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In [1], pp. 167-8, Leblanc suggests using an inductive pro-
cedure to ascertain whether quantificational formulas are finitely
valid. The purpose of this paper is to develop this suggestion into
a decision procedure for the monadic case.

If a closed monadic quantificational formula is 1-valid, and
is n-valid only if it is n’-valid (n’=n-1), it is valid in all finite
domains, and hence, by the well-known theorem according to
which validity in the monadic predicate calculus is 2k-validity,
where k is the number of predicates (see [2], pp. 34-37), the
formula is valid. If it is valid, it is 1-valid and n’valid for any
n; and if it is n’-valid, then the statement that it is n-valid only if
it is n”+valid is true. All that remains to be shown is that there is
a decision procedure to determine not only whether it is 1-valid
but also whether the statement that it is n-valid only if n’-valid
is true-

Behmann (in [3]) gave a method by which any monadic
schema can be transformed into a standard schema; i.e., a truth-
function of components each of which is a uniform quantification
or sentence letter. By a “uniform quantification” is meant a quan-
tification that consists of ‘(Vx)’ or ‘(dx)’ followed by a truthfunc-
tion exclusively of F(x), G(x), H(x), etc.

Let S be a standard schema in which every occurrence of ‘(2x)’
has been replaced by ‘~(Vx)~’. S is thus of the form

(l) f[vx)(pl(x)s ey (VX)(Pi(X), Pty ov s p,]]!

in which each «, is a distinct truthfunction of F(x), G(x), H(x),
etc. Now for each r, let @, be the conjunction ¢.(1)&¢.(2)&...&
@:(n). Then (1) is n-valid if and only if

2) f((bl, S, (I)i, P1--. ,pj),
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is a tautology. Hence (1) is n’-valid if and only if
3) H[P&em)], ..., [®:&e@)Lps ..., P;}

is a tautology. Thus (1) is n-valid only if it is n’valid, if and only
if (2) >(3) is a tautology.

The first step of the procedure to be developed here is to ascer-
tain whether (1) is 1-valid. If not, (1) is invalid. If it is 1-valid, we
proceed to the second step. This step involves assigning truth-
values to the sentential constituents of the conditional (2)>(3).
It presupposes that for each r, ®,, which is actually a conjunction
of n sentences, can be treated as a single sentence. Let us prove
that this is so in the special case of the conditional

) fle(M&...&p(n)] o flgp()&...&pn)&e(n)].
What we must show is that if (4) is valid, so is
(5) (@) f[P&y(n)].

(of course, if (5) is valid, (4) follows immediately as a substitution-
instance.) Our proof is as follows. Assume that (5) is invalid.
Then it must be possible for f(®) to be true when f[®&qp(n)] is
false. This is possible only when @ is true and @(n’) is false; for
otherwise, the truthvalue of the conjunction is the same as that
of ®. But whenever ® can be made true and ¢(n’) false, ¢(1)&...
& ¢(n) can be made true and ¢(n’) false. For since ¢(1), ..., ¢(n)
are all distinct, no two of them can contradict each other. Of
course, for some i, ¢ (i) might be a contradiction. But in this case,
@(i) would be a contradiction for every i; in particular, ¢(1) is a
contradiction. In this case, (5) cannot be invalid. For since we
have already ascertained that (1) is 1-valid, we know that f[eq(1)]
is true when (1) is false. This means that f(®) is true when ® is
false. Assume now that (5) is invalid. We have already seen that
in this case f(®) is true when ® is true. Hence the truthvalue of
f(®) does not depend on the truthvalue of ®, and we can ac-
cordingly substitue ®&q(n’) for @ in f(®). This substitution yields
(5) as a valid conditional, contradicting the assumption that (5)
is invalid.
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The special case can now readily be extended to cover (2) and
(3), since (2) can be true and (3) false only if at least one of the
®’s is true and its corresponding @(n’) is false. In case for some
j @;(1) is a contradiction for every i, but (2) is 1-valid, the conditional
(2)>(3) can be invalid only if the truthvalue of (2) is independent
of the truthvalue of ®;; whence ®;& ;(n”) can be substituted for
@,

In view of the fact that for each r, @, is a conjunction of n
sentences which may be treated as a single sentence, and ¢.(n")
is a sentence, the truth of the inductive conditional having (2) as
its antecedent and (3) as its consequent can be decided by as-
signing truthvalues to the ®’s and ¢'s- So can the truth of the
formula expressing the claim that (1) is 1-valid. Hence the vali-
dity of (1) can be decided.

As an example, let us apply the procedure to the following
result of replacing ‘(dx)’ by ‘~(Vx)~' throughout a standard
schema:

(5)  (YIF(x) v G(x) vHX)] o [(YX)F (x) v~ (¥x) ~G(x) v~ (Vx)
~Hx)]

Now (5) is clearly 1-valid. Accordingly, we test the conditional

6) [®D(Dv~Dyv~D)] D [{®&[F(n)vG(n’)vH(n")]}
D {[@:&F ()] v~ [P3& ~ G(1)] v~ [®,& ~H(n)]}]

by assigning truthvalues to the sentential constituents ®;, ®,, ®s,
d,, F(n"), G(n’), and H(n"). Since (6) is a tautology, we conclude
that (5) is valid.

This example shows that the procedure under discussion some-
times requires the evaluation of truthfunctions with a smaller
number of sentential variables than the procedure consequent
upon [2], pp. 34-37, would require. For the example involves a
truthfunction of only seven variables, while the latter procedure,
consisting of a validity test in a domain of 2% individuals (k in
this case being 3), gives rise to a truthfunction of the twenty-four
variables F(1),...,F(8), G(1),...,G(8), H(1),...,H(8). However, the
present procedure is not always the simpler. It calls for three
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variables in the validation of (Vx)F(x) o ~(¥x) ~F(x), while
the older procedure requires only two.

This paper results from an earlier project with John M. An-
derson. The author would like to express his thanks for the help
of Robert Price and Hugues Leblanc.
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