WHAT IS A PROPOSITION ?

Jan BERG

§ 1. Introduction

Certain theories of modern logic have the purpose of defining
interesting classes of linguistic expressions, such as the set of sen-
tences of a language, or relations between expressions, such as
derivability among formulas. Other theories aim at describing se-
mantic relations between linguistic expressions and nonlinguistic
objects, such as the relation of being the meaning of an expres-
sion. Yet a third kind of theories may give a direct analysis of
non-linguistic objects which could stand in semantic relations
to linguistic expressions.

This paper first propounds and discusses certain constructions
of the second kind and then attempts an explication of the third
kind of the notion of non-linguistic proposition. However, only
a limited class of propositions (called “elementary propositions”)
will be explained, viz., propositions corresponding to the senten-
ces of a language of elementary logic. Admittedly, this explica-
tion will have merely a remote connection with the problems of
ordinary language. On the other hand, a tradition of logical se-
mantics has accumulated since the 19th century dealing with
technical and more or less formalized languages, and it may be
worth while to attempt a solution of some problems encountered
in such studies.

In writing this paper I have profited from comments and criti-
cism of Professor A. Wedberg, University of Stockholm.

§ 2. The semantics of elementary logic
Elementary logic is the theory of classical (two-valued) first-
order predicate logic with identity. The language of elementary

logic to be constructed in this section will be denoted by “L”.
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The vocabulary of L consists of the following symbol shapes: (, ),
/ (joint denial), d (existential quantification), == (identity); in-
dividual constants: i,, i», ..., and individual variables: X, Xs, ...;
and an infinite list of n-ary predicates (n = 1, 2, ...).

The atomic formulas of L are of the following form: F(sy, ...,
s,), where sy, ..., s, are individual constants or variables and F
is an n-ary predicate. In particular an atomic formula containing
the identity symbol is of the form: — (s, 52). (We use italicization
to indicate syntactic variables, taking symbols of L as values.)
The set of formulas of L is the intersection of all sets ® con-
taining all atomic formulas of L and containing (4/B) and Hx(A)
if A and B belong to ® and x is an individual variable. The sen-
tences of L are the formulas of L without occurrences of free
individual variables.

By a domain D of individuals we understand, as usual, a non-
empty set. The notation “D™” is employed to denote the set of
all ordered n-tuples (i, ...,1,) such that i(k = 1,...,n) is a
member of D. An (extensional) interpretation of L with respect
to a domain D is a unary operation E;, defined for individual
constants i and n-ary predicates F, such that Ep(i) is a member
of D and Ey(F) is included in D™. A valuation of L with respect
to D is a unary operation Vy,, defined for individual variables wx,
such that Vy,(x) is a member of D. Now, by a realization of L we
shall understand an ordered triple (D, E;, V;,) such that D is a
domain, E;, is an extensional interpretation of L with respect to
D, and Vj, is a valuation of L with respect to D.

Let the notation “Hy(s)” stand for “E;(s)” if s is an individual
constant, and for “Vp(s)” if s is an individual variable. The notion
of satisfaction (“*Sat”) is that binary relation between formulas of
L and realizations of L which always fulfils the following re-
cursive conditions:

Sat(:(sl, Sg), (D, ED, VI_))’) if and Oﬂiy if
Hy(sy) is identical with Hp(ss):

Sat(F(sy, ... , 85u), (D, Ep, Vp)) if and only if
(Hp(sy), ..., Hp(s,)) is a member of Ep(F);

Sat( (4/B), (D, Eyp, V,,)) if and only if not both
Sat(A4, (D, Ep, Vi) and Sat (B, (D, Ejp, Vp));
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Sat(dx(A), (D, Ep, Vp)) if and only if it does not hold

for all valuations V'p that not Sat (4, (D, Ep, V'p)),
where V'p(y) is identical with Vp(y) for all individual variables
y other than x.

On the basis of the notion of satisfaction we can now define
some important semantic concepts. We say that the formula A4
logically implies the formula B(“A=>B” for short) if for every
D, Ep, Vp, either not Sat(4, (D, Ep, Vb)) or Sat (B, (D, Ep,
Vp)). Furthermore, A is said to be logically equivalent to B
(“AeB”) iff A=B and B=A.

By a proper realization of L we shall understand an ordered
pair (D, Ep) such that D is a domain and E;, is an extensional
interpretation of L with respect to D. The semantic notion of
truth (“Tr”) is defined as that binary relation between sentences
P of L and proper realizations which always fulfils the condition:

Tr(P, (D, Ep)) if and only if Sat (P, (D, Ep, Vb)) for all Vy,

Now, a statement is a sentence P paired with a proper realiza-
tion R. A statement (P, R) is true if Tr(P, R) and false otherwise.

When applying L, we select a domain D and assign an inter-
pretation Ej, to the individual constants and the predicates. Hen-
ce, such an application determines a proper realization. If L
embraces names and predicates from a natural language, some
of the applications of L may be characterized as “ordinary” or
“normal” with respect to a specific group of users. A proper re-
alization determined by a normal usage we call a normal reali-
zation. By a normal statement we understand a statement (P,
R,), where R, is a normal realization with respect to the group
U of users.

A sentence is an abstract shape which can be represented by
concrete linguistic occurrences. Within a given application of L,
a sentence may be said to express a statement (P, R) if P is the
sentence in question and R is determined by the application.

Logical equivalence is an equivalence relation and thus defines
a partition of the set # of elementary sentences into a set of pair-
wise disjoint, non-empty subsets of £ the union of which equals
2. The logical equivalence class of which 4 is a member is de-
noted by “[4]”. Hence, [P] is the set of all elementary sentences
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Q such that QeP. Within a given application of L, a sentence
©Q may be said to express the abstract linguistic object ([P], R)
if Q is a member of [P] and R is determined by the application.

By a meaning postulate in a language % we understand a sen-
tence or formula which restricts the range of possible realizations
of #. Obviously, a formula can be a meaning postulate with
respect to one group of users without having that status in regard
to some other group. If a meaning postulate M in % can be re-
presented in L as an equivalence, M may (under certain condi-
tions) be called a definition in .#. For example, if the definition
F(x)e>G(x) is adopted in L (where “A<>B” abbreviates “(4/B)/
((4/A)/(B/B))"), the range of realizations of L is confined to
realizations wherein E;(F) is identical with E;(G); and if the
meaning postulate F(x)—>G(x) is added to the axioms of L (where
“A—>B” abbreviates “A4/(B/B)”), all realizations of L must satisfy
the condition that Ep(F) is included in Ep(G).

The notion of analyticity for elementary formulas can now be
introduced as a ternary relation holding between a formula 4, a
set A of definitions or meaning postulates, and a language # of
elementary logic embracing 4 and the members of A. In particu-
lar, we introduce the following scheme of definition:

Analytic (4, A, ¥) = def. A=A, where A and the members

of A are formulas of #.

Here we presuppose, of course, that the relation of satisfaction
has been defined for .

The relation of analytic equivalence will also be useful;

Analytically equivalent (4, B, A, &) = def. A=(A<B),

where 4, B, and the members of A are formulas of #.
Analytic equivalence is an equivalence relation, and in a specific
language the analytic equivalence class (relative to A) of which
A is a member can be denoted by “[4]A”.

§ 3. Requirements for propositions
In this section we shall formulate certain necessary conditions

of adequacy for explications of the notion of nonlinguistic prop-
osition. We shall then consider some possible explications and
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investigate how they cope with these conditions.
In trying to explicate the nature of propositions, I shall take the
following requirements for granted:

(R1) A proposition is an abstract object, ie., it does not exist
concretely (in space-time).

(R2) There are nondenumerably many propositions.

(R3) Not every proposition is atomic. A compound proposition
is built up inductively from atomic propositions by means
of explicitly stated primitive operations.

(R4)  Propositions are independent of language, i.e., not all prop-
ositions are to contain linguistic objects as parts.

(R5) If a sentence expresses something, p, then p is a proposi-
tion.

(R6) If A and B both express the proposition p, then A4 is ana-
Iytically equivalent to B.

(R7) If the elementary formulas 4 and B express the proposi-
tions p and q respectively and have the same truth-value
for all assignments of values to the individual symbols,
then p need not be identical with q.

(R8) If p and q are expressed by 4 and B respectively, and if
A is analytically equivalent to B, then p need not be iden-
tical with q.

Propositions with weaker identity conditions will result if (R8)
is replaced by its contradictory. Extensionally wider notions of
proposition, governed by (R8), may be needed in certain philo-
sophical contexts, however.

Condition (R2) is necessary from the standpoint of classical
set theory, because for all sets F of individuals in a denumerable
domain there is the proposition (true or false) that i, is a member
of F (where iy is an arbitrary individual). As a consequence of
(R2), the set of formulas cannot be identified with the set of
propositions.

Many philosophers have suggested that there is a relation of
being a part which somehow describes the inner structure of prop-
ositions. Among the relevant references one could mention Bol-
zano [1837], § 558, Frege [1892], pp. 46 ff., Carnap [1947],
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pp. 30f., Martin [1963], pp. 137f. Of the cited authors, Bolzano
has perhaps given the most profound general analysis of the no-
tion of nonlinguistic proposition in spite of his comparatively
rough technical equipment. However, none of these writers have
quite clarified how propositions are generated from a set of
simple parts, as required by condition (R3).

As an illustration we consider some explications where lin-
guistic objects are essential constituents of propositions. Elemen-
tary propositions are identified with:

1)) Elementary statements, (P, R);

(I)  Elementary normal statements, (P, Ry);

(ITI) Analytic equivalence classes of elementary sentence sha-
pes, [P]A:

(IV) Ordered pairs consisting of an analytic equivalence class
of elementary sentences and a normal realization of L,
([P1A, Ry).

None of the approaches (II)-(IV) would fulfil requirement (R2)
(nor (R4), of course). There are nondenumerably many sets of
sentences but at most denumerably many logical or analytic
equivalence classes of sentences. Under (III) and (IV), too many
propositions will coincide. On the other hand, (I) and (II) do
satisfy (R8), but possibly too few propositions will then coincide
(e.g, (P/Q,R)*(Q/P,R)). Moreover, neither (III) nor (IV)
make the inner structure of a proposition quite clear as required
by condition (R3). (An identification similar to (1) is utilized in
Kanger [1957], p.4; method (III), or possibly something like
(IV), is hinted at in Russell [1940], p. 209, and in Quine [1943],
p. 120).

§ 4. Concepts and extensions

In giving an extensional interpretation of the language L we
have presupposed the existence of classes. The explicit assump-
tions concerning classes can be developed in a classical set theory
based on L and supplying quantification over relation variables.
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We here presuppose such a set-theoretical basis containing, inter
alia, a principle of extensionality and an axiom of choice. For
our later constructions we also need, however, a realm of objects
with stronger identity conditions than classes. These entities will
be called concepts; they could be introduced by postulation in a
way more or less similar to a system of set theory.

First we introduce the expression “C(xy, ..., X, D, y)” as
short for “the sequence xj, ..., X, of individuals in D comes
under the concept v”. We then state explicitly the existence of
concepts by the following postulates:

(P1) There is a vy such that for all x, ..., X5, C(Xy, ..., X0, D, ¥)
if and only if A and x, ..., X, belong to D,
where A is an atomic formula of L interpreted with respect
to D and containing “x,”, ..., “x,” as the only free varia-
bles.

‘o

By the construction of L, A does not contain the constant “C”.
Now, every concept must have an extension. More precisely,
with respect to every domain D:

(P2) There is a relation F such that for all x,, ... , Xg,
(F is included in D™ and F(x, ..., x,)) if and only if
C(XI, vee s Xiy D’ ‘Y)

The uniqueness of the relation F in (P2) then follows from the
principle of extensionality of the basic set theory. The unique
relation corresponding to the concept y, with respect to D, we
denote “Extp(y)”-

The extension of a concept can vary from domain to domain.
If there is at most one individual x such that C(x, D, y) for all
D, then v is called an individual concept. Such concepts will be
referred to by the symbols “/”, “,”, “i”, ... . Hence the use of
the variable “\”, e.g., may be explained thus: “for all i, --- .
- - -7 stands for the phrase “for all vy, if v is an individual concept,
then --- v ---". A concept which is not an individual concept
is called a relation concept.
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If we should wish to distinguish between individual and re-
lation concepts before a principle similar to (P2) has been in-
troduced, the only method apparently is to say that the former
has an individual and the latter a set as an “extension”. But then
we must provide for this notion of “extension” in a way different
from (P2). A further complication would be the need for a “null
individual” to guarantee that every individual concept has an
“extension”.

Next we consider the question of principles of individuation.
The usual set-theoretic definition of identity of individuals is
presupposed: =(x, y) if and only if for all F, F(x)<F(y). Coex-
tensiveness of the concepts y; and v» in D of course means that
Extp(ys) equals Ext;(y:). Now if, for all D, the coextensiveness
of y; and vy in D is analytic in T, where T is the basic set theory
enlarged by the theory of concepts, then v, equals y,. Hence we
adopt the following principle of individuation for concepts:

(P3) vyi=1y. if and only if for all D, Extp(y;) = Extp(ys) is
analytic in T.

Therefore, two concepts may be coextensive in D without being
coextensive in all D, and coextensive in all D without being equal.
The principle (P2) establishes a mapping of concepts onto exten-
sions but the converse, then, does not necessarily hoid.

§ 5. A system of elementary propositions

One of the main obstacles in explicating the notion of non-
linguistic proposition is to analyse the propositional operations
which correspond to generalization of formulas and to clarify
the notion of variable at the propositional level. Free individual
variables in formulas may be considered as vague names on a
par with constants referring to specific individuals, and the cor-
responding parts of propositions could be ordered linearly. On
the other hand, bound individual variables of a formula have no
denotation at all, except for the general reference to the domain
of individuals as a whole. To remove this obstacle in the elemen-
tary case we now construct a system of elementary propositions
and follow the instructions (R1) through (R8) of § 3.
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First we define atomic propositional functions as sequences of
the form (v, &, ..., &), where y is either an individual concept
(n=1) or an n-ary relation concept (n=1) and §; (j=1,...,n)
is either an individual variable of L (cf. McKinsey [1949], p. 431)
or an individual concept. Next we determine the set of proposi-
tional function as the least class K such that: (i) all atomic pro-
positional functions are in K, and (ii) all subclasses of C with a
cardinal power not higher than that of the domain D are in K.
This upper boundary on the power of the members of K is suf-
ficient for our purpose. (Imposing no such boundary could lead to
Cantor’s paradox.)

Some propositional functions defined in this fashion “contain”
linguistic objects. More precisely, we say that a variable x is con-
tained in the propositional function b in one of the following
two senses:

i b= (y,E,...,E) for some v, &, ..., &, then x is con-
tained in b if and only if x = §;, for some j = 1, ..., n;

(i) if b = {ay, a,, ...}, for some a;, a,, ..., then x is contained
in b if and only if x is contained in a;, for some j = 1, 2,
... . (We use braces to indicate sets.)

Now it is natural to define a proposition as a propositional
function containing no variable. Intuitively, the passage from a
concept y and the individual concepts u, ..., 1, to the (n + 1)-
tuple (v, u, ..., 1) corresponds to the assertion that (xi, ... Xa)
is a member of Extp(y), where x; is member of Extp(y;), for some
domain D. And the passage from the propositions py, Ps, ... to
the set {pi, ps, ...} corresponds to the denial of the simultaneous
assertion of p; and p. and etc. In particular, the passage from
p to {p} corresponds to the denial of p.

As a consequence of the notion of a sequence, we obtain the
following principle of individuation for atomic propositions:

P4 If b = (v,&,...,En) and by = (y, &, ...,E,) are
propositions, then b, = by if and only if y = v and m = n
gnd B = Bhdorj = 1; we s,

In case thatb, —{a,, as, ...} and b, = {ay, ay, ...} are proposi-
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tions, their identity of course follows from the axiom of exten-
sionality of the basic set theory.

Instead of creating propositions from relational and individual
concepts, one might generate them from classes and individuals
in an analogous way. Such a construction would not fit our pur-
pose, however, since it would violate requirement (R7) of § 3
under an intuitively satisfactory mapping of the set of sentences
into the set of propositions. For example, if the expression
“F(x)«<>G(x)” is true for all x, but not analytic, with respect to a
domain and an extensional interpretation (F and G being
classes), and if “F(iy)” and “G(ix)” are mapped onto the “prop-
ositions” (F, ix) and (G, i) respectively (ix being an individual),
we get (F, ix) = (G, ik) since F = G. Similar results would
obtain for all “propositions” constructed in this manner.

§ 6. The notion of truth for propositions

A sentence P of L expresses a proposition relative to a certain
realization R only. We may then say that p, expressed by P under
R, is true if and only if Tr(P, R). (Carnap [1942], p- 90, construes
“p is true” substantially as “P is true in the language % if P ex-
presses p in.%, for all.#and P”. But then all propositions without
expression in any #would be true.) This approach is in accordan-
ce with the traditional way in modern semantics of first construc-
ting a formal system and then assigning an interpretation under
which some formulas may be said to express propositions. It
would seem intuitively more natural, though, to consider propo-
sitions as primary entities some of which are represented by cer-
tain linguistic objects. The notion of truth then has to be defined
directly for propositions, and as soon as an acceptable mapping
of the sentences of a language & into the set of propositions has
been found, a sentence of ¥ may be said to be true if the
corresponding proposition is true.

The intuitive interpretation of the operations on concepts and
propositional functions introduced in § 5 leads to the following
definition of truth for propositions in a domain D:
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(1.1)  {v,u, ..., 1,) is true in D if and only if (x, ..., x,) is
a member of Extp(y), where x; is member of the non-
empty Extp(y) G = 1, ..., n);

(1.2) {p1, Pz ...} is true in D if and only if not all of py, ps, ...
are true in D.

If v is an individual concept, the proposition (vy,1) asserts (in re-
lation to D) that y and . are coextensive (in D). The definition
(1.1) is partial only; if v, for some j = 1,...,mn, has an empty
extension in D, the proposition (v, v, ..., 1,) is not assigned any
truth-value at all.

Our objective now is to define truth for the sentences of L in
terms of truth for elementary propositions. To do so we need a
mapping of the set of formulas of L into the set of propositional
functions.

then b* — b;
L

result of replacing all occurrences of the variable n in the prop-
ositional function b by the individual concept \”. The operation
of replacement is then defined recursively for propositional func-
tions as follows:

(21) ifb = (y,&,...,E), wherex*gforallj=1...,n,
First we let the notation “b” ” abbreviate the phrase: “the

L
(22) iftb= (Ys El’ resy En): where x = E.'j for'somej == 1’ cee s Ny

then b” = (Y, Mgy ---» M), Where n; = E; for i = j and
L

=1
(2.3) if b = {a;, a,, ...} is propositional function, then

X X X
b :{31 , dg }.
L L L

Now we are able to define the important notion of existential
quantification into propositional functions relative to a domain
D. If b is any propositional function and x is an individual varia-
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ble, we shall use the notation “H(x, b)” for the set {{a;},{az},

...} of all {a;} such that a; = b * for some y of D such that
Ly

Extp(,) = y, where \, is a conceptual representative of y selected

by an application of the axiom of choice. The formal definition

is:

(3) H(x, b) = def. {{b " }: y is a member of D}.
Ly

We then map the set of formulas into the set of propositional
functions by an operation f with the following properties:

4.1y if A = F(s,...,s,), then f(4) = (v, &y, ..., E,), where
y is a concept with Exty(y) = Ep(F) (cf. § 2) and where
E; is an individual concept with Ext;(E;) = Ep(s;) if s; is
an individual constant and a variable otherwise;

(4.2) if A = (B1/B:), then f(4) = {f(By), f(Bs)};
(4.3) if A = Hx(B), then f(4) =H(x, {(B)).

In case (4.1), the existence of f is always guaranteed by the axiom
of choice. Picking out such an f amounts to laying down an in-
tensional interpretation of the language L in relation to D.

Now it follows that f(A4) is a proposition if A4 is a sentence of
L, and the sentence A may be said to be true in the domain D
with respect to the mapping f if and only if the corresponding
proposition f(A4) is true in D.

Under such a mapping the requirements (R5) through (R7)
are readily verifiable. The atomic propositions will contradict
(R8), though. For suppose that for some D, A = “F(iy)” ex-
presses f(A) = (v,1) and B = “G(iy)” expresses f{(B) = (v, ),
where Extp(y) = Ep(“F”), Extp(y) = Ep(“G”), and Extp(l) =
Ep(“iy”). Furthermore, assume that A<B. Then “F(x)<G(x)” is
valid in L and therefore, by (P3), v = v’. By (P4) we get f(A) =
f(B); and similar cases would obtain for all atomic elementary
propositions.

On the other hand, (R8) will be fulfilled for non-atomic prop-
ositions under any mapping of sentences into propositions. For
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example, laws corresponding to the law of double negation of
formulas: A<>~ ~A4 (where “~A” stands for “4/A4”), and the
law of idempotence for conjunction of formulas: (4AA)eA
(where “AAB” stands for “(A/B)/(A/B)”), will not hold for
propositions, because p=+ {{p}}. Furthermore, if we send the sen-
tences P, Q, § into the propositions p, q, s, respectively, the prop-
ositons corresponding to ((PAQ)AS) and (PA(QAS)) differ,
as they should: {{{{p, q}}, s}}={{p, {{q,s}} }}. (A natural way
to make the notion of proposition extensionally still wider is to
strengthen the identity condition by substituting sequences (a,
a,, ...) for sets {a,, a, ...} of propositional functions.)

A replacement operation for elementary propositions, sending
p into p 3‘,',-, may be modeled on (2.1)-(2.3). This operation can
be extended to a simultaneous replacement of the distinct con-

% 44 : . RATEREIR

cepts vy, ..., yn iN a proposition, sending p into p Vet A prop
osition p containing no defined concepts is then said to be valid

inadomain Dif p 35 s true in D for all sequences (v,

1+ Ty
.- » Yo’} of concepts, where vy;” is of the same type as v;.

University of Stockholm Jan BERG
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