A VARIANT OF TURING MACHINES
REQUIRING PRINT INSTRUCTIONS ONLY

J. W. SwANSON

|
MACHINE ALGORITHMS

1. Characteristics of Machine Algorithms. In the thirty some odd
years of its existence there has developed a virtual torrent of algo-
rithmic devices adequate to recursive function theory. Prominent
among these has been a certain class of formalisms developed on the
basis of the heuristic fiction of a machine. The first machine presen-
tation of effective computability was that of Turing [9]. But subse-
quent to the development of Turing machines there have appeared
both simplifications and variations on Turing’s original basic
notions. Thus, for example, Turing initially framed the instructions
for his machines in terms of three kinds of ordered quintuples :

q:8;Sx L qr,
g1 S; S« R qr,
qi Sj Sk N ql‘,

representing the following three machine instructions: “When in
internal state q; scanning symbol S;, replace S; with Sy, shift left
(or right, or no shift), and go into internal state q.”. It was easily
demonstrated subsequently that the third, or “no shift” instruction,
was eliminable in favor of the other two. And Emil Post [6] soon
showed that ordered quadruples were adequate to prescribe Turing
machine computations — ordered quadruples of the forms :

ql S} Sk CIr,
q:5; L qr,
qS; R qr.

Patrick Fisher [3], with his U-machines, further reduced these to

200



ordered triples of the form q; S; X, where X is either L, R, a symbol
Sk or a state qp.

Now it is an interesting exercise in pure logic to ask the following
question: To what extent can machine instructions be simplified
for formalisms of this type — i.e. for formalisms based on the fiction-
al notion of a machine? Since the instructions for algorithmic
devices of this sort represent the basic operations of fictional
machines — scanning a tape, printing or erasing on it, shifting left or
right, etc. — it must turn out that the degree of simplicity of the
machine instructions will depend very much on the nature of these
basic operations. Moreover, results toward simplification of in-
structions, or of basic operations, or both, should not be altogether
devoid of interest, since a reduction of fundamental machinery
usually enhances the possibility of getting new unsolvability results.
The rule of thumb here is that the less you start with, the easier it is
to show that you cannot do certain things. With this end in mind, we
shall describe below a variant of Turing machines in which the basic
operations of the machine have been altered in such a fashion that
the machine instructions are reduced to certain kinds of scan and
print commands. But first let us make a few remarks on the general
nature of the components in the fictional machines employed in
heuristic descriptions of machine algorithms.

2. Three parts of machines. Following a description of Turing
machines by Claude Shannon [7], let us conceive the fictional ma-
chines we are concerned with as consisting of three parts — a
reading-printing head called a “scanner”, a control element, and a
potentially infinite tape (i.e. finite at any moment of the machine’s
operation, but indefinitely expandable). In the normal description
of a Turing machine, for example, the scanner is conceived of as
reading, at any moment of the machine’s operation, some symbol
S;j (from some fixed alphabet for each machine) in one square of the
tape, the machine being at that moment in some particular internal
state qi. The control element, which corresponds to the machine
instructions (i.e. Turing quintuples), contains commands for certain
state-symbol configurations, but not for others. When the scanner
reaches a square with symbol S; while in state q; for which the control
element contains no instruction beginning g S; ..., then the machine

201



halts. The abstract formalism for such machines is thus contained
entirely in the machine instructions. These make use of symbols
‘8¢, °Sy’, etc. from the machine, alphabet, change of direction sym-
bols ‘R’ and ‘L’, and state symbols ‘qy’, ‘qy’, etc. Although some
recent departures from the “classical” form of Turing machines —
notably the ingenious B-machines of Hao Wang [10] and the SS
machines of Shepherdson and Sturgis [8] — have eliminated the
notion of states in favor of conditional transfers, they nevertheless
make use in their stead of an ordered set of instructions, as opposed
to the unordered sets of quintuples in the original Turing version.
What suggests itself at this point is that the simplest sort of
machine instructions would be a set of unordered print instructions
only, making use of neither shift commands nor of states (internal
configurations). In the sequel, we shall show that such a machine
can easily be described, using a uniformly moving circular tape (%)
to eliminate shift instructions, and slightly changing the role of the
printing key in the scanner in order to eliminate machine states.

1I
UNIVERSAL MACHINES WITH PRINT INSTRUCTIONS ONLY

1. Description of P-machines. We now describe a type of machine,
the P-machine, designed to simulate Turing machines, and such
that its only instructions are print commands. The need for change
of direction instructions and for internal states will be obviated
respectively by the use of a constantly rotating finite (but indefinitely
expandable) circular tape, and by the employment of a variable
printing key capable of printing simultaneously either in the two
squares consisting of the square under scan and the one to its imme-

(*) We first encountered the notion of circular tapes in discussion with Mr.
Richard Call, who has shown in an unpublished proof (1963) that by employing
a circular tape it is possible to rewrite the instructions for Wang’s B-machines,
eliminating one of the two direction shifts. The idea of circular tapes, however,
has long been current in the literature. Cf. Moore [5], Hooper [4], Flgot and
Rutledge [2], and Arbib [1].

202



diate left, or else in the two squares consisting of the square under
scan and the one to its immediate right.

More exactly, a P-machine is to be conceived as consisting of the
following three parts. (1) A circular tape, finite at any moment of
the machine’s operation, but capable of indefinite expansion in the
following manner. At every moment of the machine’s operation at
which the printing key writes a non-null superscript, the tape ex-
pands by the insertion of one blank square immediately to the left of
the special symbol ‘@’, or one of its superscripted variants (see
below). Further, we suppose that after every printing operation the
tape rotates automatically one square in a counter-clockwise direc-
tion. This would be equivalent to the printing-scanning head
moving uniformly, after every printing operation, one square to the
right. It is somewhat easier to talk as if it were this part of the ma-
chine which moved, rather than the tape, and we shall do so in the
sequel. The other parts are (2) a reading — printing head, the scan-
ner, capable of recognizing the symbol in the square under scan and
of either printing in the scanned square and its left-most neighbor,
or else in the scanned square and its rightmost neighbor; all of this
on the basis of commands from (3) the control element, embodying
the print instructions of the P-machine.

2. Operation of P-machines. The sole function of P-machines is to
simulate the computations of Turing machines assumed to be des-
cribed in terms of left-shift and right-shift quintuples only (see
above). It will simplify our description, however, if we assume that
every Turing machine which we wish to simulate with a P-machine
has been rewritten as a Turing machine T’ in which the special
symbol @ appears initially on the tape in the square immediately
to the left of the input word W, and such that in all subsequent com-
putations, @ is retained as the left-most symbol. Thus if for input
W the machine T produces W’ upon termination, then, the initial
word on the tape of T’ will be OW, and on termination OW’.
Any intermediate word W at t; (the it® moment of T’s computation)
will have @W; as analogue in the computation of T".

Suppose, then, that we wish to simulate an m — 1 symbol n-state
Turing machine T with alphabet A = {S;, Ss, ..., Sm—1} (including
a symbol for the “blank” square), and states qi, qg, ..., qn. Then

203



first we construct the m-symbol, n-state Turing machine T’ just
described. Let us assume that T’ starts in initial state q; with GW
on its tape, where W = Si; Siz ... Sik and the symbol under scan
is Si1. Then the machine P will begin with @Sty Si; ... Sin on its
closed tape, with one blank square immediately to the left of @, as
follows

P’s starting tape

Thus P’s initial tape entry differs from that of T’ (apart from the
shape of the tapes) only in having S'y; for Si;, where the superscript
‘1’ obviously acts as proxy for the machine state q;. We shall show
that at any moment of P’s operation at which it initiates the si-
mulation of a Turing quintuple, the tape of P will differ from that
of T’ in just this fashion, i.e. in being identical save for the square
under P’s scanner, which will differ from the square under the scan-
ner of T’ only in having the additional superscript ‘i’ corresponding
to the state q; of T’ at that moment. By inductive assumption then,
if at any moment of its operation, initiating the simulation of a
quintuple, T’ is in state q; scanning symbol S;, then P is scanning
the symbol 81, 1 <i <n,1 <j < m. It is obvious that the alpha-
bet of P must contain m - mn symbols — i.e. the original m symbols
of T’;, plus mn symbols Sij, 1 <i <n, 1 <i < m. This gives the
essence of the P-machine’s operation. It remains, of course, to
describe the instructions which prescribe this operation.

204



As already indicated, P has only to simulate left-shift and right-
shift Turing quintuples. The right-shift is easy. For every Turing
quintuple q: S; Sk R qr of T’, P will contain the instruction S';, S, .
This basic instruction of the P-machine tells the scanner to replace
the symbol S (scanned say, at time t) with S, and to print an r
superscript in the square to the immediate right. Since the scanner
automatically shifts rightward (tape leftward) after every printing
operation, at time t + 1 the P-machine will be scanning the symbol
Srx, corresponding to T’ being in state g scanning some symbol Sy.

Simulation of left-shift quintuples qi; S; Sx L qr are only a bit
more difficult to describe than the right shift quintuples. Here the
strategy will be to mark the new state symbol r as a superscript in
the square adjacent to the left of the one under scan, then wait for
the regular rightward movement of the scanner (assured by “mark-
time” print instructions — see below) to bring it back around to
that superscripted square. Thus, for every left-shift quintuple
Qi Sy Sk L gr of T', P must contain the instructions S, * Si. In
addition, however, we must include m instructions S;, SiA (where
‘A’ stands for the null superscript, or no-print command, and
1 <i < m) which allows P to “mark-time”, as it were, waiting for
the regular rightward movement of its scanner to bring it back
around to S7,. Thus P will exactly simulate the computations of T’,
halting when (and only when) T’ does.

We conclude with the following conjecture. It should not prove
too difficult to further simplify the instructions for the P-machine,
eliminating the necessity for the superscripting operation by allow-
ing a saccadic or tidal scanner motion — e.g. two forward, one back,
two forward, one back... etc. Such a uniform two-right one-left
movement of the scanner should provide for the necessary rotation
of the tape while at the same time allowing for the perhaps rather
complex simulation of left-shift Turing quintuples.

University of Massachusetts J. W. SwANSON

REFERENCES

[1] M. A. ArsiB, “Monogenic systems are universal”, The Journal of the
Australian Mathematical Society, vol. 3, Part 3 (1963), pp. 301-306.

205



21
Bl
[4]
(51

[6]
7
[8]
(0]

C. C. ELgor and J. D. RUTLEDGE, *“RS-machines with almost blank tape”,
Journal ACM, vol. 11, no. 3 (July, 1964), pp. 313-337.

Patrick C. FIsHER, ““On formalisms for Turing machines”, Journal ACM,
vol. 12, no. 4 (October, 1965), pp. 570-580.

P. K. Hoorer, “Some small multi-tape universal Turing machines”,
The American Mathematical Society Notices, vol. 10, no. 6 (October, 1963).
E. F. Mooreg, “A simplified universal Turing machine”, Proceedings ACM
(September 8-10, 1952), photo-offset, Sauls Lithograph Company, pp.
50-55.

E. L. Post, “Recursive unsolvability of a problem of Thue”, The Journal
of Symbolic Logic, vol. 12, no. 1 (March, 1947), pp. 1-11.

Claude E. SHANNON, “A universal Turing machine with two internal sta-
tes”, Automata Studies (Princeton, Princeton University Press), 1956.

J. C. SuepHERDSON and H. E. Sturais, “Computability of recursive func-
tions™, Journal ACM, vol. 10 (1963), pp. 217-255.

A. M. TurING, “On computable numbers, with an application to the
Entscheidungsproblem™, Proceedings London Mathematical Society, ser. 2,
vol. 42 (1936-37), pp. 230-265; Correction, ibid., 43 (1937), pp. 544-546.

[10] Hao WanNG, “A variant to Turing’s theory of calculating machines”,

206

Journal of the Association for Computing Machinery, vol. 4 (1957), pp. 63-92.



