A UNIVERSALLY VALID SYSTEM OF PREDICATE
CALCULUS WITH NO EXISTENTIAL PRESUPPOSITIONS

John T. KEARNS

1. INTRODUCTION. In this paper, I present a system of predicate
calculus in which individual variables are not construed in the
normal fashion. Before I explain my way of understanding
variables, I will state the ordinary view of variables. In dealing
with the customary logical systems, individual variables are
regarded as “ranging over” a domain of individuals — these
individuals are the values of the variables. For a formula to be
valid in a given domain, it must be true for all values of its
free variables. Quantifiers are used with individual variables
in order to make statements about all or some individuals in the
domain. This use of quantifiers has given rise to the claim that
to be is to be the value of a bound variable.

I am proposing an alternative way to “understand” individual
variables ('). These variables are to be regarded as replacements
for singular terms, where the singular terms may be empty terms
(may be terms without reference). If we consider the distinction
that is often made between variables which take entities as
values and variables which are schematic letters (*), my proposal
is that individual variables (in fact, all variables) be construed
as schematic letters. If variables are taken to be schematic
letters, they cannot be said to take entities as values. For in-
dividual variables replace singular terms that may or may not
have reference. One might regard these singular terms as the
values of the variables, but they would not be values in the
same sense that individuals are the values of variables in
customary quantificational systems.

(1) T have discussed this “alternative understanding” in [3] and [5].

(*) W. V. Quine frequently refers to the distinction between a va-
riable taking entities as values and a variable which is a schematic
letter. See, for example, “Logic and the Reification of Universals”, in
[9], especially p. 107ff.
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When individual variables are regarded as schematic letters,
they can still be quantified. Ordinarily, ‘(x)’ is read, “For all
individuals x”.

But on the view | am proposing,

(x)f(x)

might be read,

“For every singular term which replaces 'x’, f(x) [is true]”. An
analogous reading can be provided for the particular (existential)
quantifier. (These readings are discussed at greater length in
section 3).

Customary systems of predicate calculus are not adequate when
individual variables are regarded as schematic letters replacing
possibly empty singular terms. This is because the customary
systems do not possess a means for distinguishing what exists
{from what does not. In the remainder of this paper, I set up a
system of predicate calculus which is suitable for distinguishing
empty from non-empty names. But 1 will present this system
by stages. To begin with, I will set up a system that is acceptable
on either view of variables. The peculiarity of this system, given
the customary treatment of individual variables, is that it is
universally valid — it is valid in «/l domains, including the
empty domain. After presenting this system, I introduce the
additional axioms and rules that are required when individual
variables are regarded as replacements for singular terms that
may be empty terms.

2. THE SysTEM UV. The system UV is a simplified version of
ithe system presented in [4] (°). It results from the system of
Hilbert and Ackermann (which is found in [1]), when this
system is modified to achieve universal validity. The system UV

(*) The system UV is simpler than the system in [4] by virtue of
containing fewer axioms and rules. In [4], | was not concerned to
“streamline” the system, but only to argue in favor of a universally
valid system.
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does not contain free individual variables; for when free variables
are eliminated, the limitation of validity to non-empty domains
becomes less plausible. And formulas containing free individual
variables have the same intuitive significance as similar formulas
in which the corresponding individual variables are bound by
initial universal quantifiers.

In order to present the axiom and rules of procedure, the
following definitions are required.

Well-formed formula (*)

(i) A propositional variable standing alone is a wff.
(ii) A predicate variable whose argument places are filled
with individual variables is a wif.

(iii) If Ala] is a wff containing a free individual variable
a, then (a)Alal is a wif.

(iv) If A is a wff, then ~A is a wff.

(v) If A, B are wffs such that no individual variable
occurs bound in one and free in the other, then [A>B],
[A v B], [A & B], [A=B] are wifs.

It should be noted that an individual variable cannot occur in
a wff both bound and free, nor can one quantifier occur within
the scope of another containing the same quantified variable.

Initial universal quantifier

(i) If Alal is a wff containing free individual variable a,
then (a) is an initial universal quantifier of (a)Alal.
(ii) If (a,-¢) is an initial universal quantifier of a wff
(ai)(aﬂ)---(uuﬂ)(an)A[ul;aE!'--’an—han]v then (an) is an
initial universal quantifier of this wff.

(*) Propositional variables are chosen from
P, Q, I, S, Pyyene
Individual variables are chosen from
W, X, ¥, Z, Wy,..
Predicate variables are chosen from
f, g h, fi,.
Step (v) allows different connectives in a wff, because the axioms for
propositional calculus that are required in UV will not be specified.
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Initial string

If (a,) is an initial universal quantifier of a wif (a;)(ag)...
(an)Alay, ag,...,a,], and Alay, as,...,a,] does not contain
an initial universal quantifier, then (a;)(0g)...(a,) is the
initial string of (o) (ay)...(a,)Aloy,0,...,0,].

The single axiom of UV (apart from axioms common to
propositional calculus) is (°)

Al (0).(0f(x) D f(y).
The rules of procedure are the following: (°)

al A propositional variable u occurring in a theorem A
can be replaced by a wff B, provided that p is replaced
at each of its occurrences in A, and provided that A and
B have no individual variable in common. Let the result of
this replacement be XA’, where X is the initial string;
and let w4, as,..., a, be the individual variables occurring
free in ZA’. Then Z(a)Nag)...(a,)A’ is a theorem (7).

a2 An individual variable a; bound by an initial uni-
versal quantifier in a theorem A can be replaced by an
individual variable oy, provided that «; is replaced at
each of its occurrences in A, and provided that ay either
does not occur in A or occurs bound by an initial universal
quantifier. Let the result of this replacement be Z,(a;)Z;A”

(5) Brackets are abbreviated according to the convention of A.
Church, Introduction to Mathematical Logic, vol. 1.

(%) These rules are adaptations of the rules presented by David
Pager in “An Emendation of the Axiom System of Hilbert and Acker-
mann for the Restricted Calculus of Predicates”, The Journal of Sym-
bolic Logic, vol. 27, n*. 2. As Pager proved, (adaptations of) the ori-
ginal rules can be derived from these rules.

(") The rules are stated for theorems, but the axioms are to be included
among these theorems. The rules are not stated for wffs (as Hilbert and
Ackermann stated their rules), because not all universally valid formulas
are theorems.
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where Z(a,)Z; is the initial string of A. If ay occurs in
A, then Z,;3,A’ is a theorem. If a, does not occur in A,
then Z;(as)ZuA" is a theorem.

a3 Let A be a theorem containing the n-adic predicate
variable ¢, and let Blay, as,..., on,...,04,,] be a wiff
containing (exactly) n+r distinct free individual variables
4, 0g,..., 0y, r. Each occurrence of ¢ in A can be replaced
by B, according to the rule that (B, fs,..., B,) is to be
replaced by BIB;, Bs,..., Bas Gns1se--» Ony o), provided that
A and Blay,..., a,,,;] have no individual variables in
common. Let the result of this replacement be £A’, where
Z is the initial string. Then Z(a,,)...(a,,.)A" is a theo-
rem.

vyl From a theorem (ay)(ag)...(a,).ADB[e;] in which
the consequent contains the free individual variable o;
which does not occur in the antecedent, the theorem
(og)...(ct; - Nti 4 1)...(a,).A D (ei)Blai] is obtained.

n  From a theorem (o4)(ag)...(at,).Alo;1 > Bla;] in which
both antecedent and consequent contain the free indi-
vidual variable «;, the theorem

(aq)...(ct; _ Nati, ). (). () Alo]1 D (@;)Bley] is obtained.

d All occurrences of an individual variable o, in a theo-
rem A which are bound by a single quantifier may be
replaced by occurrences of an individual variable ay,
provided that ay also replaces .a; in the quantifier, and
provided that the result is a wff.

MP If A, ADB are theorems, then B is a theorem.

The system UV requires only a single axiom (other than those
common to propositional calculus). A counterpart to the second
axiom of Hilbert and Ackermann is
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(1) ()= (Ff(x) ().
But (1) is a consequence of A1 — it can be derived as follows:

(i)  (M.Of(x)of(y)o.~f(y) D ~(0)f(x)

(i) (MIfx)f(P]D (y).~f(y) D ~(0)f(x) (), n
(iii) (y).~f(y)> ~()f(x) (i), A1, MP

(iv) (v).~ ~f(y)o(Hx)f(x) (ii), o3

(v) (M f@)o(E0)Nx)  Gv)

A rule y2 corresponding to y2 of Hilbert and Ackermann is

v2 From a theorem (u;)(ap)...(a,).Ale;]>B in which
the antecedent contains the free individual variable o;
which does not occur in the consequent, the theorem
(o). (i - Natiy1)...(ap).(Hai)Alai] B is obtained.

The rule y2 is a derived rule of UV; its proof is omitted. The
derived rule of transitivity (hypothetical syllogism) is somewhat
different from the corresponding derived rule in the system of
Hilbert and Ackermann. The rule, which will not be proved, is

HS If (0 Xww)...(a,).A DB, (;)(e)...(at,). B> C are theo-
rems, then if (a;)(ay)...(0,).ADC is a wff, it is a theorem.

When individual variables are construed in the normal fashion,
the system UV is both consistent and complete. The proof of
consistency is trivial, since UV is part of the original system of
Hilbert and Ackermann, which is consistent. A proof of com-
pleteness is constructed in the same fashion as the proof by
Mostowski in [8]. To understand what is meant by the com-
pleteness of UV (on the customary treatment of individual
variables), it is necessary to understand what it is for a formula
to be universally valid. Validity in non-empty domains is the
same as for ordinary systems of predicate calculus. But validity

(*) The universal quantifier is basic; the particular quantifier is an
abbreviation.
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must be specially defined for the empty domain. This is done
in such a way that a universally quantified formula is always
assigned the value truth in the empty domain.

The system UV contains as theorems the universal closures of
most of the important theorems of the system of Hilbert and
Ackermann. Some theorems of the system of Hilbert and Acker-
mann which are not theorems of the system UV are

(2) (Of(x)2(Fx)f(x)
(3) ()p & f(x)]op & (x)f(x) (")
4) pv(H)f(x)D(Hx)pvi(x).

3. INDIVIDUAL VARIABLES AS SCHEMATIC LETTERS. If individual
variables are regarded as replacements for possibly empty singu-
lar terms, the theorems of UV will have a different significance
than they do on the customary view. But this change in signifi-
cance does not constitute an argument against my treatment of
variables, for this treatment is a perfectly legitimate one.

To understand the significance of formulas whose variables
are regarded as schematic letters, it will be helpful to consider
quantification. As indicated in section 1, the formula

(0 (x)

will be read, “For every singular term which replaces ‘x’, f(x)”.
This reading must not be understood as presupposing a linguistic
ontology that is replete with abstract entities. For a statement
whose form is

(°) The reason why (3) is not universally valid is not immediately
evident. But if (3) were universally valid, so would be
i x) [p&f (] o p
But from (i) we can obtain
(i) ~ p D~ x) p. &f (x)
(ill) ~~ P DO~ X). ~p&f (x
(ivipos x).pv ~ 1 (x)
If (iv) were a theorem of UV, then any truc statement would imply
that there is at least one individual.
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(x0)f(x)

is not making a claim about some eternal domain of singular

terms. The statement simply asserts that any singular term which

has been, or can be, formed can be written in place of ‘x’ to form

a true sentence (or a sentence expressing a true proposition).
The formula

(Ax)f(x)

will be read, “There is a singular term which can replace ‘x’ so
that f(x)”. This should not be understood as claiming that such
a singuiar term “exists” at the present time. A statement of form

(Hx)f(x)

simply claims that a singular term can be formed which, when
written in place of ‘x’, will make a true sentence from

f(x).

When individual variables are construed in the present fashion,
the system requires some device for introducing new singular
terms. For if there are true statements of the form

(Hx)f(x),

4}

there ought to be some way to add a singular term “answering’
to the bound variable. A description operator will be added to
the system (in section 7) to satisfy this requirement (*°).

() In a system which permitted quantification of variables belon-
ging to all categories, it would be appropriate to introduce rules for
defining expressions of different categories. Lesniewski, whose treat-
ment of variables is similar to that which 1 am proposing (an account
of Lesniewski’s views can be found in [2]), devoted considerable atten-
tion to the formulation of rules for introducing definitions into his for-
mal systems.
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Someone might object to the above readings of quantifiers on
the grounds that they are meta-linguistic — they confuse use
with mention. Such an objection is without force. The readings
presented above seem to me to be the (almost) (") ordinary-
language expressions that best bring out the role of individual
variables. But alternative readings could be introduced which
are not “meta-linguistic” (**) — though these might be expres-
sions that do not belong to ordinary English. A more serious
objection claims that the proposed treatment of variables limits
the application of the logical system to domains containing at
most an enumerably infinite number of individuals. For it is
clear that no system (or language) can contain more than a
finite number of singular terms. Even if rules for introducing an
infinite number. of singular terms are allowed (the system in
this case will contain a potentially infinite number of names),
the singular terms will be enumerable. Thus it seems that it
will not be possible to say anything about all individuals if there
are non-denumerably many of them. This objection applies only
to languages containing a fixed and final number of singular
terms, where the significance of these terms is specified “in
advance”. For a universally quantified statement is an inference
warrant which entitles us to replace the quantified variable
by a singular term. No matter how large the domain, there is
no individual which cannot be named — though it is clear that
we cannot have a name for every individual. Because it is possible
lo name any individual, a universally quantified statement will
have a truly universal force.

(') The qualification “almost” is added because the proposed rea-
dings should not be understood in the most straightforward way. These
readings require a commentary to eliminate the suggestion of a lin-
guistic ontology ,replete with abstract entities.”

(*2) Lejewski, in [6] and [7], proposes to read ‘(x)’ as “For all x,”
and ‘(dx)’ as “For some x.” His readings are not ordinary-language ex-
pressions in common use. They can be regarded as expressions intro-
duced into ordinary language to serve certain logical purposes.

There is no requirement that a logical symbol have an exact trans-
lation in a natural language, though there ought to be some way of
explaining in the natural language how the logical symbol is to be un-
derstood, or used.
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Given my treatment of individual variables, it is necessary
to define a concept of validity for formulas containing such
variables. Conventional definitions of validity make use of the
concept of an assignment of values to variables. When individual
variables are regarded as schematic letters, an interpretation
cannot be made in a domain of individuals. Some concept other
than that of assignment is required to define validity.

On the proposed view of variables, the logical system is
regarded as the basis (or foundation) of a language. The system
is capable of being extended “in different directions” (to extend
the logical system is to add predicates and singular terms to it).
Validity is defined with respect to an extension — though an
extension might be open ended: it need not (though it may)
consist of a completely specified list of predicates and constants,
whose significance is fully determined. To define validity, it
is necessary to employ the concept of replacement. In a replace-
ment, propositional variables are replaced by sentences, predicate
variables by predicates, and free individual variables by singular
terms. For a given replacement of its free variables, a formula
(a)Alal is replaced by a true sentence if Ala] is replaced by a
true sentence for every replacement of « by a singular term;
otherwise (a)Alal] is replaced by a false sentence. A formula is
valid for a given extension if it becomes a true sentence for
all replacements of its components. A formula is valid if it is
valid for all extensions ('?).

Let us consider what happens to the consistency and com-
pleteness of UV when individual variables are viewed as replace-
ments for possibly empty singular terms. Consistency is not af-
fected, since this is established in a purely formal manner. But
the system UV is also complete, although this completeness is
rather strange. For the theorems of UV are valid for every ex-
tension of UV — this includes extensions that (a) contain only

(%) Validity can also be defined in such a way that the formal
system is not regarded as a language being used. Instead of dealing with
extensions of the formal system, the system would be interpreted in
various languages which are distinct from the formal system (but these
must be languages which are meaningful). The concept of replacement
will still be necessary to the definition of validity.



CALCULUS WITH NO EXISTENTIAL PRESUPPOSITIONS 377

empty singular terms, (b) contain only non-empty singular
terms, (c) contain both empty and non-empty singular terms, and
{(d) contain no singular terms. The system UV contains as a
theorem (the universal closure of) every formula valid in all
such extensions. The universal validity of the axiom and theorems
of UV is easily established. (In an extension of UV without singu-
lar terms, a universally quantified statement is vacuously true).
The completeness of UV is established by the same proof that
establishes the completeness of UV given the ordinary treatment
of individual variables. For a universally valid formula must be
valid in extensions that do not contain empty singular terms.
But validity in such cases reduces to the normal concept (*).
Hence, if the system is complete when individual variables are
regarded as taking individuals as values, it is also complete
when these variables are regarded as replacements for singular
terms.

4. A SPECULATIVE ASIDE. In this section I will make a claim
about the customary treatment of individual variables, and the
conventional sort of interpretation. This claim represents an anti-
platonist bias on my part, and I wish to separate it from the
rest ol this paper. For I think that even if my claim can be
refuted, the major aim of this paper will not be affected.

The treatment of variables that I have proposed, and the
definition of validity that I have sketched appear very different
from the conventional ones. And it may be claimed that my
approach is of limited value when compared to the customary
approach. For when variables are interpreted in domains of in-
dividuals, it seems possible to escape the limitation to a language
or linguistic system that characterizes my view. Now my claim
is that what seems to be the case is just not so. An interpretation
must be made by someone, and he must employ some language
— there is no direct way to “assign” things to symbols.

This claim about the nature of (ordinary) interpretation is the

(") Perhaps 1 should say instead that validity in such cases comes
to the same thing as the normal concept.
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application to formal systems of a point made by Professor
Wilfrid Sellars in other contexts. For Sellars is continually
pointing out that a statement of the form

(i) ‘A’ means B.

must not be understood to be assigning an entity to an expres-
sion (**).
Instead, (i) should be understood along the lines of

(ii) ‘A’ [in whatever language] means the same as ‘B’ in
our language.

But (i) differs from (ii) in presupposing that the speaker and his
audience understand ‘B’. Even conventional interpretations of
tormal systems take one language into another. The chief differ-
ence between conventional interpretations and the interpretations
I am proposing is this: in conventional interpretations, the in-
terpreting language does not contain empty singular terms.

When an interpretation is regarded as assigning things to ex-
pressions, it appears that we can regard a formal system from
an absolute point of view. I am denying that there is such a
thing as an absolute point of view. No one can ever get outside
all linguistic (conceptual) frameworks.

5. AppIiTIONAL AXxIoms. Although the system UV is complete in
the sense explained in section 3, it is inadequate. For when in-
dividual variables are regarded as replacements for possibly
empty singular terms, there is no reason to be interested in
formulas valid in extensions that do not contain singular terms.
Hence, it is desirable to limit the system (which is really to
expand the system) to those formulas valid in extensions that
(a) contain only empty singular terms, (b) contain only non-
empty singular terms, and (c) contain both empty and non-empty

(*3) In nearly every essay of [10], Sellars uses this point to resolve
some philosophical perplexity.
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singular terms. Another shortcoming of UV is that it possesses
no means for distinguishing what exists from what does not
(for distinguishing non-empty from empty names).

When the system UV is considered with respect to extensions
containing singular terms, there is no objection to admitting the
formulas

(2) (x)f(x)>(Hx)f(x)
(3) Wp & f(x)]op & (x)f(x)
(4) pv (@x)f(x)>(Hx).p v f(x)

Formula (2), for example, claims that if
f(x)

is true no matter what singular term replaces ‘x’, then (since
there is at least one singular term) there is a singular term which
can replace ‘x’ so that

f(x)

is true (becomes true).

To correct the shortcomings of the system UV that were
mentioned above, additional axioms will be formulated. The
system UV with the additional axioms and rules introduced in
this paper constitutes the system UV™*. The next four axioms of
UVt are

e

A2 (x)(y)x=y>D.f(x)Df(y)

A3 (x)(y).xgyaxgx

A4 (x)(y).~[xZx] & ~[y=y] > f(x) > (y)

A5 ~[AZ AL,

e
The symbol ‘=" is an existential identity symbol. If

<
X=Y;

(**) The system UV is quite similar to the system L4 presented by
Lejewski in [7).
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L]

then x is identical with y, and x exists (i.e., ‘x’ is a non-empty
name). ‘/\’ is the standard empty name ('"). The addition of these
axioms makes it necessary to change the definition of a wff to

€. *

allow formulas containing = and ‘/\’. It is also necessary to
change rule a2 to allow the substitution of ‘A’ for an individual
variable bound by an initial universal quantifier.

The addition of ‘A’ to UV limits this system to extensions
which contain empty singular terms (when ‘A’ is understood in
the intended fashion). This addition also makes possible the
proof of all those theorems (not containing free individual
variables) of the system of Hilbert and Ackermann that were
eliminated from UV. For from

(3) () f(x) v ~f(x)
we can obtain

(6) f(A)Yv ~f(A)
(7) f(A) v ~f(A)D(Hx)f(x) v~f(x) From (1)
(8) (dx).f(x) v ~f(x)

In [8], Mostowski has shown that the addition of (8) to UV
yields the system of Hilbert and Ackermann (®).

Axioms A2—A5 enable us to proceed in UV + exactly as one
proceeds in the system of Hilbert and Ackermann. This is
justified by the following derived rules of procedure.

(") Since ‘/\’ is an empty name, it is not the name of any entity.
In particular, it is not the name of a “null individual,” as has been
proposed by R. M. Martin (“Of Time and the Null Individual,” Jour-
nal of philosophy, 62 (1965) ). The proposal to admit such an individual
represents an attempt to retain the customary treatment of individual
variables while gaining the advantages of UV 4. However, this attempt
makes the concept of value of a variable unintelligible.

() This proves that UV 4 contains all formulas (without free indi-
vidual variables) that are universally valid with respect to extensions
of UV 4+ that contain at least one singular term; this includes formulas
valid for extensions that do not contain empty terms. This characteris-
tic (of UV+) is a consequence of the completeness of customary sys-
tems of predicate calculus.
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v3 From a theorem (o;)(a)...(at,).Alo;] DB in which the
antecedent contains the free individual variable a; which
does not occur in the consequent, the theorem
(a)...(a; - ety ). (o) (a;)Ala;] DB is obtained.

PROOF Since
@ (a)(a)...(a,).Ale;] DB
1s a theorem, so is
(i) (a)az)...(an).Aloy] D f(ai) v ~f(a;) D B.
But then we can obtain
(i) (op).. .o Natiy 1) (o) (o) Alos] D (o).
f(ai) v ~f(a;) DB (ii), =
Gv) (og).. (o - Nty 1) (o) (op)f(ai) v ~f(ai) DB]D.
(Ho)[f(ai) v ~ f(ai)] B From a theorem of UV
V) (a)eoCoio ety 1) (o) () Alai] .
(Hop)f(oy) v ~f(ai)] DB (iii), (iv),HS
(vi) (ap).. (o o). (o) (Halfo;) v ~f(ai)] .
(Ui)A[Otj]DB (v)
(vii) (Fa)lf(e;) v ~f(ap)]D (o). (e )0, 1) (o).
(apAlog] DB (vi), y1
(viii) (o). (o 0, ). (o) (a)Alai] OB
(vi), (8), MP (**)

The following two rules will not be proved — their proofs are
straightlorward.

MP’" 1f the universal closures of A, ASB are theorems,
then so is the universal closure of B.

HS’ If the universal closures of A>B, BoC are theorems,
then so is the universal closure of A>C.

Theorems can now be abbreviated by dropping initial universal
quantifiers. For MP’ and HS’ justify the use of these abbreviated
theorems in proofs. However, to make sense of theorems con-

(") This proof follows the outlines of Mostowski’s proof (in [8])
that adding (8) to UV yields the conventional system of Hilbert and
Ackermann (minus free individual variables).
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taining “free” individual variables, it must not be forgotten that
these variables are bound.

6. DEFINITIONS. To develop UV+ in a natural manner, it is
necessary to introduce defined predicates. These predicates can-
not be regarded simply as abbreviations, because of the treatment
of the description operator that is adopted in section 7. Two rules
for introducing defined terms are required — these are:

1 An n-adic predicate I" can be introduced by a defini-
tion having the form

(ul)(U@)- . .((I,,).F(I] s Useens U,,)EA[G“. . ,(1"]

provided that the definition is well-formed and provided
that a4, us,..., w, are n distinct individual variables, €ach
of which occurs in the definiens. The definiens must
contain no other free individual variables, and must
contain no predicate variables. I' must not have been
previously introduced.

2 An (r(p1 Pip, 5455 r(p",m)-adic predicate-forming func-
tor A can be introduced by a definition having the form

(U] ) ..(u,,,).f\{(ph Qay.nny (.Pn}{u[;- . .,(]'.]")E
A[(PI; (-FQ»---J (pn: (1].--- 1um]

provided that the definition is well-formed, that ¢, is an
1y, -adic predicate variable, ¢, is an r 2—adic predicate
variable,..., ¢, is an r%-adic predicate variable, that ¢,
¢2,--, ¢, are n distinct predicate variables each of which
occurs in the definiens, and provided that ay, ..., a, are
m distinct individual variables each of which occurs in
the definiens. The definiens must contain no other
predicate variables and no other free individual variables.
A must not have been previously introduced.

The elimination of predicate variables and free individual vari-
ables from the definiens (when they do not occur in the defini-
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endum) is required to keep UV+ consistent. Without this re-
striction, the following definition would be acceptable:

(i) Paradoxical (x)= ~ f(x).
But then,
(ii) Paradoxical (x)= ~ Paradoxical (x).

The rule 82 prescribes a form for predicate-forming functors that
will not be adhered to in practice. But such a form could always
be employed (departures from it have the nature of abbrevi-
ations). "

The definition of a wff must be modified to allow predicates
as well as predicate variables, and to allow formulas containing
predicate-forming functors (**). An expression of the form

A{(pi""v (Pn}

will be called a predicate schema. An additional clause can be
added to the definition of a wff so that

If A is an (rq)l,r%,...,r(pn,m)-adic predicate-forming
functor, ¢, is an rcpi-adic predicate, predicate variable
or predicate schema,..., @, is an ran-adic predicate,
predicate variable or predicate schema, and ay,..., oy,
are individual variables or singular terms, then

A{Q)h q:,g,...,@,]}(a,,az,...,um) is a wif,

Rule a3 must be modified to eliminate substitution for predicate
variables having an occurrence as argument of a predicate-

forming functor. And an additional rule of substitution must be
added:

a4 Let A be a theorem containing the n-adic predicate
variable y. Let I be one of

(*) No variables belonging to the category of predicate-forming func-
tors will be employed in UV 4.
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(a). an n-adic predicate
(b) an n-adic predicate variable
(c) an n-adic predicate schema having the form

A{(P], P2s0es (Pm}

where A is an (r(pl, v T s , n)-adic predicate-forming
functor, ¢, is an rcp -adic predlcate predicate variable
or predicate schema,..., g, is an rp, -adic predicate,
predicate variable or predicate schema.

The result of replacing each occurrence of v in A by I
is a theorem.

Rule 61 makes it possible to define ordinary identity:

e e
Dl x=y=(@2)x=z=y=:z
This identity has the customary properties — i.e.,

(9) x=y>.f(x)2f(y)
(10) x=

It is even the case that

(1Y A=l

c,

he relation between ‘=" and ‘=" is brought out by

e
(12) x=yox=y

e e
(13) x=y&x=x>Dx=y

A predicate ‘Exists’ can alsc be defined.

e
D2 Exists (x)=x=x.
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From this definition, it is possible to derive

(14) ~Exists (A)
(15) (dx)~ Exists (x)
(16) Exists (x)=~[x=Al.

The predicate ‘Exists’ is fundamental with respect to other
predicates of UV +. For the distinction between empty and non-
empty names is basic to this system. To bring out the funda-
mental character of ‘Exists’, the following definitions are helpful.

D3 f+(x)=Exists (x) & f(x)
D4 f—(x)= .Exists (x) D> f(x) (*")

The functor “+’ is used to form “strong” predicates, while ‘—’
is used to form “weak” predicates. Some theorems illustrating
the roles of strong and weak predicates are:

(17) fHt(x)of(x)

(18) f(x)>f—(x)

(19) ~Exists (x)>f—(x)
(20) ~Exists (x)o ~f+(x)
(21) f=(AN)

(22) ~f*H(A)

(23) Exists*(x)=Exists (x)
(24) Exists—(x) .

The difference between strong and weak predicates is illustrated
by

(25) ~f+(x)= ~Exists (x) v ~f(x)
(26) ~f—(x)=Exists (x) & ~f(x).

A strong predicate can go wrong in two ways, while a weak
predicate can go wrong in only one way (**). The fundamental

(1) The expressions ‘4’ and ‘—’ are predicate-forming functors.
(22) It is interesting to compare this treatment of predicates to dis-
cussions of definite descriptions and other singular terms. For it is com-
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character of the predicate ‘Exists’ is shown by the fact that every
predicate of the system UV + is either a strong or a weak
predicate. For

(27) ()If)=+(x)] v (D) =—(x)]

is a theorem.

7. DEscripTIONS. It is necessary to have a convenient means
for adding singular terms to UV+. For a statement

(dx)Alx]
means that a name can be formed to make
Alx]

true. But this need not be a name that is already part of the
language. For if it were a requirement that the name already

be part of the language, it would make no sense to wonder
whether

(dx) Abominable Snowman (x)

is true (if this amounted to wondering whether there are any
abominable snowmen).

In conventional systems, a description operator is used with
individual variables — e.g.,

S(a)f(x).

But this is not appropriate when variables are understood as
replacements for singular terms. Instead of “the x such that f(x)”,
we shall deal with “the f” — ie.,

mon to regard existence as either presupposed or asserted by the use
of a singular term. But in UV 4, it is predicates that carry existential
force.
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af.

(This is closer to ordinary English than the normal description.)
The axioms required are:

A6 ~(dx)t(x)o of=A
A7 fH(x) & fH(y) & ~[x=ylo f=A
A8 ft(x) & (WIft(y)ox=ylo if =x (¥).

Descriptions require another modification in the definition of
a wff. Rule a2 must be changed to allow the substitution of a
description for an individual variable bound by an initial uni-
versal quantifier. And a3 must be further restricted to prevent
the substitution for a predicate variable which occurs as part of
a description (*).

(*) These axions are such that if

f(A)
Hx) . f+(x) & () .fH ) oD x =y,

then
f+(x) o x = qf.

Alternatively, the axioms might have been such that
A = af

in this case — the following
fH(x) & () D x=y] o x =f

would hold only if

~f (A).
(#) As it now stands, the system UV 4 does not contain the re-
sources for forming a description from a relational predicate — e.g.,

the father of Tom Jones. This shortcoming can be remedied by adding
two more rules for definitions. Rule 83 would allow predicate-forming
functors that take singular terms as arguments — such a definition could
have the form ‘

(@) oo (@) B). Ao, 0, > (B) = A [0, o, Bl
And 64 would allow predicate-forming functors which take both pre-
dicates and singular terms as arguments -- these could have the form

(a) ... (@) B).A {2, 2.} <bjse, 0, > B)=

A e (I.m’ ul‘“" un’ B]

These additional rules have been omitted for the sake of brevity of
exposition.
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8. ConsisTENCY. The system UV + is demonstrably consistent.
This can be established by stages. For the system UV is con-
sistent. And the addition of the axioms A2-A5 preserves con-
sistency. For the system UV with these axioms can be interpreted
in a language which does not contain empty singular terms —
‘A’ will be the name of some selected individual. But then the
system has been given the normal sort of interpretation. It is easy
to find a model which establishes the consistency of the system.

The addition of rules d1, 52, and a4 does not render the system
inconsistent. For all defined terms are eliminable. And any
theorem (not containing defined terms) which is proved by
means of theorems containing defined terms can also be proved
without the use of defined terms (the proof of this will be
omitted).

Once the axioms for the description operator have been added,
defined terms are not always eliminable. But any formula con-
laining a description can be replaced by a formula without a
description, according to the rule:

A formula Alwg] shall be replaced by

(Ha)le*(ay) & (el (o) Doy =0 & Alay]] v.
~(Ho)lgT(ar) & (a).gt (o) Doy =a2] & A[A]

where a;, a, are individual variables not occurring in
Alg].

The resulting formula is equivalent to the original. Any theorem
containing a description yields a theorem when this replacement
is performed, and the resulting theorem can be proved using
only axioms A1-A5.

9. ConcrusioN. The system UV+ is a system of predicate
calculus in the spirit of the systems of Lesniewski (but he did
not permit any free variables, not even free propositional varia-
bles). This system is a useful vehicle for getting clear about the
logical concept of existence. Customary quantificational systems
are unsuitable for this purpose, because they are based on an
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existential presupposition. Existence is usually “built-in” to the
category of individual variables. It has even been claimed that
this treatment of individual variables is necessary, or that “to
be is to be the value of a bound variable”. But this claim is
incorrect. The customary treatment of individual variables is just
one possible treatment, If individual variables are regarded as
schematic letters replacing singular terms that may be empty
or non-empty, there is no reason to make existential presup-
positions. For existence need not be smuggled in with a category
of variables taking entities as values, it can be dealt with ex-
plicitly.

State University of New York at Buffalo John T. KEARNS
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