THE LOGIC OF LOGICAL NECESSITY

John L. PoLLocK

A number of different theories of propositional modal logic
can be found in the literature. Most of these theories have at
one time or another been claimed to adequately formalize the
logic of logical necessity. The problem that arises is to determine
which of these theories is really a correct formalization of that
concept. There are two ways one might go about assessing such
a theory. On the one hand, one might try to assess it intuitively,
trying to find axioms that are intuitively evident, and then prove
completeness in the same way by arguing that the addition of
any other axioms yields theorems that are intuitively invalid.
This is the way that most philosophers have approached this
problem in the past, but unfortunately it has been largely unsuc-
cessful. It seems that philosophers’ intuitions are not sufficiently
precise here to decide this issue directly.

On the other hand, one might try to formulate a semantics
for modal logic which could then be used to prove the complete-
ness and soundness of a particular axiomatic theory of modal
logic. There have been several noteworthy recent attempts along
this line. But unfortunately, it is not at all easy to see how
the purely mathematical concepts of validity employed in these
attempts relate to the intuitive concept of a truth of the logic of
logical necessity which the concept of validity is supposed to ex-
plicate. Many of the details of these definitions of validity seem to
be philosophically unmotivated. And this is mirrored by the rash
of different theories of modal logic that have been proven com-
plete using different concepts of validity. Only one of these
concepts of validity can correctly formalize our intuitive concept
of a truth of the logic of logical necessity, and the problem
of deciding which one does seems to be no less difficult than the
problem of deciding directly which axiomatic theory is intuitively
complete (*).

(*) For a detailed discussion of this question see [1].
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I think that the best way to attack the problem of deciding
between different theories of modal logic may be to look directly
at the intuitive concept of a truth of the logic of logical necessity,
try to clarify it, and then work from that to a mathematical con-
cept of logical validity. I take it that what it means to say a sen-
tence (of propositional modal logic) is a truth of logic is that
every assignment of meanings to the atomic parts of the sentence
yields a necessarily true statement (*). This much is fairly simple.
But to go further we must become clearer on just what we mean
by “logical necessity” and thus how the modal operator is to be
interpreted.

Logical necessity has traditionally been defined, or character-
ized, in a number of different ways. Let me list a few of the more
common characterizations:

(i) A statement is necessarily true iff its denial entails an ex-
plicit contradiction.

(i) A statement is necessarily true iff it is entailed by its own
denial.

(iii) A statement, P, is necessarily true iff it is logically equiv-
alentto (P v ~P).

(iv) A statement is necessarily true iff it is entailed by every
statement.

(v) A statement is necessarily true iff its denial entails every
statement.

(vi) A statement is necessarily true iff any state of affairs
whatsoever would make it true.

(vii) A statement is necessarily true iff it is true in all possible
worlds.

These are seven common characterizations of logical necessity,
but they are not as clear as we might desire. And it is not all
obvious that they are all characterizations of the same concept.
Philosophers commonly use these characterizations interchange-
ably, assuming that they are all equivalent, but such an assump-

(*) For a defense of this see [1].
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tion would seem to be entirely unwarranted unless some proof
can be given to that effect.

The first thing I shall do will be to try to find an interpretation
of these seven characterizations of logical necessity which will
allow us to develop their mathematical properties, and then 1
will go on to investigate whether these characterizations are all
equivalent under that interpretation. Then we can see how these
results bear on the problem of deciding between alternative theo-
ries of modal logic.

2. States of Affairs.

In order to clarify the concept of logical necessity, I will give
an analysis which is in the general tradition of Wittgenstein [2],
Carnap [3], and C. 1. Lewis [4]. The attempt will be made to
interpret the above seven characterizations of logical necessity
in terms of states of affairs. By a “state of affairs” I mean things
like John’s being a bachelor, Bill and Bob’s being brothers, the
third house on the block’s being green, Mary’s making pies, our
not being able to travel faster than the velocity of light, there
being ten million unicorns on Mars, etc. A state of affairs is just
something’s being the case. The concept of a state of affairs
brings together under one heading a number of different kinds of
things between which we ordinarily distinguish, such as events
(the Giant’s winning the pennant), situations (the division’s being
trapped at Dien Bien Phu), conditions (X’s being a locally com-
pact Hausdorff topological group), causes (the five ball’s striking
the eight ball), occurrences, accidents, happenings, incidents, cir-
cumstances, consequences, etc. Given an English indicative sen-
tence P, there is a gerund clause P, which stands to P as “John’s
being a bachelor” stands to “John is a bachelor”. A state of af-
fairs is that kind of thing to which we can refer by using these
gerund clauses. This is of course not to say that we can refer
to every state of affairs by an actual English gerund clause of
this form. Let ® be the class of all states of affairs.

It is advantageous to introduce the following locution: Given a
gerund clause P, that refers to some state of affairs, let us define
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‘pe Obtains’ to mean simply P. Thus, “John’s being a bachelor,
obtains”, means, “John is a bachelor”. The use of this locution
will allow us to say things that would otherwise be very dif-
ficult to express.

Now of course, some philosophers will object that there are
no such things as states of affairs, or that the gerund clauses
which have been said to refer to states of affairs are really non-
referential. On the face of it, to say that there are no such things
as states of affairs seems just false. It would involve us in saying
that there are no such things as events, causes, happenings, in-
cidents, occurrences, etc. and those are certainly not philoso-
phers’ inventions. But perhaps this is too summary a dismissal
of a serious philosophical position. Let us consider for a moment
just what is involved in saying that expressions of a certain type
are referential. As far as I can see, this involves no more than
saying that we can use “thing-talk” with respect to these expres-
sions. For example, if A is an expression of that type, then from
‘A is a ¢, we can conclude, ‘Something is a ¢’. Applying this
to states of affairs, from “The eight ball’s striking the five ball
caused the five ball to go in the pocket”, we can conclude,
“Something caused the five ball to go in the pocket’. And we
can say either, “Halley’s comet’s appearing on the wrong day
was widely discussed”, or, “Halley’s comet’s appearing on the
wrong day was something that was widely discussed”, or, “One
thing that was widely discussed was Halley’s comet’s appearing
on the wrong day”, and from any of these we can conclude,
“Something was widely discussed”. And from, “His being color
blind was responsible for his going through the red light”, we can
conclude, “Something was responsible for his going through the
red light”. The use of thing-talk with respect to states of affairs
is perfectly normal, and I see no other basis on which to judge
whether states of affairs are things.

Those who would deny that there are such things as states of
affairs take themselves to be saying something very deep and
profound. They make such proclamations as “States of affairs
are not among the ultimate furniture of the world”. Frankly, I
don’t understand such talk. But, if there really is anything at issue
here (which I rather doubt), I suspect that what I mean by saying
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that states of affairs exist is not incompatible with what they mean
to be saying. When I say that there is a state of affairs having
a certain property, I am using “there is” in the same sense as the
mathematician who says “There is a prime number between 15
and 20”. The people who deny the existence of states of affairs
frequently deny, in the same sense, the existence of numbers. But
in doing so they do not mean to deny that there is a prime num-
ber between 15 and 20. Thus I am inclined to think that my
talking about the existence of states of affairs is really philo-
sophically neutral. I am only talking about interrelations between
states of affairs, and not any deeper questions about the “onto-
logical status™ of states of affairs.

I think that much the same thing can be said to forestall pos-
sible objections to my saying that there are conjunctive states of
affairs, negative states of affairs, general states of affairs, etc.
This is really no more than a convention on my part concerning
how I will use the term “state of affairs”. The disputes, for exam-
ple, of the logical atomists, are irrelevant here. They purported
to be concerned with a deep ontological question that I prefer
to leave untouched.

3. The Algebra of States of Affairs

Now I want to say a little about the algebraic structure of
states of affairs.

We sometimes have occasion to say that two states of affairs
are really one and the same state of affairs. For example, we
may say that John’s being a bachelor is the same thing as John’s
being an unmarried man, or that Smith’s being a widower is the
same thing as Smith’s being a man whose wife died, or that X’s
being a compact topological space is the same thing as X’s being
a topological space such that each net in X has a cluster point.
It is not entirely clear just what our grounds for such claims
are, but the fact remains that we do make them. At least some-
times they are based on an argument to the effect that two state-
ments imply one another. For example, the claim that John’s

311



being a bachelor is the same thing as John’s being an unmarried
man might be supported by saying that the statement that John
is a bachelor and the statement that John is an unmarried man
imply one another.

There is another way of saying that two states of affairs are
really one and the same state of affairs. For example, rather than
saying, “John’s being a bachelor is the same thing as John’s
being an unmarried man”, we can sometime more easily say,
“For John to be a bachelor is the same thing as for John to be
being an unmarried man”, we can sometime more easily say,
place of the gerund constructions is often more natural. Note
also that the way I have introduced the verb “obtain”, the state-
ment “For John to be a bachelor is the same thing as for John
to be an unmarried man”, is equivalent to, “For John’s being
a bachelor to obtain, is the same thing as for John’s being an
unmarried man to obtain”. Thus, in general, given two states
of affairs, X and Y, we can read “X = Y” as either, “X is the
same thing as Y”, or, “For X to obtain is the same thing as for
Y to obtain”.

We sometimes have occasion to say that one state of affairs is
part of another state of affairs. For example, we may say that
John’s being unmarried is part of John’s being a bachelor, or
Smith’s having had a wife is part of Smith’s being a widower, or
X’s being a compact topological space is part of X’s being a
Lindelof space such that every sequence in X has a cluster point.
As for our grounds for claiming that one state of affairs is part
of another, they are sometimes based on one statement’s im-
plying another. For example, to support the assertion that John's
being unmarried is part of John’s being a bachelor, we might ap-
peal to the fact that the statement that John is a bachelor implies
the statement that John is unmarried.

Just as in the case of identity, there is an alternative way of
expressing this relation. For example, rather than saying, “John’s
being unmarried is part of John’s being a bachelor”, we can if
we wish say, “For John to be unmarried is part of what it is for
John to be a bachelor”. Given two states of affairs, X and Y, let
us symbolize the statement that X is part of Y by writing
“X<Y”.
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We can define certain interesting operators on states of affairs:

DF 3.1

Given any two states of affairs X and Y, and any set

A of states of affairs:

(i) XY is its being the case that either X obtains
or Y obtains (which is a state of affairs, given the
way I introduced states of affairs — in terms of
gerund clauses);

(i) X'Y is its being the case that both X and Y obtain;

(iii) —X is its being the case that X does not obtain;

(iv) N A is its being the case that all of the states of af-
fairs in A obtain.

Given these operators, we need not take “<” as primitive. It
can be defined in terms of our other concepts: Part of what it
is for Y to obtain is for X to obtain, just in case for Y to obtain
is the same thing as for both X and Y to obtain. That is,

AX 3.2

X<Yiff Y =XY.

We can list a number of other things which are also intuitively

true of states of affairs:

AX 3.3: XY = YX (for both X and Y to obtain is the same
thing as for both Y and X to obtain);

AX 3.4: XX = X (for both X and X to obtain is the same
thing as for X to obtain);

AX 3.5: X(Y'Z) = XY)Z (for both X and both Y and Z to
obtain, is the same thing as for both, both X and Y,
and Z to obtain);

AX 3.6: —(—X) = X (for it not to be the case that X doesn’t
obtain is the same thing as for X to obtain);

AX 3.7. —XH+Y) = (—X)(—Y) (for it not to be the case

that either X or Y obtain is the same thing as for
neither X nor Y to obtain);
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AX 38: X(Y+Z) = [(XY)+XZ)] (for both X and either
Y or Z to obtain, is the same thing as for either both
X and Y to obtain, or both X and Z to obtain);

AX 3.9: X<Yiff —Y <—X (part of what it is for Y to ob-
tain is for X to obtain, iff part of what it is for X not
to obtain is for Y not to obtain);

AX 3.10: X<[X+Y)(—Y)] (part of what it is for both,
either X or Y to obtain, and Y not to obtain, is for
X to obtain).

These principles are intuitively evident in the same sense in
which the principle of mathematical induction is intuitively evi-
dent. They may not seem obvious at first, but once you think
about them for a while, and try them out for specific cases, you
will come to see just what they say and see that they are true.
To show how this is the case, let me go through one instance
of 3.6:

—(—Mary’s making pies)

= its not being the case that (—Mary’s making pies) obtains

its not being the case that (its not being the case that

Mary’s making pies obtains) obtains

= its not being the case that (its not being the case that
Mary is making pies) obtains

= its not being the case that it is not the case that

Mary is making pies

its being the case that Mary is making pies

Mary’s making pies.

I

This same schema of transformations works in general to show
that 3.6 is true.

Huntington’s axioms for Boolean algebra (in [5]) follow easily
from 3.2-3.10, and so:

TH 3.11: (®,4,,—) is a Boolean algebra. “<” is the Boo-
lean “greater than or equal to”.
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Let O and 1 be the zero and unit elements of this algebra respec-
tively.

We can make several interesting observations about our fourth
operator “N”. Clearly, for any set A of states of affairs, if XeA,
then part of what it is for all of the states of affairs in A to obtain
is for X to obtain:

AX 3.12: IfXeA, then X< NA.

Furthermore, if there is some state of affairs Y such that for
every XeA, part of what it is for Y to obtain is for X to obtain,
then part of what it is for Y to obtain is for all of the states of
affairs in A to obtain:

AX 3.13: If (VX)(if XeA, then X <Y),then N A<Y.

3.12 and 3.13 together, mean that N A is the infimum of A, and
that (®,-},,—) is a complete Boolean algebra.

4, Entailment and Logical Necessity

Now we are in a position to characterize entailment, logical
equivalence, and logical necessity, in terms of states of affairs.
First let us define a function T which maps Z, the class of state-
ments, onto ®, the class of states of affairs. Given a statement
P, T(P) is just P’s being true (which is a state of affairs). T(P)
might be called the fruth condition of P. T maps = onto ® be-
cause corresponding to each state of affairs is the statement that
it obtains.

Clearly the following will be true if we let “&” symbolize con-
junction, “v” symbolize disjunction, and “~” symbolize nega-
tion:

AX 4.1: TP & Q) = T(P)T(Q) (for P & Q) to be true is the
same thing as for both P and Q to be true);

AX 42: T®PvQ) = T(P)+T(Q) (for (P v Q) to be true is the
same thing as for either P to be true or Q to be true);
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AX 43: T(~P) = —T(P) (for ~P to be true is the same
thing as for P not to be true).

We can now give formal definitions of entailment and logical
equivalence. We can define entailment by saying that P entails
Q just in case any state of affairs which would make P true would
also make Q true. And analogously, we can say that P is logically
equivalent to Q just in case any state of affairs which would
make one true would also make the other true. A state of affairs,
X, makes a statement, P, true, just in case part of what it is for
X to obtain is for P to be true, that is, just in case T(P) < X.
So we can state our definitions of entailment and logical equiva-
lence in the following manner:

DF 4.4: P—Q (P entails Q) iff for every state of affairs X, if
T(P)< X, then T(Q)< X;

DF 4.5: PeQ (P is equivalent to Q) iff for every state of
affairs X, T(P) < X iff T(Q)< X.

Because (®,+,,—) is a Boolean algebra, we are immediately
led to the following simpler characterizations of entailment and
logical equivalence:

TH 4.6: P-Qiff T(Q)< T(P);
TH 4.7: P<Q iff T(P)=T(Q)-

This means that P entails Q just in case part of what it is for P
to be true is for Q to be true, and P is equivalent to Q just in
case for P to be true is the same thing as for Q to be true.

Now we can go back and examine our first few concepts of
logical necessity and show that they are all equivalent. On our
interpretation, (i) - (v) will be, respectively:

() (AQ[~P - (Q & ~Q)I;
(i) ~P—P;

(iii) P> Pv ~P);

(iv) (YQYQ— P);

W (Q(~P-Q).
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The interpretations of (i) - (v) in terms of our Boolean algebra
of states of affairs are all equivalent to the condition that T(P) =
1. Therefore,

TH 4.8: (i) - (v) are all equivalent descriptions of the same
concept of logical necessity.

Now let us consider (vi). According to (vi), a statement is
necessarily true iff any state of affairs whatsoever is sufficient
to make it true:

(vi) For any state of affairs X, T(P) < X.

Remembering that “<” is the Boolean “greater than or equal
to”, (vi) is also equivalent to the condition that T(P) = 1, and so

TH 4.9: (vi) is equivalent to characterizations (i) - (v) of logical
necessity.

Finally, let us consider (vii), which is probably the historically
most important concept of logical necessity. According to (vii),
a statement is necessarily true iff it is true in all possible worlds.
Without some explanation it is not at all clear just what a possi-
ble world is, although we do seem to have some intuitive concept
of a possible world. It seems advisible therefore to substitute an
apparently more precise notion for the notion of a possible world.
We can simply identify the possible world with the set of states
of affairs that obtain in it. For us then a possible world is a set
of states of affairs. However, not just any set of states of affairs
will qualify as a possible world. First of all, a possible world W,
must be maximal in the sense that for any state of affairs X,
either XeW or —XeW. This is just the law of the excluded middle.
Furthermore, W must be consistent in the sense that for no state
of affairs X, part of what it is for all of the states of affairs in W
to obtain is for both X and —X to obtain. This is just the require-
ment that the law of non-contradiction hold.- Given that W is
maximal, this is the same thing as requiring that N W=0. If
W is a maximal consistent set of states of affairs, then it is a
possible world.
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Let us take ¥ to be the set of all of these maximal consistent
sets of states of affairs. Then W is the set of possible worlds.
Mathematically, ¥ is the set of maximal complete proper filters
of (O,+,,—).

But now, how do we know that ¥ has any members ? In other
words, how do we know that there are any possible worlds ?
There are Boolean algebras in which there are no maximal com-
plete proper filters. Consider an arbitrary state of affairs X. Sup-
pose there is no element of W containing X. Then it must be
logically impossible for X to obtain, because in order for X to
obtain, the set of states of affairs obtaining along with X must
constitute a possible world — an element of W. Let Px be the
statement that X obtains. It is logically impossible for X to ob-
tain just in case it is logically impossible for Px to be true, that
is, just in case ~ Py is necessarily true. So if there is no element
of W containing X, then ~Px is necessarily true. Utilizing our
characterization of logical necessity in terms of (i) - (vi), ~Px
is necessarily true iff T(~Px) = 1, or iff T(Px) = 0. But now
consider, what is T(Px) ? For Px to be true is the same thing as
for X to obtain, so T(Py) is just X. Thus ~Px is necessarily true
just in case X = 0. Therefore, if there is no element of ¥ which
contains X, then X = 0. Thus, in general,

TH 4.10: For any state of affairs X, if X = O then there is a
WeW such that XeW,

This has the consequence that (®,--,,—) is an atomic Boo-
lean algebra, the set of atoms being { N'W; WeW}, These atoms
are states of affairs that are “complete” in the sense that they
by themselves uniquely determine a possible world. An atom has
the form NW where W is a possible world, so for that atom to
obtain is the same thing as for all of the states of affairs in W
to obtain, that is, for W to be the real world. This suggests
another way of interpreting the concept of a possible world.
Rather than take a possible world to be a set of states of affairs,
we might take it to be an atomic state of affairs. The consequen-
ces for logical necessity would be the same.

Now, for a statement P, let us define M(P) to be the set of
possible worlds in which P is true:

318



DF 4.11: M(P) = {W; We¥ and T(P)eW).

To say that P is true in all possible worlds is just to say that M(P)
= W. This then is our interpretation of (vii):

(vii) M(P) = W.

From the fact that (®,-,,—) is a complete, atomic, Boolean
algebra, we can conclude the following:

TH 4.12: M(~P) = ¥ —M(P) = M(P);
TH 4.13: M(P v Q) = M(P) U M(Q);

TH 4.14: M(P & Q) = M(P) n M(Q);

TH 4.15: P-Qiff M(P) = M(Q);

TH 4.16: P<Q iff M(P) = M(Q).

Also, because T maps = onto ®, it follows that M maps =
onto the class of subclasses of ¥. And by TH. 4.16, we can de-
termine a statement P to within logical equivalence by specifying
M(P).

Thus we can characterize entailment and logical equivalence
in terms of sets of possible worlds. And from theorems 4.12-
4.16, it follows that M(P) — W iff T(P) = 1. Thus,

TH 4.17: Characterization (vii) is equivalent to characteri-
zations (i) - (vi) of logical necessity.

On the interpretation I have given, all seven of the traditional
characterizations of logical necessity turn out to be equivalent.
We can think of statements as being of the general form “the
statement that P” (e.g., the statement that 2 + 2 = 4). Now let
us introduce a new statement operator “L” such that, if P is the
statement that p, then LP is the statement that it is necessarily
true that p- By (vii), LP is true in a possible world W iff M(P) =
V. That is,
_ i YiEMP) =T
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Now we have a fairly well developed algebraic theory of
logical necessity. In the next section I will attempt to show this
theory can be used to decide between the different theories of
propositional modal logic.

It is perhaps of some interest to contrast this treatment of
logical necessity with that of Carnap [3] and his many followers.
The two treatments seem superficially very similar. But I don’t
think that the similarity really extends any further than the fact
that both result in a complete atomic Boolean algebra of states
of affairs. Their philosophical underpinnings are quite different.
Carnap bases his theory on the assumption that there is a class
B of propositions which has the following two properties:

(1) given any partition (B, B,) of B, there is a consistent
proposition (a “state description”) which is true when,
and only when, all of the propositions in B; are true and
all of the propositions in B, are false;

(2) every consistent proposition is logically equivalent to a
(perhaps infinite) disjunction of propositions formed as
in (1) from partitions of 8.

I can see no reason at all for thinking that there is such a
class B of propositions. Its existence is not entailed by anything
in my treatment of logical necessity, and I am convinced on
general philosophical grounds that it cannot exist. Thus it seems
that the similarity between the two approaches is only superficial.
They have quite different philosophical foundations.

5. Propositional Modal Logic

Now we can turn to propositional modal logic. Let us in-
troduce a language L within which to formulate propositional
modal logic. In constructing L, we begin with a countably in-
finite set AT of atomic sentences. Then we define ST, the set of
sentences of L, recursively as follows:

DF 5.1: (i) If peAT, then peST;
(ii) If peST, then [~p]eST;
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(iii) If peST, then [OpleST;
(iv) If p,qeST, then [p & q]eST.

To formalize our concept of a truth of the logic of L, we next
define the notion of an N-interpretation:

DF 5.2: An N-interpretation of L is a function d mapping ST
into = in such a way that:
(@) d(~p) = ~d(p);
(i) ¥(Op) = Ld(p);
(iii) 8(p & q) = [3(p) & 8(q)]-

Let us say that a sentence p is N-valid iff for every N-interpreta-
tion 8, 8(p) is necessarily true. This formalizes our concept of a
truth of the logic of L (*). The mathematical development of the
algebra of states of affairs in sections three and four will now
allow us to develop the mathematical properties of this concept
of validity, and ultimately to decide between the different theo-
ries of propositional modal logic.
Let us define:

DF 5.3: A representation of L is a function pu assigning to each
sentence a subclass of ¥ in such a way that:
(@) u(~p) = np) (=¥—u(p));
(i) wp & q) = [u(p) N (@)l

s ‘P‘ i - ‘P;
(i) W(Op) = { in)ft;llgr)laise.

Clearly, if 3 is an N-interpretation, then M3 is a representation.
Furthermore, for every representation y, there is some N-inter-
pretation d such that p = M°®d, because M maps = onto the class
of subclasses of W. Thus a sentence p is N-valid iff for every
representation p, p(p) = W.

Now what will be shown is that a sentence is N-valid iff it is
a theorem of S5 (‘). The theorems of S5 can be generated by the
following set of axiom schemata and rules (°):

(® In the terminology of [1], this is semantical validity,.
(Y This theory of propositional modal logic is described in [6], p. 501.
() See [7].
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Al. Alltautologies;

A2. Opop;

A3, ~Opo0O~0Op;

A4. Olpoq]=[0poDOql;

R1. if p and [p>q] are theorems, so is q;

R2. if pisa theorem, sois Op.

It is easily verified that all of these axioms are N-valid, and that
the rules preserve N-validity. For example, let us look at A3.
Suppose u(p)*%¥. Then w(Op) = I, and u(~0Op) = ¥. Then
w(O~0Op) = ¥, and so p(~Op>0O~0Op) = Y. Conversely,
suppose u(p) = ¥. Then W(Op) = W. Thus once again, u(~ Op
SO~0Op) =Y.

Thus,

TH 5.4: Ifpisa theorem of S5, then p is N-valid.

So S5 is sound.

The proof that S5 is complete follows very easily from theorem
6 of [8]. We have seen that S5 is sound. It is also obvious that
the set of N-valid sentences constitutes a regular theory in the
sense of [8]. Therefore, S5 is complete:

TH 5.5: If peST is N-valid, then p is a theorem of SS5.

Thus

TH 5.6: If peST, then p is N-valid iff p is a theorem of S5.
Thus our partial analysis of logiéal necessity allows us to deter-

mine which of the various theories of propositional modal logic
correctly formalizes the logic of logical necessity.

State University of New York at Buffalo John L. PoLLock
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