PROPOSITIONAL IDENTITY

M. J. CRESSWELL

1. The System FCR.

In [1] we discussed a calculus of functions of propositions
[FC] in which the functorial variables f,g,...etc. are not truth-
functional. We noted that it is possible to augment such a system
by adding propositional identity with the following formation
rules and axiom schemata (otherwise the basis is as in section 2
of [1]);

1.11 Primitive symbol, — .
1.21 Formation rule; If A and B are wifs then (A=B) is a wif.

1.31 Axiom schema Il; A = A (Where A is any wiff).

1.32 12;(py)...(p.)(A=B) > (CoD)(n=0),
where C and D are formulae differing only in replacement of A by
B and there is no variable p other than p,...p, free in A or B
such that A or B in C or D occur within the scope of (p).

In such a system it is not possible to prove either (p=q) o
(p=q) or even:

14 R)-rA=B - ~ A=B.

The addition of the former reduces FC to protothetic and so its
consequences are well known (v.[5] pp. 151-154). It is the pur-
pose of this paper to investigate the consequences of the latter.

Part of the motivation for this is the connection between func-
torial calculi with a rule such as R and modal logic. In particular
between semantics of a kind considered in [1] and the kind of
semantics for modal quantificational logic set out in [2]. It is
shewn in [3] that the addition of the rule R to a pure calculus
of propositional identity gives a system deductively equivalent
to S4. To obtain S5 we would add some such formula as:
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L5 (ND ((p=920) = (p=9)=0).

The system of functorial logic which we shall investigate is
that obtained from FC by adding I2 (I1 can be proved by R
from (A=A)), R and NI (In schematic form if there are no
rules of uniform substitution). We call the system so defined
FCR.

We define validity for FCR by extending the method of [1].
While [1] assumed a set T of propositions which could be inter-
preted as the set of all true propositions and so could be said to
mirror the ‘real world’, FCR assumes a set W of sets of propo-
sitions each set representing a ‘possible world’ (%).

2. Validity in FCR

An FCR-model is an ordered triple {V W P) such that P is
a set of objects (propositions); {pi,-...,pi,-..}; W is a set of subsets
of P; {T,,...,T;,...}; and V an assignment from wffs to members
of P and from functors to n-tuples of P satisfying the following:

2.1 For propositional variable p, V(p) is some member of P,
2.2 V(O)is some member of P not in any T ¢ W.

2.3 V(=) is a descriptive (v.[1]p. 547) set of ordered triples of
P, (pip;p) such that for any TeW, p; € T iff p; = p..

2.4 V(D) is a descriptive set of triples of P, (p;p;px) such that
for any TeW, p; e T iff p;is not in T or p, ¢ T.

2.5 For n-adic functorial variable f, V(f) is a descriptive set of
(n+1)-tuples of P.

2.6 V(Y) is a descriptive set of pairs (pia.) such that p; ¢ P, and
a is a set of pairs of P such that for any TeW, p; € T iff the first
member of each pair in « is in T.

() The analogy with modal predicate logic should be by now becoming
apparent. For a semantical discussion of this v.[2] and [8].
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2.7 Where F is an n-adic functor (variable or constant) then,
for wifs Ay,...,A,, V(F(Ay,...,A)) = p;, iff (p;, V(A1),...,V(Ar))
e V(F).

2.8 Where V’ differs from V only in assignment to p then,
where a is the set of all (V/(A),V/(p)) (for every such V’), then
V((p)A) = piiff (p,a) e V(V).
2.9 If for some p;, p;, pi € T iff p; ¢ T, for every T ¢ W, then
Pi = Pi-

For consistency we observe that a two-valued model (P={p,,

pb}) defined by the usual truth-functional conditions will verify
all the axioms and rules.

A formula A is FCR valid iff for every FCR model (V W P)
V(A) €T for every TeW. (By 2.9 there will only be one such
proposition in any model so we could call it p,, and say that A is
valid iff V(A) = p)).

THEOREM 1 Every FCR theorem is FCR-valid.

This follows from the validity of the axioms and the validity-
preservingness of the transformation rules.

3. Completeness in FCR

THEOREM 2 Every FCR-valid formula is a theorem.
We establish some preliminary results:

3.1 (A#B)>(C=D)— (A#=B)>(C=D).

Proof:

ex hypothesi, PC (1) ((A=+B)>C) = ((A=B)=>D)

(1) R 2) (A=B)>C)=((A*+B)oD)

NI (3) (A=*B) o ((A=B)=0)

(3) I2, (1=4(020)) (4) (A+#B)> (A*B)=1)

“4) I2 5) (A#+B) > (A*=B)>O)=(1>2Q))
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(2)4) 12 (6) (A#B) > (A#B)>C)=(1oD))

PC, R (M (1>0)=C
PC, R (8) (1oD)=D
(5)(OXTH(8)I2 (9 (A#B) > (C=D) QED

Clearly 3.1 can be extended to the case where the antecedent is
a conjunction of statements of identity or their negations. For
in FCR any true identity statement (whether A=B or A+B)
can be replaced by 1. Thus we have:

32 AL ... AA) o B=0) = ~ (A ... .A) o (B=0O),
provided each A; (1<i<n) is either of the foorm D=D’ or
D=+Dr,

33 (pXA=B) > :(pA = (p)B () (from I2)

3.4 ((@p)A.B)*0) o (Hp)(A.B)*0)

Proof:

R, 12 (1) (~p=q =(p=~q)

(1) Def 1 (2) ~(~(P)~(AB)=0) > ~((p)~(AB)=1)
3.3 3) (E(~(AB)=1) > ((p)~(A.B)=1)

(3) PC syl (4) ~(~(p)~(AB)=0)> ~(p)(~(A.B)=1)
PC, R (5) (1-20)=0

(S)(1)4) 6) ~(~(P)~(A.B)=0) > ~(p)((A.B)=0)

(6) Quantification (7) ((p)(A.B)+=0) o> (dp)((A.B)=0) QED
35 +FA->~(B+0) > (A.B)=0).

() This formula looks very like the Barcan formula of quantified
modal logic. I have in fact been able to deduce it from the weaker iden-
tity schema, 12’ (A=B) 5 (CoD) with the same conditions as in 12,
except that no variable free in A or B may be bound as a result of re-
placement). The proof is a simple adaptation of Prior's [10] of the Barcan
formula in S5 and relies on NI. I suspect that without NI, 3.3 could not
be deduced from I2’, but I have no proof that this is so.
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Proof:

PC,R (1y (1.B)=B

(1) 12 (2) (B+0) o ((1.B)+0)

ex hypothesi 3) A

(3) PC, R 4 A=1

(2)(4) 12 (5) (B=+0) > ((A.B)+0) QED

For completeness we shew how to construct a set of maximal
consistent (*) sets of wffs of FCR {I';, I's, ..., I';, ...} such that
I’y contains a given consistent formula H. This time however we
have to be sure that the set of identity formulae, (i.e. formulae
of the form A=B) is the same in each. This causes a slight com-
plication in obtaining the requirement that, where (dp)A ¢ I,
then there is some appropriate A’ also in I'.

We introduce the notion of an E-formula () as follows:

3.61 (dp)A o Aisan E-form.

3.62 Where B is a formula not containing free p, then (B*=0)
o (((Hp)A> A).B)+0) is an E-form.

For both 3.61 and 3.62 p is said to be the replacement variable
of the E-form. Where some formula for which p is free replaces
every occurrence of free p in the E-form, we obtain an E-for-
mula of that form. A set of formulae is said to have the E-pro-
perty if it contains a formula of every E-form.

We prove the following lemmata:

(") The method of maximal consistent sets (taken from [4]) is applied
to functorial calculi in [1]. (We have relativized the domain P to each
model and have proceeded without individual constants, relying on the
assignment to give a value to the variables). The rule R complicates slight-
ly the definition of a proof from hypotheses as used in [1] (p. 548) and
taken from [4]. For present purposes it is simplest to define A,,...,A, B
as -(A,. ... \A)) o B. This enables the proofs to go through as before.

(") This method has, on the semantical level, analogies with the sub-
ordinate maximal consistent sets of [6] and [7]. Since FCR has a seman-
tics akin to that of S5, we are in act using the version of this method
found in [6] rather than the more complicated one of [7].
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3.63 If A is an E-form with p as its replacement variable, then
~ (3p)A.

Proof by induction on the construction of E-forms:

Clearly + (3p)((Hp)AD A).

Given ~(dp)A we have, by 3.5 (B+0)>((2p)A.B)+*0),
hence (p not free in B) ~(B=+0) > ((Hp)(A.B)+0),

hence (by 3.4) - (B+0) > (2p)((A.B)+0),

hence (p not free in B) - (Hp)(B=0) o> ((A.B)*0).

3.64 If A is a consistent set of wffs none of whose members
contains free p, then, if A is an E-formula whose replacement
variable is p, then A can be consistently added to /A. Suppose
it could not, then A~ ~A, hence (p not free in any member of
AN +(p)~A, hence AN~ ~(Hp)A. But by 3.63 (dp)A and
so A is inconsistent, contrary to hypothesis.

It is thus possible, beginning with H, to construct a maximal
consistent set of wffs I'; with the E-property and containing H.
We shew how to construct a maximal consistent set I'; such
that:

3.71 EveryA=Band A*BinIisinT};

3.72 For every wif A there is some (dp)A > A’ in I'; (for
some appropriate A’);

373 ForsomeC+DinI'|, CxDeT;

3.8 Construct I'; as follows:
3.81 Let I';; be C=D.

Clearly I';; is consistent for, if not, ~C=D hence, (by R)
+—C=D, but C+D ¢ I'; and T is consistent.

3.82 Given I'y, take the n’th formula of the form (3p)A o A.
Suppose that the members of I';, are (C=D),A,,...,A,_;. Now
(((C=D)A,. ... . A,-y) # 0) D —((C=D).A;... .A,-).(Hp)ADA)
# ) is an E-form. Hence there will be some E-formula of that
form in I'y (since I'y; has the E-property). Since the replacement
variable will only occur in A, let A’ be A with the formula which
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replaces the replacement in the E-formula in I', variable re-
placing the replacement variable in A. Let [y, .y, be I, U{2p)
ADA’}.

I';, (for each n) is consistent; for suppose not, then
—({(C=D).A;.... . A,-.((Hp)ADA")) = O, hence by R
F({(C=D).A,. ... .A,-.(3p)ADA")) = O, contrary to the con-
sistency of T;.

3.84 Let 'Y be the union of all the I'y,’s.

Clearly T'y satisfies 3.72 (for the n’th (dp)A>A has an appro-
priate instance as the n’th member of I'Y). Further since ((C=D)
#+0) € I'y, then for every conjunction (B,. .... .B,) of members
of I, ((By.....B)*0)el.

3.85 Form I'y” by adding every formula A=B,A+B eT.

T is consistent for, suppose not, then for some finite subset where
Xi=Y oo s Xn= Yoo X1 * Yimo1se,Xn* Y, are all in I'; and
Aq,...,AyareallinI'Y,
F~X =Y o Xe= Y Xn s 1F= Y X F YR AL L LALC
=D),
hence -(X;=Yi. ... Xpn=YnXn1FYm:1. ... X3 FY,)
o ((Ay. ... .Ap.C=D) = 0)
2 (A ... Ax.C=D)=0) (by 3.2).
But (A;. ... .A.C=D) #+= O ¢ I'y, hence T'1 is inconsistent, con-
trary to hypothesis.

3.86 Increase I')”” to a maximal consistent set of Wffs I';. T, is
subordinate to I';. Construct such a subordinate for each C=D
such that not (C+D) e I',.

3.9 We define an FCR model (V W P) which makes V(H) ¢ T
for some T ¢ W.

Make the assignment as follows:

3.91 Assume some suitable domain P.

3.92 For wif A let V(A) be some member of P as follows:

If there is some earlier B such that A=B ¢ I'y, then let V(A) =
V(B). Otherwise let V(A) be the first member of P not already
assigned to a formula.
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3.93 Forevery wif Alet V(A) e T; iff Ae T,

Let W be the set of all Ty’s determined in this way.
We shew that (V W P) is an FCR model (for clearly V(H) € Ty).
The proof proceeds by taking each condition in turn. The con-
ditions for quantification and the truth functors may be proved
for each T by an argument parallel to the one used on p. 551 of
[1]. For identity we note first that in I';, V(A)= V(B) iff A=B
¢ I'; (by the method of assignment). But by construction the set
of identity formulae is the same in every I'.. Hence, for every
T ¢ W, V(A=B) ¢ T iff V(A) = V(B) thus satisfying 2.3. From
I2 we may be sure that in any I'; any formulae C and D differing
only in replacement of A by B, C=D ¢ I';, and hence V(C) =
V(D). For 2.9 suppose p; #+ p; where p; = V(A) and p; = V(B),
then A=B¢I', hence A*=B e I'y, hence forsome Iy A=Bel,
hence one but not both of V(A), V(B) € T, thus satisfying 2.9.
Hence FCR is complete.

4. FCR and Modal Logic

We mentioned the connection between modal logic and func-
torial calculi. In FCR we have the rule R (-A=B — ~A=B)
and thus identity amounts to provable equivalence. This being
so we can introduce the necessity operator L as LA=4 A=
(O>0) and obtain systems of modal functorial logic mirroring
S5. If we do not have the rule R, we cannot define L analogously
(we could not without R prove, e.g. - A — LA). But one
might wish to add modal operators to functorial systems which
do not have the rule R.

FCSS5 is the system obtained by adding to FC (with or without
identity) the constant monadic functor L and the following
schemata:

LAl LADA,

LA2 L(A>B) o (LA>LB),
LA3 ~LA o> L~LA,

LR1 —A— LA.
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Note that we can no longer prove R, though we can prove
~A=B — L(A=B) and, if we define strict equivalence as
necessary material equivalence, we must not confuse identity of
propositions with strict equivalence. We cannot prove in FCSS5
L(A=B)>(C>D) where C and D are as in the identity schema.
This fails where A and B occur within the scope of a functorial
variable.

For a semantics for FCS5 we take the semantics for FCR, but
without 2.9, and make the following addition:

4.1 V(L) is a descriptive set of pairs of P, (pip;) such that for
any TeW, p; € T iff for every T’eW,p; ¢ T".

The completeness of FCS5 can be proved in a manner similar
to that of FCR. The difference is that I'; is constructed to have,
not the same set of identity formulae that Iy has, but the same
set of fully modalized formulae and the initial member of each
I'; is some ~A for which ~LA ¢ I'y. For this reason, and since
completeness proofs for modal systems have been developed els-
where, we shall not go further into the completeness of FCSS5.

The connection between this kind of semantics and the se-
mantics of [2] can very easily be exhibited. For corresponding to
each of our T-sets there will be a possible world, and a proposi-
tion will be true in that world iff it is in the T-set. It would in fact
be easy to shew how, given an FCR model, one could construct
a more orthodox kind of S5 model to verify the same formula,
and vice versa.

From the results of [3] it would seem that the omission of NI
from the basis would give a system corresponding to S4 (°) in the
way FCR corresponds to S5, but since it is difficult to see what
kind of a semantics for identity would verify R and I2 but fail to
verify NI, we shall not investigate such a system.

Victoria University of Wellington M. J. CRESSWELL

(®) The independence of NI may be proved by appropriately adapting
the Group II matrix of [9] p. 493.
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