SOME INTERPOLATION THEOREMS FOR
FIRST-ORDER FORMULAS IN WHICH
ALL DISJUNCTIONS ARE BINARY (")

M. R. Krom

The atomic formulas of a first-order predicate calculus are the
predicate letters with attached individual symbols, and the signed
atomic formulas are the atomic formulas and the negations of
atomic formulas. A first-order formula is in prenex conjunctive
normal form (cf. page 1 of [1]) in case it consists of a string of
quantifiers (called a prefix) followed by a quantifier free part
(called a matrix) which is a conjunction of disjunctions of signed
atomic formulas. We establish properties of the formulas of any
first-order predicate calculus without identity and without func-
tion symbols which are in prenex conjunctive normal form and
in which the disjunctions are binary (have just two terms). The
condition that the disjunctions be binary is not so limiting that
it restricts us to trivial classes of formulas; in fact there is an
apparently still unsolved decision problem for these classes
of formulas( cf. the discussion following Theorem 3 of [5]).
However, as we will show, there are no results analogous to
ours for classes of formulas defined by restricting to ternary
disjunctions.

Most of the properties that we establish are expressed in the
form of interpolation theorems. We begin with one such theorem
for formulas in a statement calculus which completely charac-
terizes when a formula is logically equivalent to a conjunction
of binary disjunctions of signed statement letters. We have three
interpolation theorems for formulas in first-order languages and
one of them is a modification of Craig’s Theorem (Theorem 5
page 267 of [2]) which yields a modified form of Beth’s Theorem
on definability (Theorem 5.2.1 page 118 of [6]).

() The research reported here was supported by National Science
Foundation Grant number GP-6358.
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For any two formulas I', A of a statement calculus or of a
tirst-order predicate calculus we use I' = A to indicate that A is a
logical consequence of I". We use V, A, and 1, respectively,
for the logical connectives, disjunction, conjunction, and negation.

§ 1. Binary Disjunctions in Statement Calculus

We will use a, §, ay, B, as, B2 ... to denote arbitrary statement
letters and negated statement letters of a statement calculus.
For any a we let o’ be the negation of w if a is a statement letter
and the statement letter occurring in « if o is a negated statement
letter. A binary disjunction is an expression of the form oV/f.
For any a, B we let V3 be either one of the two logically
equivalent expressions aVf and fVa. A chain from o to B is
a set of the form {a; Vo, «/sVay, ¢/sVay, ... «/n_1Va,} with
a;=a and «,=f. The following lemma is a restatement of
Corollary 2.2 of [4].

Lemma 1. For any set S of binary disjunctions, S is incon-
sistent if and only if there is a statement letter a and there are
two chains formed with members of S such that one chain is
from a to a and one chain is from o to «’.

We will briefly indicate a proof of this lemma and refer the
reader to [4] for complete details. Any set of binary disjunctions
forming a chain from « to § obviously has the disjunction oV {
as a logical consequence. Thus any set S from which chains
can be formed, one from a to a and one from o’ to a’, has both
aVa and o' Va' as logical consequences and so it is inconsistent.
Conversely, if S is a set of binary disjunctions for which there
are no two chains as indicated in the lemma then we can show
by induction that S can be extended to a set S’ of binary dis-
junctions such that for any predicate letter o occurring in mem-
bers of S’ there is, with members of §’, a chain from « to « or a
chain from o’ to o but not both. This determines an assignment
of truth values which shows that S is consistent.

We say that a binary disjunction is a singleton in case its two
disjuncts are identical.



INTERPOLATION THEOREMS FOR FIRST-ORDER FORMULAS 405

Lemma 2. For any inconsistent set S of binary disjunctions,
the two chains required by Lemma 1 may be formed so that
neither one of them has more than one singleton occurring in it.

Proof. Let ¢ be a chain from o to o in which at least two
singletons occur. We may assume that a\Va is not a singleton
that occurs in ¢ otherwise we could replace ¢ with the chain
{aVa}. Let B; VB, be an endmost singleton occurring in c, that
is, B; VB, is a singleton occurring in ¢ such that there is a sub-
chain ¢’ of ¢ from « to f’; in which no singleton occurs. Then ¢’
together with §, Vf, forms a chain ¢* from « to f3; in which one
singleton occurs, and ¢’ together with c¢* forms a chain from a
to a in which no more than one singleton occurs. Hence ¢
can be replaced by a chain in which no more than one singleton
occurs.

Theorem 1. If T" is a conjunction of binary disjunctions of
signed statement letters and A is a disjunction of signed state-

ment letters such that I'—A then there is a subdisjunction A

of A of no more than two terms such that I'A and A A.

Proof. Let I and A be formulas as described in the hypothesis
of the lemma. Let S; be the set of binary disjunctions that occur
in I" and let S, be the set of singletons of the form 'V’ for
each disjunct § of A. Since S, is logically equivalent to the
negation of A, S; US; is inconsistent. By Lemma 1, there is a
statement letter, say «, such that there are two chains, one from
o to o and one from o’ to o, formed with the elements of S; U S,.
By Lemma 2, no more than two elements of S, need occur in

these chains. It follows that there is a subset Sy of Sy with no
more than two elements such that S; U §2 is inconsistent. Let A
be a subdisjunction of A of no more than two disjuncts, a disjunct
B for each singleton B’V P’ of Sy;. Then I'~A because I is in-
consistent with TIA and A A because A is a subdisjunction of
A.

There is no result corresponding to Theorem 1 which applies to
ternary disjunctions instead of binary disjunctions. In fact, for any
positive integer n there is a conjunction I' of ternary disjunctions
of signed statement letters and a disjunction A of signed statement
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ietters with n terms such that ' A and such that no proper
subdisjunction of A is a consequence of I'. For such an example
let I' = (P,VP,VQ) A (T1QVP;VQIA (T1Q,VPVQy) A
/\ (—|Q|| -:£VP|| 2VQ1|—2) /\ (—|Q|1-2Vp|| !Vpn) al’ld A=
(PLVP,V ... VP)). '

Corollary 1. For any formula I" of a statement calculus the
following two conditions are equivalent:

(1) T is logically equivalent to a conjunction of binary dis-
junctions of signed statement letters,

(2) For every disjunction A of signed statement letters such
that I+ A,there exists a subdisjunction A of A of no more
than two terms such that " A.

Proof. By Theorem 1 it is sufficient to show that (2) im-
plies (1).

Let I" be a formula satisfying (2) and let Q be a formula in
conjunctive normal form that is equivalent to I". Then each
conjunct of Q is a consequence of I' and by (2) there is a
formula Q obtained from Q by deleting all but two disjuncts
from each conjunct of Q and such that I'+~Q. Then Q- Q by
construction, so I" is logically equivalent to Q.

§ 2. Binary Disjunctions in First-order Predicate Calculus.

Formulas referred to in this section will be assumed to be
formulas of first-order languages without identity and without
function symbols. We will briefly describe the proof theory of
Linear Reasoning which we will use (vid. [2]). For any formulas
2 and Q, an L-deduction of Q from ¥ is an ordered (n+ 1)-tuple
(2o, &y, ..., %,) where 2, = T and T, = Q, together with a
specification of how, for m<<n, 3,,,; results from 2. by an
application of an L-rule. The reader is referred to pages 252 and
253 of [2] for the definitions of the eleven L-rules. An L-deduc-
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tion is symmetric if and only if the order in which the different
kinds of L-rules are applied satisfies conditions (iii) through (vi)
on page 257 of [2]. In addition, for convenience, we require
that exactly one application of the L-rule matrix change occur
in any symmetric L-deduction. Theorem 2 of [2] says that for
any prenex formulas I' and A such that I'= A there is a sym-
metric L-deduction of A from I

We [irst show to what extent Theorem 1 above generalizes to
first-order languages.

Theorem 2. Let I and A be prenex formulas such that I~ A.
Assume that the matrix of I" is a conjunction of binary disjunc-
tions of signed atomic formulas, that the matrix of A is a con-
junction of arbitrary disjunctions of signed atomic formulas,
and that the prefix of A contains no existential quantifiers. Then

there is a formula A obtained from A by deleting all but at most
two disjuncts from each conjunct of the matrix of A and such

that T A and A -A.

Proof. Let I' and A be formulas satisfying the hypotheses of
the theorem and let A* be a formula obtained from A by replacing
the universally quantified variables with distinct individual
constant symbols that do not occur in I' or A and by deleting
the universal quantifiers. Then I'+~A*, so there exists a sym-
metric L-deduction © of A* from I'. By properties of L-rules
that may be applied after the application of matrix change in
a symmetric L-deduction and since A* is quantifier free, we
may assume that A* is the matrix of the formula resulting from
the application of matrix change in ©. Let £ be the formula of
D to which matrix change is applied. By properties of the L-rules
that may be applied before the application of matrix change in
a symmetric L-deduction, it follows that the matrix of ¥ is a
conjunction of binary disjunctions of signed atomic formulas.
By the definition of the L-rule matrix change, A* is a logical
consequence of the matrix of £ and by Theorem 1 above there

is a formula A* obtained from A* by deleting all but at most
two disjuncts from each conjunct of A* such that A* is a logical
consequence of the matrix of £. Thus I'2X and T+ A*, so
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I'~A*. Let A be the formula obtained from A* by replacing
individual constant symbols, that were introduced to obtain A*
as indicated above, with their corresponding variables and by

attaching the prefix of A. Since I'- A* and the constant symbols
replaced in A* to form A do not occur in I, it follows that '~ A.

Also A A by its construction, so A has the properties required
in the theorem.

We give an example which shows that the requirement that
the prefix of A contains no existential quantifiers is essential
in the above theorem. Let I' = Hadb((Fa\VV Gb) A (GaVLb) A
(MaVHb) A (NaVMb)) and A = Ha((Fa\VGaVHa) A (La V
MaV/Na)). Then I'+~A but for any formula A obtained from A
by deleting one disjunct from each conjunct of the matrix of
A, not (I'=A).

The requirement that the prefix of A contains no existential
quantifiers can be deleted from this theorem, however, if one
adds the requirement that the conjunction forming the matrix
of A has exactly one term. This result can also be established
with Linear Reasoning and Theorem 1 above using the fact that
the formula resulting from matrix change in any symmetric L-
deduction of such a formula A would have a matrix which is a
disjunction of signed atomic formulas.

Theorem 3. Let I and A be prenex formulas such that I' - A.
Assume that the matrix of I" is a conjunction of binary disjunc-
tions of signed atomic formulas and that " and A have a least
one predicate letter in common. Then there exists a prenex
formula X such that the matrix of £ is a conjunction of binary
disjunctions, such that all predicate letters in £ also occur both
in I and in A, and such that I'~2 and 2 A.

Proof. Observe that the theorem is a statement of a well known
interpolation theorem (cf. Theorem 5 of [2]) with an added
feature corresponding to an assumption that disjunctions are
binary in I'. Let I" and A be as described in the hypotheses of
this theorem. Then by the known interpolation theorem cited,
there is a formula Q such that all predicate letters occurring in
2 also occur both in I" and in A and such that I' - Q and QA.
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Thus there is a symmetric L-deduction € of Q from I'. Let 4
and @, respectively, be the formulas just before and just after
matrix change in €. By properties of L-rules which occur after
matrix change in a symmetric L-deduction, the predicate letters
that occur in @ are exactly those that occur in Q. Let m be a
formula obtained from ® by writing its matrix in conjunctive
normal form. The matrix of n is a logical consequence of the
matrix of 4 (which is also a conjunction of binary disjunctions
of signed atomic formulas) and we may apply Theorem 1 above
to the matrix of ¥4 together with each conjunct of the matrix
of n. Thus there is a formula X obtained from = by deleting all
but at most two disjuncts from each conjunct of the matrix of =
and such that ¢ X. Since, by construction, X n, it follows
that X is a formula as required in the theorem.

We observe that Theorem 3 can be used to establish a cor-
respondingly modified version of a theorem known as Beth’s
Theorem on Definability. In particular, in Theorem 5.2.1 page
118 of [6], if we add an assumption that the sentence defining
the relation implicitly is in prenex conjunctive form in which
all disjunctions are binary then we may conclude also that the
sentence defining the relation explicitly may be assumed to be
in prenex conjunctive normal form in which all disjunctions
are binary. _

Theorem 3 has a consequence concerning the existence of
reduction classes for satisfiability of formulas in pure first-order
languages. Let L; and L, be any two first-order languages and
let M\ be a set of formulas of L,. Then N is called a reduction
class for satisfiability of formulas of L, in case there is an
eifective procedure for finding, for any formula X of Lj, an
associated formula ¢(X) in R such that X is satisfiable (has a
model) if and only if o(X) is satisfiable (cf. page 32 of [7]).
Now suppose that all predicate letters that occur in L, also
occur 1n L;." Then for any structure (relational system) M of
the similarity type of L,, the Lsy-reduct of M is the structure
obtained from M by deleting all predicates for which there is
no corresponding predicate letter in Ly. Also, if i is an Ly-reduct
of a structure M of the similarity type of L;, then we say that
M is an Li-expansion of M. We will say that R is a strong re-
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duction class for satisfiability of formulas of L, in case R is a
reduction class such that for any X of L, and any model M
of p(X) the Lyreduct of M is a model of X and for any model
9N of X, M has an L;-expansion which is a model of o(X). We
observe that the Skolem normal form for satisfiability (cf. Satz
VII page 49 of [7]) determines a strong reduction class. If L,
is any pure first-order language and L; is an extension of L,
including infinitely many new predicate letters of all ranks and
N is the class of the prenex formulas of L; with the Skolem
normal form prefix, then N is a strong reduction class for satis-
fiability of formulas of L,.

Theorem 4. For any pure first-order languages L, and L, such
that L, has at least three predicate letters and such that L, is an
extension of L,, the class of the prenex formulas of L, whose
matrices are conjunctions of binary disjunctions of signed atomic
iormulas is not a strong reduction class for satisfiability of the
formulas of L.

Proof. Let L, and L, be pure first-order languages such that
L, is an extension of L, and suppose that the class B of prenex
conjunctive formulas of L; in which all disjunctions are binary
is a strong reduction class for L,. Let X be a formula of L, and
let o(X) be the associated formula of B. By definition of strong
reduction, o(X)X. By Theorem 3 above there is a formula =
of ¥ such that o(X)=, X and such that all predicate
Ietters occurring in ¥ also occur in X. But any model M of X
has some L;-expansion M’ which is a model of p(X). Since
oX) 2, N is a model of X and thus also the Li-reduct N of
W' is a model of . Thus XX and we conclude that for any
X of L, there is a logically equivalent formula which is in prenex
conjunetive normal form and in which all disjunctions are
binary. But we will show that this is not true for first-order
languages L, with at least three predicate letters. Suppose Lo
is a first-order language in which three predicate letters o, {3, and

y occur. Let a, [5 and vy, respectively, be the formulas obtained
from these predicate letters by introducing distinct individual
variables into each argument place and then universally quan-

tifying the variables. Let X be EVE\/\:. Suppose that X is a
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prenex conjunctive formula in which all disjunctions are binary
and such that all predicate letters that occur in X also occur
in X. By considering various one element structures as possible
models, we can see that £ can not be logically equivalent to X.
In particular, either X is satisfied by all one element structures
or there is a conjunct of X in which the two disjuncts are not
a negated and an unnegated instance of the same predicate
ietter. But if there is such a conjunct then the weaker formula

2 obtained by deleting all but that conjunct from the matrix of
2 is not a logical consequence of X.

Notice that there are instances of Theorem 4 in which L, is a
statement calculus, i.e. when L, is a language with just three
predicate letters each one being of rank zero. The statement
obtained from Theorem 4 by replacing “three predicate letters”
with “one binary predicate letter” is also true. That follows
from the first part of the above proof and Theorem 1 of [3].

Finally we observe that statements corresponding to Theorems
3 and 4 above with “binary disjunctions” replaced by “ternary
disjunctions” are false. In particular there is a simple procedure
for strongly reducing first-order formulas to formulas in prenex
conjunctive normal form in which disjunctions are ternary. For
an illustration consider the replacement of P,V P,V P;V P, with
(PIVP2VQ) A (jQVP;VPQ where P,, P,, Ps, P,, and Q are
distinct statement letters. For further details of how this re-
duction can be carried out for arbitrary first-order formulas see
the proof of Theorem 1 in [5].

University of California, Davis M. R. KroM
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