NON-CONTINGENCY AXIOMS FOR S4 AND S5

H. Montgomery and R. Routley

In [3] some contingency and non-contingency bases were developed for normal modal logics. Some of the axioms presented there for extending **T** to **S4** and **S5** are sufficiently strong to give these latter systems when added to the non-normal system **S3**.

The notation of [3] is adopted except that 'Feys' is here further abbreviated to 'F'. 'SD' refers to the rule of detachment for strict implication and '->' symbolises strict implication.

It is well-known that Gödel's A3, $\Box p \supset \Box \Box p$, added to S3 gives a system deductively equivalent to S4, but that A4, $\Diamond p \supset \Box \Diamond p$ when added to S3 gives a system weaker than S5. namely S3.5 (Aqvist [1]). However, if instead of A4 the axiom

A5. $\Diamond \Box p \supset \Box \Box p$

is used it is easily seen that both A3 and A4 are deducible, and that A5 is provable in S5. For by F36.0, F37.2, A5, SD and SL we have A3; by F37.12, F37.2, A5, SD and SL we have $\Diamond \Box p \supset \Box p$, a contraposed form of A4; and from this and A3, by SL we have immediately A5. Hence (S3+A5) is deductively equivalent to S5.

By SL an equivalent form of A5 is

A6.
$$\Box \Box p \lor \Box \sim \Box p$$

In terms of the non-contingency operator '\D' defined by

$$\triangle A =_{df} \Box A \vee \Box \sim A$$

the axiom A6 becomes

S52. △□p

So if the system S3 be thought of as having the above Df \triangle

added, the system (S3 + S52) is seen to be deductively equivalent to S5.

Consider the following axioms:

S41. $\triangle p \supset \triangle \triangle p$

S44. $\triangle p \supset \triangle \square p$

S51. $\triangle \triangle p$

S52. △□p

Theorem 1. (S3+S41) is deductively equivalent to S4.

Proof: It suffices to derive A3 in (S3+S41), the theorem then follows from standard results and theorem 8 of [3].

1	644
1. $\triangle p \supset \triangle \triangle p$	S41
$2. \Box p \supset \triangle \triangle p$	1, Df △, SL.
3. $\Box p \supset \Box \triangle p \lor \Box \sim \triangle p$	2, Df ∆
4. $\Box p \lor \Box \sim p \supset \triangle p$	SL, Df \triangle .
5. $\Box p \supset \triangle p$	4, SL.
6. $\triangle p \supset \sim \square \sim \triangle p$	F37, 12, F36.0, SD.
7. $\Box p \supset \sim \Box \sim \triangle p$	5, 6, SL.
8. $\Box p \supset \Box \triangle p$	3, 7, SL.
9. $\triangle p \rightarrow \Box p \lor \Box \sim p$	F31.11, Df \triangle .
10. $\triangle p \rightarrow \sim \sim \square \sim p \vee \square p$	9, SL, F34.42, SE.
11. $\triangle p \rightarrow . \diamondsuit p \supset \Box p$	10, SL, F34.42, SE.
12. $\square \triangle p \supset . \diamondsuit p \rightarrow \square p$	F33.311, 11, SD.
13. $\Diamond p \rightarrow \Box p \rightarrow \Box \Diamond p \supset \Box \Box p$	F33.311.
14. $\Diamond p \rightarrow \Box p \supset . \Box \Diamond p \supset \Box \Box p$	F37.12, F32.02, 13, SD.
15. $\Box p \supset . \Box \diamondsuit p \supset \Box \Box p$	8, 12, 14, SL.
16. $\Box p \supset \Box \diamondsuit p$	F33.311, F36.0, SD.
17. $\Box p \supset \Box \Box p$	15, 16, SL.

Theorem 2. (S3+S51) is deductively equivalent to S5.

Proof: Since $\triangle \triangle p \supset .\triangle p \supset \triangle \Delta p$ is a theorem of S3 by SL, it follows by theorem 1 that (S3+S51) deductively includes (S3+S41) and hence also system T. It follows by theorem 13 of [3] that (S3+S51) is deductively equivalent to S5.

Theorem 3. (S3+S44) is deductively equivalent to S4. Proof: It suffices to show that S44 is a theorem of S4 and that A3 is a Theorem of (S3+S44).

ad	S44	1.	$\Box p \supset \Box \Box p$	A3.
		2.	$\sim p \rightarrow \sim \Box p$	F31.34, F37.12, SD.
		3.	$\square \sim p \supset \square \sim \square p$	F33.311, 2, SD.
		4.	$\Box p \lor \Box \sim p \supset \Box \Box p \lor \Box \sim \Box p$	1, 3, SL.
		5.	$\triangle p \supset \triangle \square p$	4, Df Δ .
ad	A3.	1.	$\triangle p \supset \triangle \square p$	S44.
		2.	$\Box p \lor \Box \sim p \supset \Box \Box p \lor \Box \sim \Box p$	1, Df Δ .
		3.	$\Box p \supset \Box \Box p \lor \Box \sim \Box p$	2, SL.
		4.	$p \supset \sim \square \sim p$	F36.0, F34.2.
		5.	$\Box p \supset \sim \Box \sim \Box p$	4.
		6.	$\Box p \supset \Box \Box p$	3, 5, SL.

Theorem 4. (S3+S52) is deductively equivalent to S5.

Proof: A proof has already been sketched in the introductory remarks above. It also follows from Theorem 3 above and the results in [3].

It is not known whether the S3 base can be further weakened. A3 is provable in $(S1^{\circ} + p \supset \diamondsuit p + S44)$, but neither $p \rightarrow \diamondsuit p$ nor $\Box p \rightarrow \Box \Box p$ appear to be provable in this system; T is deductively included in (S1 + A3) but this system may be weaker than S4; S3 appears not to be included in (S1 + A4).

University of Canterbury
University of New England

H. Montgomery R. Routley

REFERENCES

- [1] Lennart AQVIST, Results concerning some modal systems that contain S2, The Journal of Symbolic Logic, Vol. 29 (1964), pp. 79-87.
- [2] R. Feys, Modal Logics, Louvain, 1965.
- [3] H. Montgomery and R. Routley, Contingency and non-contingency bases for normal modal logics, *Logique et Analyse*, n.s. vol. 9 (1966), pp. 318-328.