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I

During the past decade and a half philosopher-logicians on the
western side of the Atlantic have shown an increasing interest in
languages which are free of existence assumptions (i) with respect
to their terms and/or (ii) in the sense that their theorems are true
in all domains including the empty one. On the western side of
the Atlantic, logics free of existence assumptions in sense (i) are
called free logics; logics free of existence assumptions in both
senses are called universally free logics. For the purposes of the
present paper the distinction is not important. So we shall use
the expression “free logic” to refer to languages satisfying (i) and
perhaps (ii).

These languages have proved useful in many areas. For
example, free logic has been used by van Fraassen[17] to explore
certain epistemological questions, by McCall[11] in metaphysics,
by Hintikka[1,2,3] in epistemology, ontology and more recently
in the area of modal logic, and by Lambert[4,5,6] in the theory
of definite descriptions, ontology and to some extent, though in-
formally, in set theory. Further intensive (though as yet un-
published) work, using free logic, is being done by Thomason[15]
in modal logic, by Scott[14] in set theory and by Lambert[7] in
the philosophy of science. A completeness proof for one version
of free logic has been published by van Fraassen[16] and has
been extended by van Fraassen and Lambert[18] to a language
with definite descriptions. Two other papers, one by Leblanc and
Thomason[8] and the other by Meyer and Lambert[12], presen-
ting completeness proofs for still other formulations of free logic
are forthcoming. In addition, Schock[13] has recently presented
a novel formulation of free logic, complete with completeness
proofs, and uses it in the philosophy of science.
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A general feature of the languages mentioned above is the fol-
lowing. Some of the theorems of classical first order predicate
logic are altered or dropped but the sense of the quantifiers found
in most logic textbooks is retained. That is, systems of free logic
developed (especially) in North America interpret the quantifiers
as follows. Suppose a universe of exactly two objects a; and a,.
Suppose, further, a language to contain both referential names
and at least one nonreferential name such that ‘a,” designates a,,
‘ay’ designates a; and ‘b’ designates nothing, i.e., ‘b’ is nonreferen-
tial. Then the sense of the quantifiers is conveyed in the following
equivalences:

(x)Fx.=.Fa,.Fa,,
(Ex)Fx.=.Fa,vFa..

In the 1920’s and 1930’s, on the eastern side of the Atlantic,
Lesniewski[10] developed a language for the foundations of
mathematics which in part was concerned with eliminating the
same existence assumptions. Within this tradition, Lejewski[9]
quite recently has constructed a language, L4, whose first order
fragment, L4’, will concern us in this paper. This language de-
parts in some important ways from the languages mentioned
earlier. First, the classical predicate logic is retained. Second, the
sense of the quantifiers in L4 departs from that in the usual
presentations of mathematical logic. Specifically, in L4’ the in-
terpretation of the quantifiers can be expressed heuristically by
means of the following equivalences. We suppose the universe,
and the constants of the language, as above. Then

(X)FX. = .Fa1 .Fag.Fb,
(Ex)Fx.=.Fa,vFa,vFb.

A noteworthy consequence of these distinct senses of the
quantifiers is that in North American formulations of free logic
a statement like ‘(Ex)(x does not exist)’ is not provable, but in
languages like L4’ it is.

Another difference between languages like L4’ and North
American formulations of free logic, a difference of importance
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so far as our purpose in this essay is concerned, is the following.
L4 contains a nonclassical formulation of identity theory,
whereas the languages with which it is being contrasted contain
a classical formulation of identity theory. Specifically, in L4” the
binary predicate ‘=" is not reflexive; (x)(x=x) does not hold in
L4’. It does, of course, in the contrasting formulations of free
logic.

A natural question then is the following. Is it possible to find
a translation of L4’ into some North American formulation of
free logic such that if P is a formula in L4’ and P* is its North
American transform (or vice versa), then —P=P* in some North
American version of free logic (or vice versa) ? The main purpose
of this essay is to answer the question in the affirmative.

The translation to be presented is important if for no other
reason than that it provides for the first time, so far as we know,
a way of interpreting at least the first order fragment of one
version of Lesniewski’s logical system called Ontology in more
conventional parlance. Since Ontology is regarded as a general
theory of objects the suggestion that the more widely known
North American formulations of free logic can also be so con-
strued is tempting indeed. Hence the translation has considerable
philosophic interest.

II

Since we are here concerned only with the first-order fragment
of Lejewski’s L4, certain strategic though inessential simplifi-
cations and alterations require mention. One obvious change is
from a system with axioms and rule of substitution to one with
axiom schemata. The equivalence of these approaches is well
known.

A second point concerns the matter of definitions. In L4’ the
only important definition is that of the constant non-referential
name ‘O’. We introduce ‘O’ as primitive, and in the place of its
definition we put axiom LA4’. Its correlate could be introduced
in FL ('), the North American system of free logic we shall use,

(') The system, FL, is described in Lambert’s study “Free Logic and
the concept of existence”. See [6] in the bibliography to the present essay.
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by means of description theory, as («x)(x*x). However, we will
not consider languages with descriptions in this paper. Therefore,
we extend FL by adding the primitive term ‘O’, and the axiom
FAS5,71E!O. We call this system FL°.

Another principle common to Les$niewskian languages is ex-
tensionality. The form which we will need is provable as a
metatheorem, so we will eliminate it from the basis of the system
L#’. Other minor changes of no technical import (such as nota-
tion) will be clear as we proceed.

For those notions which will correspond one for one under our
proposed translations, we will use the same signs. Thus %', ‘y’, ‘Z’,
etc. are the individual variables, ‘O’ is the individual constant (the
non-referring name) and the propositional connectives are ‘>’
T, etc., with the usual meaning.

Since there are two notions of equality, we use ‘=" in FL and
‘=" in L4/, and the two approaches to quantification are repre-
sented by (x), (Ex) in FL¢, [x], [Ex] in L4’. The usual relations

“1x) 1Fx = (Ex)Fx
X 1Fx = [Ex]Fx

obtain under both interpretations of the quantifiers.

We will base both systems on the classical propositional cal-
culus. The definition of well-formed formulas is as usual. Ex-
pressions such as ‘Fx’, ‘Fy’ indicate arbitrary wiffs which contain
the variables ‘X’ and ‘y’ in the same free positions (so that the
usual restrictions on quantification apply). Both systems have
the rule of modus ponens. L4’ contains the usual rule of Univer-
sal Generalization but FL¢ contains the Hilbert-Ackermann ver-
sion of Universal Generalization.

The axioms for L4’ are:

LAl [x]:Po.Fx:o:P>.[x].Fx (where ‘P’ is any wiff not
containing free x’)
LA2 [x]Fx.o.Fy

LA3 [xyl:x=y.=.[Ez].z=x.z=y
LA4 710=0
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The axioms for FL¢ are:

FAl1 E!Xx.o:Fx.o.(Ey)Fy
FA2 (Ex)Fx.o:(Ex).E!x.Fx

FA3 x=x
FA4 x=—y.o:Fx.o.Fy
FA5 TIE!O

The translations which concern us in this paper, to be denoted
by * and °, are given by these inductive definitions:

Translation *:

The individual variables, constants, and the propositional con-
nectives are identical under the translation, For any individual
variables or constants a and (3, the atomic formulas are translated
by

{(a=p)* = a=p.Ela
Given the translation of Fa as F*« (for any individual variable a),

([e]Fa)* = (@)F*a.F*O
(Ea]Fa)* — (Ea)F*o.v.F*O

Translation®:;

The individual variables, constant, and the propositional con-
nectives are identical under the translation. For any individual
variables or constants a and B, the atomic formulas are translated
by

(a=p)° = a=p.Ta=a. "Ip=p

(Ela)° = o=«
Given the translation of Fa as F°a (for any individual variable «),

((0)Fa)® = [a]:ia=0.D.F°a
(Ba)Fo)° — [Ea].o=0.F°a
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To show the equivalence of L4’ with FL¢ by these translations
is a four part task:

1) The axioms of FL°, when translated, are theorems of 1L.4.
2) The axioms of L4, when translated, are theorems of FL*.

3) The equivalence of the two translations is provable in L4, ie,
I—L4‘PEP*°.

4) The equivalence of the two translations is provable in FL¢ ie,
I—FL-CIPEPG*.

It is easily verified that the definition of ‘free’ and ‘bound’ in
respect to variables in both systems are identical under the trans-
lations, and that the rules of the systems are provable under the
translations. Therefore, Part (1) (part (2)) is sufficient to establish
that the theorems of L4/(FL°) are theorems of FL¢(L4’), when
translated. Parts (3) and (4) are necessary to show that the two
translations are the inverses of one another, so that the systems
L4’ and FL° are isomorphic. That is, from (1) through (4) we
could prove

+ ri.CP implies ~4P° by (1)
+1P° implies r.cP°* by (2)
+r.CP°" implies . .cP by (4)
hence +r.CP if and only if 1 P°
and +oP implies - y.cP* by (2)
+pL.CP* implies - P*° by (1)
- L4‘P* 2 unphes Ly P by (3)
hence L¢P if and only if -y cP*

Under the translations given, the axioms of our systems be-
come:

LA2.* (x)Fx.FO.o>.Fy
LAl.* (x):P.o>.Fx:P>.FO:>:P>.(x)Fx.FO
O=y.E!O
LA3.* (xy)..x=y.Elx.=: (Ez).z=x.Elz.z=y.E!z.v.0=x.E!O.
LA4.* T1(O=0.E!O)
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FAl.° x=x.2:.Fx.o:[Eyly=y.Fy
FA2.° [Ex].x=x.Fx.o:[Ex]:x=xx=xFx
FA3.° x=x.v, Ix=x"TIx=x.

FA4.° x=yv. Ix=x."ly=y:2>Fx.D.Fy
FAS5.© 710=0

To prove parts (3) and (4), we will use an inductive argument.
If in L4’ we have the theorem

() x=y=xX=yv. X=X ly=yXx =X

whichis x=y.=(x=y)*°
then all atomic formulas of L4’ obey (3).

If P is molecular, then P is of the form Q.R or 71Q or [x].Fx.
Since the propositional connectives are identical under translation,
we consider only the quantifier case; assuming

Fx = (Fx)*°
then [x]Fx=([x]Fx)"°

becomes (ii) [x]Fx.=:[x]:x=x.>.Fx:FO
Hence, if (i) and (ii) are theorems of L4”, part (3) is proven.

Similarly, in FL., we need

(iii)) x=y.=x=y.E!xv. I(x=x.E!x)." 1I(y=y.Ely)

which is X=y.=.(x=y)*
and

(iv) Elx.=x=x.Elx
which is Elx=(E!x)°*

to show that (4) holds for atomic wifs, and for molecular wffs,
that

(v) &XFx.=.:(x)x=x.E!x.2. Fx:0=0.E!0.2.FO
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which corresponds to
X)Fx = ((x)Fx)°*

To complete parts (1) and (3) of the program, we will prove
the following theorems in L4:

LT). a=y.o.x2x% [LA3]
LT2. x=y.D.y=Xx [LA3]
LT3 x=yy=z.D.x=z [LT2, LA3]
LT4. x=y.Diz=X.=.z=y [LT3, LT2]
LTS5, "Ix=x."ly=y.Diz=x.=.z=y [LT1]

LT6* x=y.v. Ix=Xx."ly=y:D:[z]:z=x.=.z=y [LT5,LT4, LA1]
LT6 x=y.v. Ix=x."ly=y:D:[z]:x=z.=.y=z [Similarly to LT6]
LT6° x=yv. Ix=x."ly=y:D:x=x.=.y=y [LT1,LT2]
LT6d x=yv. Ix=x."ly=y:2:0=x.=.0=y [LA4,LT2]
LT6® x=yv. Ix=x."ly=y:2:x=0.=.y=0 [LA4]

The theorems LT6* show that any atomic formula, say Fx, is
extensional, i.e., x=y.v.” Ix=x."ly=y.>:Fx.=.Fy

To prove extensionality in general, i.e. LT7, by an inductive ar-
gument (*), we use these theorems of propositional logic:

Fx.=.Fy:o: 1Fx.=."TFy
Fx.=.Fy:Gx.=.Gy: 2:Fx.Gx.= .Fy.Gy

and this theorem of quantifier theory:
[z]:Fz.=.Gz: o:[z]Fz. = [z]Gz
The details of the proof are left to the reader.

LT7. x=yv. X=X ly=y:2>:Fx.>.Fy

(*) Inspection of the axioms of L4’ shows that a noninductive proof of
LT7 below is impossible. For some purposes, an inductive proof may be
inadequate, for example, where L4’ is extended by adding new symbols.
Under these circumstances, one is required to introduce FT7 by Les$niews-
ki’s rule of extensionality ([10] p. 258).
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LT8. x=x.o:Fx.o.[Eyly=y.Fy [LA2]
LT9. [Ex].x=x.Fx.o.[Eyly=y.Fy [LAL, LA2]
LT10. x=x.v. Ix=Xx."Ix=X [P.C]

LTS8, LT9, LT10, LT7, and LA4’ are the translations of the
axioms of FL¢. Part (1) is completed.

LT11l. x=y.=:X=y.v. X=X, ly=y: X=X [LT1]

LT12. "Ix=x.2:FO.o.Fx [LA4,LT7]
LT13. [x]:x=x.o.Fx:[x]: Ix=x.o.Fx.o.[X]Fx[LA1, LA2]
LT14. [x]:x=x.D.Fx:FO:o.[x]Fx [LT12,LT13]
LT15. [x]:Fx.o:x]:x=x.o.Fx:FO [LA1, LA2]
LT16. [x]:Fx.=:[x]:x=x.2.Fx:FO [LT14,LT15]

LT11 and LT16 show that part (3) is complete.

To do parts (2) and (4) we will have to work in FL®

FT1. (x)Fx.o:(x):E!x.o.Fx [FA1, General.]

FT2. (x)Fx.=:(x):E!x.>.Fx [FT1, FA2]

FT3. (x).PoFx.o.Po>X)Fx [FAL, Gen.,
FA2] ()

FT4. (x).PoFxP>FO0.o:Po.(x)Fx.FO [FT31(®
FT5. (X)Fx.=.:(x):x=x.E!x.> Fx:0=0.E!O.

>.FO [FT2, FA3, FAS]
FT6. E!x.=x=x.Elx [FA3]
FT7. x=y.Elx.o.(Ez).z=x.Elz.z=y [FA1, FA3]
FT8. (Ez).z=x.o.Elx [FA2, FA4, Gen.]
FT9. (Ez).z=xz=y.D.X=Yy [FA4, Gen.]
FT10. x=y.E!x.=.(Ez).z=xElzz=y [FT7, FT8, FT9]
FT11. x=y.E!x.=:(Ez).z=x.E!zz=y E!zv.

O=x.E!0.0=y.E!O [FT9, FAS5]

FT4, FT6, FT2 are the translations of the axioms LAIl,
LA3, LA4, respectively. Left unproven to complete part (2) is

(® In FT3 and FT4, no free ‘x’ occurs in P.
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(%1 (x)Fx.FO.o Fy
which is the translation of LA2.

FT10 and FT11 are the equivalences (iv) and (v) of the pro-
gram’s part (4). Left unproven is

(%2) x=y.=:x=y.Ex.v."]EX."E!y

which is the equivalence (iii).
It is clear that (Y%2) is equivalent to

(5%3) TIE!x.7IEly. 5 .x=y

Likewise, from (J%1) we may prove

a. (x).E!x.o:"EIx.o.x=y [P.C]

b. (x):Elx.o>.x=y [a, FA2]
c. (X): 1BX.TE!O.o.x=0 [b]

d. TIE!O.7E!0.o.0=0 [FA3]

e. " IExTE!0.ox=0 [ed, 1]
f. ®:EXTEly.o.x=y [b]

g. TEXIEX.D.x=y [ef, 1]

The converse, that is, the deducibility of (y¢1) from (¥3), also
holds as we shall see shortly.

None of these propositions has been proven in FL¢, so as
matters stand, all that has been shown is that every theorem of
FLe¢ is also a theorem of L4’ (under the translation).

We will see in the final section of this paper that these pro-
positions are not provable in FLc, although they are consistent,
for they state the equivalence of all non-referring names.

To complete our program, we will consider the system FL,
which is F1° with the additional axiom:

FA6. TIE!Ix."Ely.o.x=y

First, we verify that its translation is a theorem of L4’. Then
we prove in FL:
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FT12. x=y.=:x=y.Elx.v."IE!x."|Ely [FA®6]

FT13. TIElx.ox=0 [FA6, FAS]
FT14. TIE!x.5:FO.> Fx [FT13, FA4]
FT15. EX.o:(x)Fx.o.Fx [FA1]

FT16. (x)Fx.FO.>.Fy [FT14, FT15]

Therefore, L4’ and FL® are isomorphic.

111

FL' is representative of North American versions of free logic
minus axioms FAS and/or FA6. Indeed the system FL, from
which FL' is obtained, consists of axioms FA1-FA4. The trans-
lation constructed in Section II makes it clear, therefore, that
North American versions of free logic are weaker than formula-
tions in the Lesniewski tradition in the sense that the set of
theorems of FL, upon translation, constitute a subset of the theo-
rems of L4’. This fact has interesting philosophical consequences.

First, as has been noted above, if we introduce definite des-
criptions into the language FL, define ‘O’ as ‘(ax)(x*x)’, and
replace ‘O’ everywhere in the axioms of FL' by the proposed
descriptional definiens, the resulting language is similar to van
Fraassen and Lambert’s FD,[18], a system which is known to be
consistent and complete. If we drop the extensionality axiom
FAG6 from FLt, but retain FA5 and treat ‘O’ as above, the re-
sultant system is a fragment of van Fraassen and Lambert’s
theory, FD[18], a language which may be more appropriate for
intentional discourse, as they have pointed out elsewhere. Van
Fraassen and Lambert[18] have shown the theory FD to be com-
plete relative to a certain class of models. The statement which
results by replacing ‘O’ with ‘(:)(x=x)’ in FA6 is not valid in
FD; hence it is not derivable in FD. This is the basis of the
remark in Section II that statements (3%1) — (5%3), are not
provable in FL¢. For FA6 is (%3). The upshot of these remarks
is that North American versions of free logic permit finer inferen-
tial distinctions than does L4,

Another important consequence of the translation in Section II
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is the following. Consider the language FL' As pointed out in
Section I, on the intended interpretation of the quantifiers, the
statement ‘(Ex)(x does not exist)’ is not provable in FLt. However,
it is possible, given at least one nonreferential constant, to intro-
duce a new set of quantifiers ‘[x]Fx’ and [Ex]Fx’ into FLt (or
even into FL) such that ‘[Ex](x does not exist)’ would be provable.
This possibility, of course, has been established in Section IT where
quantifier contexts of L4’ were translated into FL' thusly:

‘x)(Fx).FO’ for ‘[x]Fx’
(Ex)(Fx)VFO’ for ‘[Ex]Fx’

This fact suggests that we can have two kinds of particular quan-
tifier; for example, one of which would be read as ‘there exists’ and
the other as ‘there are’ or perhaps better ‘some’. Accordingly, it is
possible in FL! (or even in FL) to hold consistently that some-
thing does not exist but it is false that there exists something that
does not exist. Clearly, in virtue of the translation in Section II,
a like result holds in Lejewski’s L4’. This result blunts the charge
of imminent if not actual inconsistency brought by Quine, among
others, against those philosophers who would like to hold, for
example, that there are propositions but they don’t exist. The thesis
in question can be expressed in FL, FL' and L4’ as

[Ex](x is a proposition) . 1(Ex)(x is a proposition).

In other places both Lambert[6] and Hintikka[3] have pointed
out that the theorem of FL (hence of FL!Y), QC: E!x=(Ey)(y=x),
is a fairly close analogue of Quine’s famous dictum that to be is
to be the value of a bound variable. Contrary to Lejewski[9],
therefore, Quine’s thesis does hold in FLt, and, by virtue of the
translation in Section II, in L4’ also. However, we agree with
Lejewski that quantifying into a given context is not necessarily
ontically committing, as Quine would have it. For given the quan-
tifier [Ex]Fx’ it simply is not true that a sentence of the form
“There is something who is so and so” implies that “There exists
something who is so and so”, and hence, by the theorem above,
that “so and so exists”.
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Separating what is true in Quine’s program from what is false
(or at least debateable) hinges on the interpretation of the word
‘value’. As Quine uses the word ‘value’ it refers to the purported
designata of the expressions which are substitutable into the
places occupied by free variables; it does not refer to the substi-
tuends themselves. If the word ‘value’ is allowed to refer both to
substituends and to their designata, then Quine’s dictum that to
be is to be the value of a variable would be unacceptable. But, of
course, this is to interpret Quine’s dictum in a way contrary to
his intentions. Therefore it is incorrect to offer the truth of ‘[Ex]
(x does not exist)’ as counterevidence to Quine’s dictum that to
be is to be the value of a variable. For the statement in question
is true just in case one of the substituends of ‘x’ in ‘x does not exist’
is a nondesignating singular term. What the statement in question
is counterevidence to is the claim that quantifying particularly
into a context is ontically committing because it can be true in-
dependently of any (possible ?) object which would make it true.
That is, for example, [Ex](x does not exist)’ does not imply ‘(Ex)
(x does not exist). So what appears to be questionable in Quine’s
program is the assumption that there must be objects of one sort
or another to make the quantified statements of a theory true.

University of California, Irvine Karel LAMBERT
West Virginia University Thomas SCHARLE
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