SOME FURTHER SEMANTICS FOR
DEONTIC LOGIC

M. J. CRESSWELL

1. THE SysTeMm OL1

In [1] p. 95 Saul Kripke mentions a way of studying semantically
systems of deontic logic. This suggestion is developed in [3] for
some systems like those of [2] and completeness is proved for a
number of deontic systems.

It is the purpose of this paper to continue in this spirit and to
consider the plausibility of various semantics for deontic logics.
For it could be that proceeding from these to the axiomatic systems
might be more productive of insight than the reverse direction. Qur
semantic apparatus (in the terminology of [4]) will be a model
consisting of a set W of worlds {xi, ..., Xi, ...} and an assignment V
from formulae to the truth values {1,0} and satisfying the following :
(for ~ and v as primitive truth-functors with the rest introduced
by the usual definitions)

V1. For propositional variable p and x; e W, V(p x;) = 1 or 0;

V2. For wif a and x; e W, V(~ax;) = 1iff V(ax;) = 0; otherwise 0;

V3. For wifs aand B, V((a v B)x;) = 1iff V(e x;) = lor V(B xi) = 1,
otherwise 0.

We shall also want to introduce the necessity operator L and for
simplicity we shall assume our modal system to be S5 though some
of the results we shall obtain can be extended to other systems.
We thus have,

V4. For wif a and x; e W, V(La x;) = 1 iff V(e x;) = 1 for every
X; € W.

So far we have not introduced any deontic notions. A basic
semantical idea is that some worlds are “Good” (or permitted, or
pleasant or...) and others are not. This follows [3] (p. 180) except
that unlike Hanson we do not, for reasons which will appear, require
all words but the real one to be good. We define the obligatory as
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that which has to be the case if the world is to be good (%). Where
the operator O means that some (unspecified but the same throughout
the formula) person ought the bring it about that — we say that
Op is true in any world iff p is true in all good worlds. (If p is not
brought about, i.e. is false, then the world will be bad.)

Thus where G = W (G is the set of all good worlds) we have,

V5. For wif a and x;&6 W, V(Oax) =1 iff for every x;6 G
V(a x;) = 1, otherwise 0.
Def P: Pa =a ~O~a.

A model (VW G} which satisfies V1-V5 we shall call an OL1
model. Purely deontic formulae true in all such models are just those
which are theorems of Smiley’s OS5+ ([6] p. 129) and Hanson’s
DS5 ([3], p. 178). To shew this we observe that our semantics
delineates the same class of valid formulae as are theorems of
Anderson’s “simplification” of deontic logic by the introduction
of the “sanction” (?). We follow Prior ([9] p. 138) in having a propo-
sitional constant E to mean “blame is escaped” or under our se-
mantics, “the world is good”. Clearly if we let E be true in all good
worlds and only good worlds then Op will be true iff E 3 p is true.

From the results of [6] the purely deontic part of OL1 (Smiley’s
OS5+ and Hanson’s DS5) can be axiomatized by :

pC. If a is a PC tautology then — a;
O1. O(p = q) = (Op = Oq);

02. O(Op > p);

03. ~0p >0 ~ Op;

R1. Uniform substitution for propositional variables (3);

() This puts us squarely in the camp of those who regard deontic operators
as having propositional arguments. We do not here intend to discuss this (no
doubt important) topic (v.e.g. [12] pp. 43, 44). A defence of this way of approa-
ching deontic logic is given in [5]. Familiarity with these systems is assumed.
For an introduction v. [9]. Note that our use of G as the set of good worlds
should not be confused with its use as the designated ‘real’ world in the models
of [1] and [3].

(2) v. [7] (which I have not seen) and [8].

(®) In all the axiomatizations that we consider we shall assume a rule of
uniform substitution for propositional variables. Without such a rule the axioms
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R2. Modus Ponens —a, — o 2 B - — B;
R3. —a - —0a.

(From R3 and Ol we can easily derive —a = p - — Oa = O,
and so have a rule for substitution of proved equivalents).

This system is the same as Hanson’s DS5 ([3] p. 178) though his
semantics only has one world which is not good. Where x; is the
designated “real” world, (Hanson’s “G”’) we have (in our termino-
logy) V(Oa x;) = 1 iff for every x; # x1 V(a x;) = 1. While this
does not matter for purely deontic formulae, when modal operators
are introduced we can verify (Op . p) = Lp, for if V(Op x;) = 1 and
V(p x1) = 1 then for every x; # x; and for x; = x1, V(px)) = 1,
hence V(Lp x1) = 1.

Smiley ([6] p. 131) mentions the possibility of axiomatizing the
combined modal and deontic systems which result from the Ander-
sonian simplification. We shall later prove that the following
system is complete with respect to OL1 models:

OL1.S5 The axioms and rules for S5 (e.e.g.[10] pp. 31-32),
OL1.085. The axioms and rules for OS5 (without R3 and 03),

OL1.1 Lp = Op;
OL1.2. Op = LOp.

(The proof of R3 and O3 from this should be clear)

We shall shew the validity of OL1.1 and OL1.2 (For the remainder
are clearly valid and the rules validity- preserving form the results
of [6]).

We shew that when O is replaced by E 3 a then the formulae
are valid in S5. OL1.1 is Lp = (E 3 p) and OL1.2 is (E 3 p) =
L(E -3 p). Both theses are valid in S5 and so every theorem is valid.

2. THE systeM OL2 anp OL3

One of the possibly undesirable features of OL1 is that because
the obligatory is that which is true in all good worlds then the
logically true, that which is true in all worlds, is obligatory. And

would need to be replaced by schemata. Completeness proofs for the systems
and decision procedures are given infra.
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Lp = Op is one of the axioms. Reasons can be given for this and
certainly its contraposed form Pp > Mp has a respectable ances-
try (). However it could be argued that this semantics takes no
account of the fact that necessary propositions will be true in the bad
worlds also (where the bad worlds are those not in G). Of course
many ways of fulfilling our obligations will not ensure that the world
is good (they may be true in bad worlds as well) though failing to
fulfil any one of them will ensure that the world is bad (for there are
no good worlds in which they are false).

To ensure that the world will be good we have to fulfil all our
obligations, (and possibly do more besides). We could thus have a
supererogatory operator S such that Sp is true when and only when
p is false in every bad world. (i.e. if Sp is true then any world in
which p is the case must be a good one). We have :

V.6 V(S ax;) = 1 iff V(a x;) = 0 for every x; e W-G. (W-G is the
set of worlds in W but not in G).

With the “escaping” constant E, S ¢ =qra 3 E.

By interpreting good worlds as bad and bad worlds as good Sa
becomes true when « is false in every good world, i.e. when a is
forbidden, and thus formally this system is equivalent to OS5 with F
and S interchanged and so we shall not investigate it futher.

A combination of these systems arises by defining obligation as
that which, if done, ensures that the world is good and if not done
ensures it is bad. I.e. we have:

V7. V(O a x;) = 1 iff V(e x;) = 1 for every x; ¢ G and O for every
x; € W-G, otherwise 0.

This will make Op true when p is the agent’s total obligation for it

represents precisely what he must do to be sure that things are good.

We call this system OL2. As with OL1 it is S5+;

OL2.1. Op = LOp;

OL2.2. L(p = q) = (Op = Oq);

OL2.3. (Op.0q) = (p = q).

(From OL2.1 and OL2.3 we have (Op . Oq) = L(p = q).)

When Owq is replaced by E = « and good worlds are just those in

which E is true each axiom may be seen to be valid. Aside from the

intended deontic interpretation OL2 is interesting as representing the

(¥) But v.e.g. [12] pp. 47, 48 for some discussion of this.
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formal properties of operators which are true only when their argu-
ment has a determined pattern of values.

OL2 has the possibly unwelcome consequence that there are no
logically distinct obligatory propositions. This comes from requiring
all worlds to be either good or bad. If we have two subsets G and
B of W we could have worlds which are neither. {<V WBG)
is an OL3 model iff W is a set of worlds, B = W, G = W and
B N G = 0. V must satisfy V1-V4 and:

V8. For wif o and x; e W, V(O a x;) = 1 iff V(a x;) = 1 for every
x; € G and O for every x; € B, otherwise 0.

If S (Anderson’s “Sanction™) is true in all and only bad worlds and
Eistruein all and only good worlds (where we do not have E = ~8)
then O a =4 (E 3 @) v(e 3 ~S)

The axioms for OL3 are as follows, S5 +

OL3.1. Op = LOp;

OL3.2. L(p = q) = (Op = Oq);
OL3.3. (Op.Oq) = (O(p . g) . O(pvq));
OL3.4. (O(p.q.r1).0p) 2 O(p. q).

The validity of these may be seen by using the definition given above.

Obviously every OL2 model is an OL3 model (in which B = W-G).
Further OL3.3 and OL3.4 may be easily derived in OL2 since
(Op.0Oq) > L(p =q)andL(p = q) > L(p = (p.q))and L(p = q)
> L(p = (pvq)), thence by OL2.2 to get OL3.3. The proof of OL3.4
is similar. Further, as corollaries of OL3.3 we have,

(Op1.....0Opn) 2 O(p1. ... . Pn)
and (Op:.....Opn) = O(puv...vpn),

and as a corollary of OL3.4 we have,
(O(p1 . ... . pn) . O(p1v...vpn)) = (Op1. ... . Opn).

3. Tue CoMPLETENESS oF OL1-0OL3

When the modal system is S5 and we have Op > LOp (thus giving
Op = LOp) and (p = q) = (Op = Oq) (= is strict equivalence) we
can use the (S5) theorems Lp = (Lp = (p>p)) and ~Lp =
(Lp = ~ (p = p)). We have, where a is formula containing LB(OB)
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within the scope of a modal or deontic operator and y is o with
(p = p) replacing each occurrence of LB(OB) and y' is o with
~ (p > p) replacing each occurence then

—a=(LB.v)v(~LB.Y)
(or  —a=((OB.7)v(~O0B.7)).)

By repeating this process we will eventually obtain a first-degree
formula (%). Once reduced to first-degree any formula may be
expressed as a conjunction of disjunctions of the form; a;vLagv
«..vLanvOPiv...vOBmVPy1v...vPyvM3 (we only need one & from the
distributivity of M over v. In OLI1 we have it for P also and so here
only need one v .)

The whole formula will clearly be valid iff each disjunction is.
The disjunctions will be valid (in the appropriate system) if one of the
following is;
in OLI, some a;vd (1 <i < n) or some Bvyvd (1 <i < m)
(remember that in OL1 all the yi’s may be collected together)
in OL2, some aivy1V...VykVd OT a1V ~Y1V...V ~YxVd O
BivY1V...vYiV, OF ~PBiV ~YiV...V ~ YV,

In OL3 some aiv8, BivyiV...vYxVd Or ~Biv ~y1V...V ~ V3.

To shew this we prove the following rules :

DRI. (OLI and OL3). — avp - — L avM B.

This is a known result of S5.
DR2. (OLI). — avpvy - — OavPBvMy.
Proof:
[3] p. 185, T8 (DP ~p.0O~q)>P ~ (pvq)
(1) Def P, PC (2) ~ (OpvPq) > ~ O(pvq)
(2) contraposition (3) O(pvq) = (OpvPq)
(3) 85 (4) ~ Mr > ((pvq) = (pvqvr))

(3) (4) Subs eq. (5) ~ Mr = (O(pvqvr) = (OpvPq))

(5) For this purpose deontic operators are treated as modal operators.
The definition of first-degree is that of [13] p. 144. Reduction to first-degree
(as given in say [11]) is not normally carried out in this way but the present way
seems to adapt more easily to a statement of the conditions under which reduci-
bility obtains. The reduction of purely deontic formulae in 0S5+ to a normal
form of the kind given is used in [6] p. 125.
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(5) PC (6) O(pvgvr) = (OpvPqvMr)
ex hypothesis, R3  (7) O(avpvy)
(6) (7) MP (8) OavPpvMy QED

DR3 (OL2). +— (avBiv...vBxvy) . (av ~ Biv...v ~ Prvy)
- - LU.VPBl\’...VPﬁkVM'Y

Proof:

OL2.3 (1) (O ~B1.....0~By) > (B1=P1)...(B1=Px)
ex hyp., necessitation (2) L((avBiV...vBrvy).(av ~Biv...v ~ Brvy))
(1) (2) S5 (3) (O ~B1...0~ Bx) 2 L((avB1vy).(av ~ Bi1vy))
(3) 85 (4) (O ~B1.....0 ~ Bi) = (LavMy)

(4) PC, Def P (5) LavPpyv...vPBrvMy QED

DR4 (OL2 and OL3). — (avBiv...vBivy).(~av ~Buv...v ~ Bxvy)
- — OavPpyv...vPBxvMy

Proof;
ex hyp., necessitation (1) L((avB1v...vBxvy).(~av ~Biv...v ~Bivy))
(1) 85 (2) ~My=>((~pr.. ~Br)=(a. ~P1.. ~Py))
(1) S5 (3) ~My 3((~B1V...V~ﬁk)=(ﬂV~B1V .

v~ By))

OL3.3,(4) Subseq. (4) ~My>((O ~p1...0 ~Bi) > ((O(a.~p1
. ~Bk).O(av ~ Brv...v ~ Bx)))
(4) (5) Syll (6) (~My.0 ~B;...0 ~By) > Oa
(6) PC, Def P (7) OavPpyv...vPBxvMy QED.

Hence if one of the conditions holds the whole disjunction is
provable in the appropriate system and hence is valid. (Since 0; — &
are all PC formulae they will be theorems iff they are valid.) If none
of the conditions hold we may construct a falsifying model. For
OL1 given a disjunction :

avLogv...vLonvOBv...vOBavPyvM S

let W = {x1, weey Xm+n}, G = {Xn+1, Vinn Xm-{-n}.
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Since no w1vd is valid and no Bivyvd is valid then we can find a PC
assignment which falsifies each. Let V(p x;) = 1 or 0 (for propo-
sitional variable p) according as the PC assignment falsifying o,v3
givesit 1 or 0 and let V(p Xa+1) = 1 or 0 according as the PC assign-
ment which falsifies B;vyvd gives it 1 or 0. Thus each a; will be false
in some world (hence V(Le;x;) = 0) and each B; will be false in
some good world (hence V(OBix1) = 0) and & will be false in every
world (hence V(M3 x;) = 0) and y will be false in every good world.
(Hence V(Py x1) = 0) Thus the whole disjunction is falsified.

To ensure the non-emptiness of G we can always ensure that there
are some OB;’s since from OL1.1 and O4 we have Mp = (OpvMp)
and so can add an O3 to the disjunction.

For OL2 and OL3 we have to shew how to falsify a disjunction of
the form

arvLogv...vLanvOR:1v...vOBmvPY1v...vPyVMS.
Let W = {Xu, ..., Xn+m}.

Now (for each 1 <i < n) one of
(@ivy1v...vykv8) or (a;v ~y1v...v ~ ykvd)

is not valid (if they were both valid they would be theorems and
here (by DR2) the whole disjunction would be a theorem). If the
former is not valid then let x; € G. If (a;v ~ y1v...v ~yxv8) is not valid
then let not (x; € G). In either case let V(px;) = 1 or 0 according as
the falsifying assignment gives it 1 or 0.

Now (Bivy1v...vyxvd) or ( ~Biv ~y1v...v ~y,vd) are not both valid.
(If they were the whole disjunction would be a theorem by DR4)
If the former is not valid then let xn41 € G If (~PBiv ~y1v...Vv ~ yxV8)
is not valid then let not (Xns1 € G). In either case V(pxns1) = 1 or 0
according as the falsifying assignment gives it 1 or 0.

An argument similar to that used for OL1 will show that the
whole disjunction is false in some OL2 model. For OL3 we let
X1, ..., Xn be neither good nor bad while Xn41, ..., Xnsm are made
good or bad by the method for OL2.

If B and G are required to be non-empty we would need to be
sure that there is always an Op such that one of (Bvyiv...vyxvd) and
(~Bv~71v...v~1xvd) is not valid. If Op > Mp and Op > M ~ p are
both added as axioms then we may replace M3 by (O8vO ~ 3vM3).
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These two axioms are valid on the assumption that G and B are
not empty.

4. THE SysTtem OL4

All the systems so far considered contain Op = LOp as valid.
The presence of this has sometimes been thought objectionable in a
deontic logic (v.e.g. [13]). While this can be rationaliezd when Op
is interpreted as saying that p is entailed by the agent’s moral
code (°), it might plausibly be claimed that what a person’s duties are
in one situation (i.e. state of affairs or world) may be different from
what they are in another. If we want to incorporate this into an
account which says that one’s duties are what one must do if the
world is to be good, we could say that it is only worlds which we
have the power to bring about in which this can be so. Le. our
duties are what is true in all good worlds open to us. If we let xRy
mean “The situation x can be brought about by the agent when in
situation y”, then {VWRG) is an OL4 model iff W is a set of
worlds, R is reflexive over W, G = W and V satisfies V1-V4 and :
V9. V(Oaxi) = 1 iff for every x;Rx;, such that x; ¢ G, V(ax;) = 1,

otherwise 0.

Given such a G and R we can always define an R’ such that xR’y
iff xRy and x ¢ G and so this semantics boils down to that for
OM+(DM) whose axioms are those of OS5+ without O3. The com-
pleteness of the deontic fragment of this is proved in [3] pp. 186-188.
When modality is added we get the axiomatic OL4 by adding to
OM+:

OLA4.1. Lp = Op.

Although formally this semantics is easier to set out when R
means “X is a good world open to the agent in world y” there seem
interpretational advantages in letting it mean simply “x is open to
the agent in y” and having our subset G of W. This means that we
can introduce a deontic necessity operator say Hp (p has to be
brought about) and Cp (p can be brought about). This should not
be confused with logical necessity which in our present modelling is
truth in all worlds but formally they are clearly the necessity opera-

() Where the content of this code is fixed in advance. For a discussion of the
adequacy of such a defence v. [14].
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tors of the system T and so would reflect the Anderson simplifica-
tion when T is its basic logic. The valid Hp > Op and its corollaries
might then be more sensible interpretations of the Kantian “‘ought
implies can”.

This semantics enables a solution of the robber’s paradox of [13]
p. 294. This results from the theorem, L(p = q) = (Fp = Fq),
i.e. if p entails q then if q is forbidden (Fp = O ~ p) p is forbidden.
But where p is “x helps y whom he has robbed” and q is “x robs y”’
then since X cannot help someone whom he has robbed without
having robbed him, and since robbing y is forbidden (to x (7))
then helping y whom he has robbed is forbidden. In our present
system what is forbidden to a person can vary depending on the
circumstances. For when x is in the state of having robbed y he is
powerless to bring about a world in which y is not robbed by him.
Thus x is not forbidden to have robbed y (on the ground that he
cannot now prevent it). He is of course still forbidden to rob y.
Note that L(p = q) = (Fp = Fq) is still a theorem but its inter-
pretation becomes innocuous. All this becomes more plausible if
we think of states of affairs temporally and speak about possible
futures in the manner of [15] pp. 5-8 (¥).

The imposition of transitivity would reflect the view that whatever
it is in our power to put within our power is already within our
power. Whether this is true or not will probably depend of subtle
meanings of “within our power”. E.g. it is within my power to put
it into my power that I should understand Greek (for I could learn).
There does seem a sense in which a knowledge is within my power
but also a sense in which it is not (for I know no Greek). At any
rate we have a means of giving formal expression to this. We
shall not investigate systems in which R is transitive. They will
be S4 counterparts to our S5 and T systems.

The imposition of reflexiveness ensures that the agent always has
the power to do nothing (though the world may not be good if he
does.)

(") We are assuming that there is only one agent who is the subject of the
moral judgement. For a discussion of the ‘Good Samaritan’ paradox which
arises when other agents are involved v. [9] and [13].

(¥) Indeed the combination of tense logic and deontic logic and its semantical
study may well enable the formalization of many interesting ethical statements.
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5. THeE COMPLETENESS OoF OL4

To prove the completeness of OL4 we shall use an adaptation of
Henkin’s [16] device of maximal consistent sets in [17]. This will
prove simpler than e.g. the tableau method though it will
not provide a decision procedure. The purely deontic fragment of
OL4 is proved complete by the tableau method in [3]. We define a
set I' of formulae to be consistent iff it contains no finite subset
{o1, ..., an} such that — ~(ai... an). T is maximal iff for every
wif a either ce T or ~a e T.

We construct (following [17]) given a consistent formula ~n
(i.e. given 1 is not a theorem) a series of maximal consistent sets
which together define a model in which n is false. Let I'; be a maximal
consistent set of wffs containing ~mn. Given a maximal consistent
set 'y construct a maximal consistent subordinate I'; as follows.

a) For every a such that Ma & I let Tj be a (non-good) set con-
taining o and every P such that L e I'.. Suppose this were in-
consistent. Then it would contain some {B, ..., Bn} such that
+— ~(a.B1. ... .Bn) hence (from DRI1) — ~(Ma.LB; ... LBn) con-
trary to the consistency of Ti. Then increase I'y to a maximal
consistent set (Note that DR1 holds in OL4).

b) For every a such that Pa & I'j let o; be a good set containing a
and every P such that Op e I'; and every v such that Ly & I'y. The
consistency of this follows from DR2 (provable in OL4). To ensure
that there are some good sets we need to ensure that there is some
Pa in every T'i. This is so in virtue of Lp = Pp (from OL4.1 and O4)
since for any theorem « La will be in T'; and so Pa will. Every
such T is called a subordinate of T.

We construct a model which verifies ~n. Assume a set W of
worlds and let each x; ¢ W be associated with a maximal consistent
set I'i. Let x; € G iff I'y is a good set. Let x;Rx; iff [ is Iy or is a
subordinate of I'i. For variables let V(p xi) = 1 or 0 according as
peli
LemMA. (V(a x5) = 1 iff o & Ty, otherwise 0.

Proof by induction on the construction of a.

By definition the lemma holds for propositional variables. From
the maximal consistency of each I'y it clearly holds for truth functors.
For L it is sufficient to shew that if La € I'; then a € T'; and La is in
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every subordinate of I'; and in the set of which I’ is a subordinate
and if not (La € T'), then o is not in some subordinate (since all sets
are connected by subordination this will shew from the induction hy-
pothesis that the lemma holds for L). By S5 if La ¢ I'y then a & T
and LLa e Iy hence La is in every subordinate. Suppose not (La &
TI'x) where T’k is the set of which I'; is a subordinate, then ~ La & I'x
(I'x maximal) hence L ~ Lo & I'x hence ~ La ¢ I'y hence not (La € T'y)
contrary to reductio hypothesis. If not (La & I'y) then M ~a e Iy
hence for some subordinate I'j, ~ a & I';. Hence the induction holds
for L.

Suppose Oa & I'; then a will be in every good subordinate and if T
is good then it will be the subordinate of some I'x and (because I'x
contains O(Op = p) which is a theorem) if T'; contains Oa then it
contains a. Hence (induction hypothesis) V(a x;) = 1 for every
good x;Rx;, hence V(Oa x;) = 1. If Oa ¢ T’y then P ~ a & I'; hence
~ « is in some good subordinate I'; hence V(~ a x;) = 1 for some
good x;Rx;. Hence V(Oa x;) = 0. Hence the lemma holds and
in particular V(~nx1) = 1 hence V(n x1) = 0. Le. if 1 is not a
theorem then it is not valid, hence if it is a theorem it is valid. QED.

If OL4 had been based on another modal system than S5 the
proof would have been more complicated since the relation R of
modal necessity might have been different from the R of deontic
necessity. Where they are the same we have a semantics for the “H”
system discussed above. Our completeness proof can be easily
modified to cover the O/H/L system based on OL4 + Lp = Hp,
Hp = Op, Hp = p, H(p = q) = (Hp > Hg).

Systems analogous to OL2 and OL3 but with the relation R can
be studied but they become very complicated.

Victoria University of Wellington M. J. CRESSWELL
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