THE DECIDABILITY AND SEMANTICAL INCOM-
PLETENESS OF LEMMON’S SYSTEM SO.5.

Richard RouTLEY

Two decision procedures are given for the modal system SO.5,
a Gentzen style decision procedure and a von Wright-Anderson
type decision procedure. The second procedure leads easily, as
Cresswell has indicated in [2] using Kripke semantics, to a
completeness result for SO.5. However under the intended in-
terpretation for SO.5 proposed by Lemmon in [6] and [7] and
adopted by Cresswell, namely that the necessity connective ‘0’
is interpreted as ‘it is tautologous (by truth-table) that’, the system
is incomplete. To complete the system under the intended in-
terpretation conventionalistic theses like YV [Op (contingently
necessarily p) must be added to SO.5. But this augmented SO.5
is under its intended interpretation a formalised metalogic of
classical sentential logic (see [7]). Hence the (usual) metalogic
of classical sentential logic is conventionalistic about modality.
In fact consistent extensions of the familiar explanation of the
contingency of a wif, in terms of its having truth-value T for
some assignments to its variables and F for other assignments,
to modal wif lead directly to conventionalist theses. The related
doctrine of necessity as truth (under all assignments) in virtue
of logical form also entails conventionalism, reflected in theses
like OOp and Vpo> O Op which are inconsistent with normal
modal logics. Consider, to illustrate, the verification of
V p> V Op given classical doctrine. If Vp, then p has value T
for some assignments and value F for some assignments. For the
assignments for which p has value T only, Op has value T,
since p is true for all these values; and for the assignments
for which p has value F (obtainable by restricting the values
of p, for instance by substitution), Op has the assignment F.

Since Op has value T for some assignments and F for some,
VvV Op.



414 RICHARD ROUTLEY

The modal system SO.5, formulated with primitive con-
nectives ~,>,[, has as postulates:

I. Some axiomatisation of (classical) sentential logic, to be spe-
cific the schemes:

Al. Ao>.BoA

A2, Ao(Bo>C)o.AoB>.A>C
A3. ~A>~B>.BoA, and the rule
R1. A, A>B—B.

Ii. These modal postulates:

A4. OADA
A5. O(AoB)>.O0A>OB
R2. A—0OA, provided A is a theorem of the sentential logic I.

An equivalent basis is provided by A4, A5, R1 and R2": A=A,
provided A is a classical tautology.

The sequential system *SO.5 has as postulates all the sen-
tential schemes of Gentzen’s system LK (for there see [4]), or of
Kieene’s system G1 (in [5]), and the following two modal
schemes:

A, I'=06 I'-A

OA TS0 (©-) orsoa 9

where I', O, etc. are empty or non-empty sequences of wff, and
OI is the sequence obtained by prefixing each wff in I" with O.
The modal schemes are subject to the following restriction:

Restriction on (—): in an SO.5 proof figure an application

of (—=0O) never appears under an application of (—=0O) or of
(O-).

T'he cut-elimination theorem for *SO.5. Any *SO.5 proof-figure
can be transferred into an *SO.5 proof-figure with the same
endsequent and without any cut.

Proof: The proof is the same as Ohnishi’s “proof” in [9] of
ihe cut-elimination theorem for S2*, except that it should be
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observed that the restriction on (—[J) is met in each case. The
only case where the restriction is relevant is Ohnishi’s case 3.
Since the upper parts of the sequents I'>A and £—B occurring
in case 3, do not contain applications of (—[1), by the restriction
on (—0), an application of the (— ) rule can be made in the
new transformation which decreases the grade of the mix.

The equivalence theorem for SO.5 and *S0.5. A wif B is
provable in SO.5 if the sequent —B is provable in *SO.5.

1. If B is provable in SO.5, —B is provable in *SO.5.
Proof: The theorems of sentential logic follow using LK (or

G1) and the elimination theorem. It remains to prove the cor-
relates of A4, A5 and R2 in *SO.5.

*A4, A—A ,
OASA (Er=)
—0OADA (=>)
*AS5. ADB, A—B
O(A>B), OA—OB (by LK rules (—0))

—0(A>B)>.0A> OB  (applying LK rules).

*R2. If A is a tautology of sentential logic then —A using
purely LK rules and no applications of the modal rules. Hence

—A

—>—|:|A (—)D)

(—=0) can be applied since the restriction is satisfied.

2. If —B is provable in *SO.5, B is provable in SO.5.

Proof: The sequents: '@, -0, '— are represented, respec-
tively, in SO.5 by the wif I'&>0v, Ov, *(I'&), where I'& is
the conjunction of the wff in sequence I', and ©v is the disjunc-
tion of the wff in sequence ©. It is proved that if a sequent is
provable in *SO.5 its representation is provable in SO.5; hence
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in particular if —B is provable in *SO.5, B is provable in SO.5.
It is sufficient to show that the representations of the schemes
of *SO.5 are derived rules of SO.5.

(a) The LK rules are all representable in SO.5 since SO.5 con-
tains sentential logic.

(b) (O—>) is represented by: A&I['&>.0v

OA&I'& > .0v
That this is a derived rule of SO.5 follows from the theorem —
where A&I'& o 0Ov> . OA&I'& > Ov and the rule R1.
(¢) (=0). Case 1 T" is empty. Then (—[) is represented by:

A
7 ,where by the restriction A is derivable only by LK rules.

This is rule R2 of SO.5.

Case 2. T is not empty. Then (—0O) is represented by

IN'&oA
(OM&>0OA
As then I'& D A is provable by sentential logic rules,
O(I'& > A) is provable by rule R2.

Hence OO(I"&)>D A is provable by A5 and RI.
It remains to show (ON& > O(I'&); & for this it will suffice
to show
(d)OA&OB>).0(A&B), as then the previous scheme follows
by inductive iteration. (d) is proved by this sequence:

, where above this rule no modal rule appears.

AD .BDA&B by sentential logic
O(A> .B>. A&B) by R2.
OA> . OB>.0(A&B) applying A5 twice.
OA & OB> .O(A&B) by sentential logic.

The decidability theorem for SO.5. The system SO.5 is a
decidable system.
The system *SO.5 provides a direct Gentzen decision procedure
for SO.5.

The decision procedure can be used to prove directly the
following:

Theorem. There are infinitely many modalities in SO.5.
For all attempted proofs of O™p-30"p, where m<In, are stopped
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by the restriction on (—=0). Hence + O™p&~=30"p iff m = n.
This theorem does, however, follow immediately from the fact
that SO.5 is a sublogic of S2 and S2 has infinitely many mod-
alities.

A decision procedure for SO.5 cannot be provided by a finite
characteristic matrix.
Theorem. There is no finite characteristic matrix for SO.5. Since
Henle’s matrix satisfies SO.5 (as SO.5 is a subsystem of S1), and
since —-S50.5 (p&-3p) v q, Dugundji’s proof in [3] will work.

However SO.5 has the finite modal property, and is decidable
by extended truth-table techniques. The method presented is a
variation of that of Anderson in [1], and some of the terminology
of [1] and [10] is presupposed. As Ohnishi has observed in [10],
Gentzen formulations of modal systems both suggest requirements
on eliminated F-rows in von Wright-Anderson truth-tables, and
facilitate proofs of the adequacy of the decision procedures. Cut-
free formulations of modal systems also lead through these ex-
tended truth tables to completeness theorems for the modal
systems.

Definition: A is an SO.5-tautology iff every F-row r of the truth
table T(A) for A satisfies at least one of the following require-
ments:

I. Some constituent of the form OB has the value T in r where
B has value F in row r.

II. Some constituents of the form OC,,...,0C, (n=0) all have
the value T in r and some constituent of the form (OB has the
value F in row r, where C,&Co&...&C,DB is a (substitution
instance of a) tautology.

Theorem: If —A is provable in *SO.5, then A is an SO.5-
tautology.

Proof: The result follows from

(*) If I'->© is derivable in *SO.5 then its representation is an
SO.5-tautology. For the representation of —A is A. Now

(1) The representation of prime statements A—>A are SO.5-

tautologies. To prove (*) it suffices to show for every rule of
inference of *SO.5 that SO.5-tautologousness of the upper se-
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quent implies SO.5-tautologousness of the lower sequent. That
the LK rules preserve SO.5-tautologousness follows from

(2) Every (classical) tautology is an SO.5-tautology. Now

(3) (O->) preserves SO.5-tautologousness. This is guaranteed
by requirement I, since the only way the lower sequent in an
(O->) rule application differs from the upper sequent is in the
introduction of the symbol O.

(4) (—=0) preserves SO.5-tautologousness. This is similarly
guaranteed by requirement II and the restriction on (—O).

Theorem. If A is an SO.5-tautology, then oA,

Proof: If there are no F-rows, then A is a classical tautology.
Therefore A is a substitution-instance of a theorem of sentential
logic, and so of SO.5. If there are F-rows, define a wff Dr for
every F-row r of T(A), where r = 1,2,...k, as follows: If F-row
r satisfies requirement I for some wff OB, let Dr be OB>OB;
. otherwise F-row r satisfies Il for some wff OC,, OC,, ..., OC,
(n>0), OB: let Dr be OC,,&0C,&...&0OC, > OB.

(*) l—so_,',Dr (r = 1,2 k).

When Dr is 0OC; &...&0C,> 0B, C&Cs&k...&C,DB is a
theorem since it is a substitution-instance of a tautology. Hence
Dr is a theorem.

(**) Dy, Dy .o D=A

(substituting in classical logic), since apart from F-rows which
are excepted by the hypotheses, A is a substitution-instance of a

classical tautology. By (*), (**) and the deduction theorem,
Fs0.5A.

Theorem. oA iff A is an SO.5 tautology.

This theorem furnishes a completeness result for SO.5. To
make the result appear in a more semantic light, first define a
classical interpretation of a wff A over the values T and F
inductively as follows for any subformulae B and C of A:

1. If B is atomic the value of B is T or F;

2. If the value of B is T(F) then the value of ~B is F(T);

3. If the value of B is T and the value of C is F then the value
of (BoC) is F; if the value of B is F or the value of C is T then
the value of (BoC) is T.

4. The value of OB is T or F (whatever the value of B).
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A wif A is classically valid iff it has the value T for all clas-
sical interpretations.

Next define an SO.5-interpretation of a wff A over values T
and F as follows for subformulae of A:

1. — 3. as in the classical interpretation

4. If the value of B is F then the value of OB is F; if the
value of B is T then, if for any C,,C,,...,C, such that
Ci & Co&k...& C, DB is classically valid, OC,, OC,,...,00C, are
subformulae of A which have value T, OB has value T;
otherwise if the value of B is T then the value of OB is either
T or F.

Although 4. is not fully inductive it is effective since A is a
finite wiff.

A wff is §O.5-valid iff it has value T for all SO.5-interpretations.

Theorem. ;A iff A is SO.5-valid.

In spite of this result, and in spite of Cresswell’s completeness
result in [2], SO.5 is not complete under the canvassed interpre-
tation, where ‘00’ is interpreted as ‘it is tautologous (by truth
table) that’. Indeed without a rather liberal reading of ‘it is
tautologous that ('), the interpretation is not even correct; for as
‘~[Op’ taken literally reads ‘it is not the case that p is tau-
tologous’ the interpretation would, inconsistently with the logic,
bring out ~ Op as true.

The intended interpretation, when modified so as to be cor-
rect, turns out to be very interesting. For an interpretation select
as a domain d of interpretation a non-empty set of wff of clas-
sical sentential logic. An assignment i of elements of the domain
to variables of a wff A is a uniform simultaneous substitution
of selected wif of the domain for variables of A, resulting in a
wff A'. Under an assignment for each variable, whether in A
or in some other wff B, a definite wff of d is selected. Once
an assignment of elements of the domain to variables of A is
made, the value of A over the domain for that assignment is

(1) Of the sort suggested by M. RENNIE in [11]. Both M. Rennie and
H. Montgomery have independently noted the incompleteness of SO.5
under the Lemmon-Cresswell interpretation.
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defined. The value of A is the value of A' which is as follows,
where B and C are subformulae of A:

Clauses 1 — 3 as before

4. If B is classically valid, (OB has value T; and if B is not
classically valid, OB has value F.

A wif A is valid in a domain d iff A has value T for all assign-
ments of elements of the domain to its variables. A wiff is
semantically valid (s-valid) iff it is valid in all non-empty
domains.

Theorem. If <o 5A then A is semantically valid.

Proof: As usual by induction over the length of proofs of
theorems of SO.5.

Al — A3, If A is a theorem of sentential logic then all its
instances are classically valid, so it is semantically valid.

R2. If A is a substitution-instance of a tautology then, for any
d and i, A' is also such a substitution-instance. As then A’ is
classically valid, by 4.00A" has value T.

R1. If A is s-valid and ADB is s-valid, then for any assignment
i in domain d A" has the value T and (A >B)' has value T. Thus
(A'>B") has value T; hence B' has value T by rule 3. As this is
for any i in any d B is s-valid.

A4. If (OA)', ie. OA', has value T in classical d under i
then A' is classically valid, so A' has value T for i in d. Otherwise
if JA' has value F, JA'D A" has value T for that i and d by
rule 3. Hence A4 is s-valid.

A5. If for an i over a d (O(A>B))' and (OJA)' have value T
then (ADB)' is classically valid and A' is classically valid. Then
A'DB' and A’ have value T for all classical interpretations.
Hence by the rule for ‘>’ in classical interpretations B' has
value T for all classical interpretations, and so is classically
vaiid. Hence OB' has value T. Otherwise if (O(ADB))' or
(OB)' has value F some d and i (O(A>B)>.0A>OB)! has
value T by rule 3. Since A5 has this value for all i in all d, A5
is s-valid.

Theorem. SO.5 s semantically incomplete, i.e. for some wff A
of SO.5, A is s-valid but ~ gy ;A.
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Proof. 1. ~OOA is s-valid. For any i in any d OOA' has
value F since (JA' is not classically valid. Hence ~ O OA has
value T for all i over all non-empty d.
2. ~S0.5 ~[O0OA. By either decision procedure for SO.5.
Completing SO.5 leads to contingency oriented modal systems
with conventionalist theses VO p and VVp, as well as the S6
thesis ~ (OOp. These systems are studied in [8].

Monash University, Australia R. RouTLEY
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