5] fn. 1, p. 492, and as characterized by Scroggs
in his [7], p. 115.

Our main theorem entails that for a wff « where nopon (a)
= n, the 2"*'valued Henle matrices are characteristic for
S5-Validity. In practical terms, this means that we may calculate
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the Henle matrices up to, say, the 8-valued tables, both for the
primitive connectives ~, ., [0 and for the useful defined con-
nectives such as v, o, =, <, 3, once and for all, and use
these tables to validate formulae a where nopon (a)<2. As
compared to the method of § 4, the number of rows in the
many-valued calculation will be divided by a factor of nopon
(a)+1. As an example, we re-work the calculation for O(p>q)
.D.0p>0q. The 4-valued Henle matrices are

P-q POq
| 3 2 1 0 | 3 2 1 0[~|EI
* 3 3 2 1 0 3 2 1 00| 3
2 2 2 0 0 3 3 1 110
1 1 0 1 0 3 2 3 31210
0 0 0 0 0 3 3 3 313/ 0
and the calculation is
p q O (poq) .o O p> 0Ogq
3 3 3 3 3 3 3 3
3 2 0 2 3 3 0 0
3 1 0 1 3 3 0 0
3 0 0 0 3 3 0 0
2 3 3 3 3 0 3 3
2 2 3 3 3 0 3 0
2 1 0 1 3 0 3 0
2 0 0 1 3 0 3 0
1 3 3 3 3 0 3 3
1 2 0 2 3 0 3 0
1 1 3 3 3 0 3 0
1 0 3 3 3 0 3 0
0 3 3 3 3 0 3 3
0 2 3 3 3 0 3 0
0 1 3 3 3 0 3 0
0 0 3 3 3 0 3 0

Thus showing again that C(p>q).>. Op>Oq is S5-Valid.
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(6). We may gain a more practical decision procedure by com-
bining (2.9) with Castafieda’s theorem (in his [1]). We put

(6.1) WCB(C!) = af 2k,

where W C B (a) is the “Wajsberg-Castafieda bound” on truth-
tabular calculation for a, and k is the number of propositional
variables in a. Now since (n-+m)-S5-Valid (o) .D>. n-S5-Valid
(a), we may amalgamate (2.9) with Castafieda’s theorem thus:

(6.2) (min(nopon(a)+ 1, W C B (a))) -S5-Valid (a) ..
S5-Valid (a).

In terms of the many-valued approach of § 5, this means that we
may validate o by truth-tabular calculation using the Henle
matnces of the smallest size out of 2"*!, where nopon (a)=n,
and 2@ For some formulae such as ~VVp,2k<n+1, and
for others such as O(pvq).o. Opv Oq,n+1<<2k, The WCB
function is especially simple when formulae involving modal
iteration are to be tested, and the nopon function will take ad-
vantage of cases where most of the modal functions either appear
in the antecedent of a formula or have a wide scope in the con-
sequent of a formula.

To conclude: there is a small but by no means trivial class of
modal formulae which may be directly validated by a humanly
feasibie truth-tabular calculation, either wholly in terms of 1’s
and O's or by using many-valued matrices. The methods of
calculation are, in the most direct sense possible, extensions of

the familiar methods employed in classical (assertoric) proposi-
tional calculus.
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