NONCREATIVITY AND TRANSLATABILITY IN TERMS OF INTENSION (*)

Roman Suszko

I intend to show in this paper that Carnap's notion of intension (1) may have interesting applications in logical inquiries. The notion of intension will be applied here to the problem of extending of theories. I will only consider the intensions of sentences (without free variables). The intensions of terms and of other formulas will not be taken into account here (2).

The symbols \sim , \vee , \wedge , \equiv will be used for the sentential connectives (negation, alternative, conjunction and biconditional).

Let T_1 and T_2 be two standard formalized theories (3) such that T_1 is a subtheory of T_2 . It means that the language L_1 of T_1 is a sublanguage of the language L_2 of T_2 and T_1 is a subset of T_2 . We may suppose that there exists a set A_1 of sentences in L_1 and a set A_2 of sentences in L_2 such that the following equivalence holds for each sentence p in L_K where k = 1, 2:

the sentence p is in T_K i.e. p is a theorem of T_K if and only if p follows logically from A_K .

The assumption that T_1 is a subset of T_2 is equivalent to the following condition:

- (*) English translation of a lecture given in Russian at the Faculty of Mathematics of the University of Sofia, June 6 1966, Sofia, Bulgaria.
- (1) R. CARNAP, *Meaning and Necessity*, Chicago 1947. See also my paper An Essay in the Formal Theory of Extension and of Intension, *Studia Logica*, vol. 20, in print.
- (2) A more extended paper concerning the applications of the notion of intension will be published elsewhere.
- (3) I.e. the theories T₁ and T₂ are based on the engere Praedikaten-kalkül mit Identität, Funktionszeichen und Beschreibungssymbolen. See D. HILBERT und P. BERNAYS, *Grundlagen der Mathematik*, vol. I, Berlin 1943.

every sentence in A_1 follows logically from A_2 .

The symbols T_1/T_2 means the extending transformation of T_1 to T_2 . The transformation T_1/T_2 may be *noncreative* (St. Lesniewski) and/or *translatable* (K. Adjukiewicz). The noncreativity and translatability are defined as follows (4).

The transformation T_1/T_2 is noncreative if and only if every sentence in L_1 being a theorem of T_2 is also a theorem of T_1 .

The transformation T_1/T_2 is translatable if and only if for every sentence p in L_2 there exists a sentence q in L_1 such that the biconditional $p \equiv q$ is a theorem of T_2 .

We say that the transformation T_1/T_2 is a definitional one if and only if

- 1) $L_2 = L_1 + certain new extralogical constants and$
- 2) $A_2 = A_1 +$ the standard definitions of all new extralogical constants.

We know very well that if the fransformation T_1/T_2 is definitional then it is both non creative and translatable.

Let k = 1,2. If p is a sentence in L_K then $\operatorname{int}_K(p) = \operatorname{the}$ intension of p in T_K . The intensions of sentences in L_K may be introduced as follows:

 $int_K(p)=int_K(q)$ if and only if the biconditional $p\equiv q$ is a theorem of T_K .

We know very well that the set I_K of all intensions of sentences in L_K is a Boolean algebra (called also Lindenbaum algebra of T_K in L_K) such that for all p, q in L_K :

- 1) $int_K(p \lor \sim p) = the unit-element in I_K$,
- 2) $int_K(p \land \sim p) = the zero-element in I_K$,
- 3) $-int_K(p) = int_K(\sim p)$,
- 4) $int_K(p) + int_K(q) = int_K(p \vee q)$,
- 5) $\operatorname{int}_{K}(p)$. $\operatorname{int}_{K}(q) = \operatorname{int}_{K}(p \wedge q)$.

The signs -, +, . stand for the Boolean operations of complementation, of addition and of multiplication, respectively.

(4) See K. ADJUKIEWICZ, Die Definition, Actes du Congrès International de Philosophie Scientifique (Sorbonne 1935), vol. II, 1-7, Paris, 1936.

The algebras I_1 and I_2 are quite different, in general. Similarly, if p is a sentence in L_1 then $int_1(p)$ and $int_2(p)$ are different, in general. However, from the assumption that T_1 is a subtheory of T_2 it follows that there exists a special connection between I_1 and I_2 .

The intensions of sentences in L_2 may be divide into old and new. If p is a sentence in L_2 then $int_2(p)$ is called old if and only if there exists a sentence q in L_1 such that $int_2(p) = int_2(q)$. Otherwise, $int_2(p)$ is called new.

It is clear that $int_2(p)$ is old for each sentence p in L_1 . Of course, $int_2(p)$ may be new for some sentences p in L_2 only.

Let I_{2}^{+} denote the set of all old intensions of sentences in L_{2} . Clearly, I_{2}^{+} is a subset of I_{2} . Moreover, I_{2}^{+} is a Boolean algebra and a subalgebra of I_{2} . It means that for all p, q in L_{2} :

- 1) int₂(p $\vee \sim$ p) and int₂(p $\wedge \sim$ p) belong to I+₂ and
- 2) if $int_2(p)$ and $int_2(q)$ belong to I^+_2 then $-int_2(p)$, $int_2(p) + int_2(q)$ and $int_2(p)$. $int_2(q)$ belong also to I^+_2 .

Consider now the following functional correspondance H between the elements of I_1 and those of I_2 :

$$H(int_1(p)) = int_2(p)$$

for every sentence p in L_1 . Clearly, I_1 = the set of all arguments of H and I^+_2 = the set of all values of H.

The function H is a homomorphism of I_1 onto I^{+}_2 and, consequently, a homomorphism of I_1 into I_2 . This means that for all p, q in L_1 :

- 1) $H(-int_1(p)) = -H(int_1)p)$,
- 2) $H(int_1(p) + int_1(q)) = H(int_1(p)) + H(int_1(q)),$
- 3) $H(int_1(p) \cdot int_1(q)) = H(int_1(p)) \cdot H(int_1(q))$.

An one-to-one homomorphism is called isomorphism. Therefore, the function H is an isomorphism between I_1 and I_2 if and only if the following condition holds for all p, q in L_1 :

(*) if
$$int_1(p) \neq int_1(q)$$
 then $int_2(p) \neq int_2(q)$.

Theorem 1. The extending transformation T_1/T_2 is noncreative if and only if the function H is an isomorphism between I_1 and I_2 .

Proof. (1) Let the transformation T_1/T_2 be noncreative. Suppose that $int_2(p) = int_2(q)$ where p, q are in L_1 . Consequently, the biconditional $p \equiv q$ is a theorem of T_2 . It follows from the noncreativity that the biconditional $p \equiv q$ is also a theorem of T_1 . This means that $int_1(p) = int_1/q/$. The condition (*) holds. (2) Let the transformation T_1/T_2 be creative. I.e. there exists a sentence p in L_1 such that p is a theorem of T_2 but it is not a theorem of T_1 . It follows that the biconditional $p \equiv (p \lor \sim p)$ is in T_2 but it is not in T_1 . Consequently, $int_1(p) \neq int_1(p \lor \sim p)$ and $int_2(p) = int_2(p \lor \sim p)$. The condition (*) does not hold.

It is easy to see that the transformation T_1/T_2 is translatable if and only if $int_2(p)$ is old for every sentence p in L_2 , i.e. if the new intensions of sentences in L_2 do not exist $(I_2 = I_2)$. Thus we have

Theorem 2. The extending transformation T_1/T_2 is translatable and noncreative if and only if the function H is an isomorphism between I_1 and I_2 .

Institute of Philosophy and Sociology of Polish Academy of Sciences, Warsaw

Roman Suszko