A LOGIC OF COMMANDS (*)

William H. HansoN

1. Informal Account

This paper presents a formalized language in which commands
can be expressed. In particular, we shall add to the usual machinery
of the predicate calculus of first order a connective that can rea-
sonably be interpreted as It is commanded by a that p’ ,where ‘@’
is the name of an agent, and ’p’ is a declarative sentence. We shall
also introduce formal techniques for specifying a hierarchy of
agents such that some agents may be thought of as the superiors
or supervisors of others. Hence we shall have a formal model of
what we call a command hierarchy.

The existing literature on the logical analysis of commands
seems to be divided into two groups. The first group centers around
the approach taken by Hofstadter and McKinsey [5]. In [5] im-
peratives are assigned the values obeyed and disobeyed in much the
same way that declaratives are assigned truth-values in classical
systems. But it turns out that the system of [5] is trivial in the
sense that given any formula of the system there is an equivalent
formula that contains no imperative-connectives other than a
single initial ’"" (! being the singulary connective that forms im-
peratives out of declaratives). Other papers that seem to be more or
less in the tradition of Hofstadter and McKinsey are Ross [10] and
Bohnert [1].

The second (and more recent) approach to the logical analysis
of commands is oriented toward deontic logic. In fact Kanger [6]
and Fisher [3] take deontic logic and the logic of commands to be
essentially the same in their formal structures. For example, Fisher’s
approach, roughly, is to use declaratives of the form 'It is commanded
by a that p’ in place of the actual imperative ’p !’ uttered by a. This

(*) The work reported in this paper was supported in part by the Air Force
Office of Scientific Research, Office of Aerospace Research, United States
Air Force, contract AF 49(638)-1484. It was carried out while the author was
employed by the UNIVAC Division of Sperry Rand Corp.
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approach, which is also adopted in this paper, turns out to be
more fruitful than that of Hofstadter and McKinsey. It also seems
quite reasonable. For the declarative sentence in question, when
uttered by a himself, has all the force of the corresponding impera-
tive. And the declarative has the additional advantage of describing
the situation that obtains when @ commands that p shall be brought
about. Hence the declarative can be used either by a to issue a
command or by someone else to describe a situation in which a
command is issued.

We now give informal analyses of commands and command
hierarchies that will provide motivation for the formal material
to be given in subsequent sections. When an agent a issues a com-
mand, we might roughly characterize the situation by saying that
a envisages some state of affairs s that he considers obtainable, and
that ¢ would like to see s brought about. We might further
characterize the state of affairs s, which &’s command says shall be
brought about, as a common element of all those states of affairs
s1, S2, ..., that a considers allowable or unobjectionable, relative to
his present point of view. More precisely, if s1, 52, ..., are all those
states of affairs to which & has no objection from the point of view
of his present state, and S is a description of the state of affairs s,
then ¢ commands that s shall be brought about if and only if S
is true in each of s1, s2, .... Hence we analyze the commands of an
agent in terms of what is common to all those «worlds» (i.e.,
state of affairs) that the agent considers unobjectionable from the
point of view of his present «world».

Of course this analysis merely leaves us with another unanalyzed
term (i.e., ’‘allowable’ or ’‘unobjectionable’) that may seem no
more perspicuous that the one with which we started. But we shall
see that by taking the notion of an allowable world as primitive we
can provide a precise and plausible formalization of commanding.
The allowable worlds that are associated with each agent will be
nothing more than interpretations of the symbols of a formalized
language, in the usual sense of ’interpretation’ employed in ma-
thematical logic. We shall then say that ‘It is commanded by a that
P’ is true in a given world w if and only if ’p’ is true under all those
interpretations that constitute the worlds that a considers allowable
with respect to w.
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Given this analysis of commanding for individual agents, the
notion of a command hierarchy is then fairly easy to formulate.
First, we postulare some finite set of agents and define a relation
of superiority (i.e., supervisorhood) among them (%). If g is a su-
perior or supervisor of b, then the commands issued by a ought
to place a limit on the commands that can be issued by b—that is,
b is not supposed to issue any command that would conflict with
a command already issued by a. Of course subordinates are some-
times guilty of insubordination, but in the ideal case, at least, b
would adopt all of a’s commands as his own, and such further
commands as he issued would be concerned primarily with im-
plementing in detail a’s more general directives. This situation
will be reflected in our formalism as follows. Consider the set W
of all those worlds that are allowable with respect to some other
world according to any commander, and suppose that w; are we and
members of W. If a is a superior of b and if w, is allowable with
respect to we according to b, then we stipulate that w; is also al-
lowable with respect to we according to a. In other words, within
the set W, a’s scope of responsibility and concern includes that of
each of his subordinates . Hence it follows that whatever is com-
manded by g in any member of W is also commanded by 4 in that
member of W. And since W is the set of all the allowable worlds of
all commanders, our interpretation incorporates the assumption
that every commander commands that the commands of a superior
shall also be the commands of his subordinates. This and other
consequences of our interpretation of command hierarchies will
be explained in more detail after our formalized language has been
presented in the next section.

2. A Formalized Language

We present a formalized language L, that is a modification of a
two-sorted predicate calculus of first order (¥). The improper

() T am not aware of any work in the literature that takes this step. Fisher
i3] comes the closest, since his system allows that there may be more than
one commander. But he is not concerned with arranging these commanders in
any kind of hierarchical structure.

(?) Seechurch [2], pp. 339-341.

331



symbols of L are parentheses, comma, horseshoe (=), tilde ( ~),
and the letter "C’. The proper symbols of L include a nonempty,
finite or enumerable set of individual constants of the first sort

a1, az, ...,

a nonempty, finite or enumerable set of individual constants of
the second sort

C1, €2y suuy

an enumerable set of individual variables of both first and second
sort

X1, X2, eeny
an enumerable set of individual variables of the second sort

Y1, V2, .o

and, for each k, a finite or enumerable, possibly empty, set of
predicates

AKXy, AKg L.

We interpret the individual constants of the first (second) sort as
names of the members of a nonempty domain of individuals D (E).
The individual variables x; range over D y E, while the individual
variables y; range over E. Each k-ary predicate names a function
from (D v E)X to {T, F}. Intuitively, we think of E as a set of
commanders (i.e., agents who issue commands) and D as a set of
all individuals other than the commanders themselves (including
perhaps both men and machines) that are within the jurisdiction
of some member of E.
The well-formed formulas (wffs) of L are defined as follows :

1. The result of applying a k-ary predicate to k individual
symbols (either constants or variables of either sort)
is a wif (3).

(®) Notice that L could be refined by dividing the predicate letters into dif-
ferent classes on the basis of the sorts of individual symbols they accept as
arguments. We do not undertake this refinement here.
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2. If « and B are wifs, then (~a), (a = B), ((x:)a), ((y9)a),
((Ce)a), and ((Cyi)o) are wils, for all appropriate i.
3. No expression is a wif unless it is so by 1-2.

The tilde, horseshoe, and an individual variable enclosed in paren-
theses play their usual roles as negation, material implication, and
universal quantification, respectively. In L, however, we have the
option of quantifying over D y E or only over E (i.e., of quan-
tifying only over the commanders). A wff of the form ((Cc;)a) is
read «It is commanded by ¢; that a». Analogously, a wif of the
form ((y:)(((Cyi)a)) is read «It is commanded by all commanders
that a». Notice that the individual symbols a; and x; may not be
used with the connective C to form wifs.

The procedure for interpreting L will now be precisely specified.
We wish to make any interpretation relative to definite sets of indi-
viduals (both commanders and noncommanders) and relative to so-
me definite hierarchical ordering of the commanders. The prefix
‘DEH’ on the terms defined below indicates this relativization. Speci-
fically D is the set of noncommanders, E is the set of commanders,
and H is certain ordering relation defined on the constants ¢; and a
concomitant condition on certain other relations which together
give the hierarchical ordering of the commanders. In any practical
application the set of commanders, E, will always be finite. Hence
in what follows we always take E to contain a finite number of
members, n, and we limit the individual constants of the second
sort to c1, ¢z, ..., cn. It should be pointed out, however, that this
restriction is not in any way a necessary part of our formalism.

We define a DEH model structure (4) for L as an ordered (n + 2)-
tuple (G, K, Ry, ..., Ry), where K is a nonempty set, G € K, and
each Ri(l < i < n)is a relation on K with the following properties :
(1) For each W; € K there is at least one W3 € K such that W1RWz;
(2) Ry is reflexive over K-{G} (i.e., over the set that consists of all
members of K except G). Furthermore, each DEH model struc-
ture has associated with it the following features, which it shares

(*) The definitions of model structures and models given here are extensions
of corresponding definitions for the writer’s system DM [4]. The basic ideas
involved derive ultimately from Kripke [7], [8].
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with every other DEH model structure : (a) a fixed nonempty set
D; (b) a fixed nonempty set E with » members; (c) a fixed assign-
ment of a unique member of D(E) to each constant ai(ci); (d) the
stipulation H, consisting of a fixed ordering > of the constants
¢; and the following condition that depends on > : For any Wi,
Ws e K-{G}, if W1R:W; and ¢; > ¢4, then WiR;Wo.

We now define a DEH model for a wif a of L as a binary function
®(P, W) associated with a given DEH model structure (G, K, Ry,
..., Rp). P ranges over variables, predicates, and well-formed sub-
formulas of «, while W ranges over members of K. ®(xi, W)
is a member of D y E, and ®(y:;, W) is a member of E, for each
x¢ and yi, respectively. ®(AX;, W) is a subset of (D y E)X, for each
k-ary predicate 4X;. Suppose that the k individual symbols uy, ..., ux
are assigned by, ..., by (each b; e D y E), respectively, by ®(u;, W),
if uy is a variable, or by the assignment that goes with DEH model
structures, if uy is a constant. Then ®(AX(uy, ..., ux), W) =T if
the k-tuple (by, ..., bx) is a member of ®(4X;, W); otherwise
®(AE(uy, ..., ur), W) = F. The value of ®(P, W) for all well-
formed subformulas P of a (including o itself) can now be defined
by induction as follows.

If ®(p, W) =T, then ®((~p), W) = F; otherwise ®((~p), W)
=T. If ®p, W) =T and ®(y, W) = F, then ®((B = v), W) =F;
otherwise ®((B = ¥), W) = T. If ®'(B(x;), W) = T, for every @’
that differs from ® at most in its assignment of a member of D y E
to xi, then ®(((x:) P (x1)), W) = T; otherwise ®(((x:)B(xs)), W) = F.
Similarly, if ®'(B(y:), W) = T, for every @' that differs from @
at most in its assignment of a member of E to y;, then ®(((y¢)B(34)),
W) = T; otherwise ®(((y:)B(y:)), W)=F. If @B, W)=T for
every W’ ¢ K such that W R; W’, then ®(((Cc:)B), W) = T, other-
wise ®(((Cc:)B), W) = F. Finally, if ®(B, W) = T forevery W' ¢ K
such that W R;W’, where ®(y;, W) is the member of E assigned to
¢; by all DEH model structures, then ®(((Cy:)B), W) = T; other-
wise ®(((Cy)B), W) = F.

We now say that a wif a is true in a DEH model ® associated
with a DEH model structure (G, K, Ry, ..., Rp) if and only if
®(a, G) = T. We also say that a wif o is DEH valid if and only if
it is true in all its DEH models.

For a given model structure we think of K as the set whose mem-
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bers are the real world (G) and all those other worlds (i.e., all the
members of K-{G}) that are allowable with respect to some world
according to at least one member of the set E of commanders. For
any two worlds Wi, Wz ¢ K we read "W;1R; Wy’ as "W is allowable
with respect to Wi, according to commander ¢;’. In view of the for-
mal definition given above, it follows that we think of a sentence
(Cci)p as being true in a world W if and only if B is true in every
world that is allowable with respect to W in the eyes of commander
¢i. The restrictions that the definition of a DEH model structure
placed on each relation R; can be understood as follows. Restric-
tion (1) says that for every world W, there is at least one world Wz
such that Wz is allowable with respect to W3, according to comman-
der c¢;. Restriction (2) says that every world that is allowable with
respect to some other world according to any commander (ie.,
every member of K-{G}) is allowable with respect to itself, accor-
ding to commander c¢;. Finally, the stipulation H determines a
command hierarchy in the following way.

We read ‘c; > ¢’ as ’c; is a superior of ¢i’ or ’c; is a subordinate
of ¢;’. Whenever ’c; > ¢;’ holds it is reflected in the interpretation
of L by a condition on the relations R; and Ri. Specifically, given
any two members of K-{G}, say W1 and Wy, if ¢; > ¢; and WiR;Wo,
then W;R;W:. In other words, within the set of all those worlds
that are allowable with respect to some other world in the eyes
of somecommander (i.e., within the set K-{G}) the relation R; is
included in the relation R;, whenever ¢; > ¢;. Hence, for any wif o,
if (Cej)a is true in any of these worlds then (Ccq)a is true in the
same worlds — this is the way that ‘c; > ¢;’ is reflected in the inter-
pretation of L. Our reason for restricting this condition to K-{G} is
that in the real world subordinates do not always obey their su-
periors, and hence (Cej)a = (Ce)a is not in general true, even
though ¢; > ¢

3. Testing wifs for DEH validity

We shall now consider, as an example, the result of applying L
to a particular command hierarchy. The hierarchy we have in mind
contains nine commanders, ci, ..., ¢9, arranged in the following
way
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C1

v
{ v
C2 C4
Lo | .
Cs Ce c7 Cs Cy

This diagram expresses the superior-subordinate relation among
the commanders ci, ..., co. If it is possible to pass from c; to c;
by following arrows on the diagram we will say that ¢; is a superior
of ¢s(i.e., ¢t > cj).

We wish to reflect the structure of this hierarchy in DEH model
structures. Since there are just nine commanders in the present
application, the set E of any DEH model structure will have just
nine members, one of which is named by each of the individual
constants ci, ..., cs. Each commander ¢; will also have a relation
R; associated with it in any DEH model structure. The superior-
subordinate relation among commanders can therefore be expres-
sed in a DEH model structure as follows: If ¢; > ¢; (for any i
and jsuch thatl <i <9andl <j < 9), then, for any W1, Wz ¢ K-
{G}, if W1 R; W3, then W; R; Wo.

The set E and the stipulation H have now been specified. If we
wish to have a definite set of DEH concepts as defined in the pre-
vious section we must specify the set D (the set of non-commanders).
But rather than do this we shall be concerned instead with ex-
hibiting schemes of wffs that are DEH valid for any choice of D, gi-
ven the above choices of E and H. Although it is often difficult to use
model theory itself to determine if a given wff is DEH valid, it is
known from the work of Kripke [7], [8] that the much simpler
method of semantic tableaux can often be made equivalent to a
given model theory. We shall specify informally a method of seman-
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tic tableaux that is equivalent to our model theory and then carry
out our discussion of examples in terms of semantic tableaux.

We presuppose familiarity with the method of semantic tableaux
as given in [7] and [8]. Tableau rules for ~ and = follow the stan-
dard truth-table interpretations of these connectives. Similarly,
mutatis mutandis, for any other connectives that can be defined in
terms of these primitives. Quantifier rules for the variables y; (i.e.,
rules for quantification over the finite domain E) can be easily
specified by treating universal quantification on these variables
like conjucntion. If D is finite, quantification on the variables x;
can be treated similarly; for infinite D the method of [7] can be used.
We further stipulate that each commander ¢; has associated with
it a relation R: over each set of tableaux such that R; is reflexive
over all the auxiliary tableaux in the set. We also give the stipulation
H for tableaux as follows: For any auxiliary tableaux t; and ts,
if iRtz and ¢; > ¢y, then tiR;t2. The tableaux rules for the connec-
tive C are then as follows :

CL If ((Ce)B) (%) appears on the left of a tableau t, put B
on the left of each tableau t' such that t Rst’. If there
is no such t’ (i.e., if t is a main tableau with no auxiliary
stemming from it), then start a new tableau t' with B
on the left and stipulate that t Ry t’ (5).

Cr. If ((Ce)B) (%) appears on the right of a tableau t, then
start a new tableau t’ with B on the right and stipulate
thatt R;t’".

It would not be difficult, using methods analogous to those of
[7] and [8], to establish that a wff is DEH valid if and only if its
semantic-tableau construction (as sketched above) is closed. And
if D as well as E is a finite set, this method of semantic tableaux

(5) A wiff of the form ((Cy;)B) can be treated like its universal closure. In
view of our intention of treating universal quantification over the finite domain
E as conjunction, this would result in ((Cy;)B) being construed as ((Ccp)f) A
.. A ((Ceo)P).

(6) The second sentence of this rule gives the effect, for semantic tableaux,
of the stipulation in the model theory that every world bears the relation
R; to some world.
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constitutes a decision procedure for DEH validity. In the remainder
of this section we shall give some examples of the use of semantic
tableaux for determining DEH validity.

Consider first the wif scheme

(Cer1)((Ce) @ = (Ces)a) (D).
Its tableau construction is as follows :

51
(Ce1) ((Cea) o = (Ces)a)

N

t
2(C’cg) a > (Ces)a
(Cez)a | (Ces)a

5,2

ts
ala

For convenience we label the main tableau in this construction t;
and the auxiliary tableaux t; and ts, although such labeling is not
necessary. The construction begins with (1) on the right (i.e., the
false side) of ti. Applying Cr we introduce t2 with (Cez)a = (Ces)a
on the right. The arrow with the '’ along side indicates that t; R; ta.
The rule for implication on the right then puts (Ccz)a on the left
and (Ccs)a on the right of ts. Next we use Cr again to introduce ts
with o on the right. The arrow and ’5’ indicate that ta Rs ts. But
since tz and t3 are both auxiliary tableaux and ¢z > c¢s, it follows
by stipulation H that tz Rz t3. This is indicated by the "2’ that also
appears along side the second arrow. We also have tz Rz t3 since tg is
an auxiliary tableau and each R; is reflexive over the entire set of
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auxiliary tableaux. Application of Clto (Cez)a therefore puts a on
the left of t2 and on the left of t3. Hence the construction for (1)
is closed, and (1) is DEH valid for any D, given our choice of E
and H.

From this example it is easy to see that for any i and for any j
and k such that ¢; > cx, (Cei) ((Cep)a = (Cex)a) is DEH valid.
Hence our interpretation of L incorporates the assumption that
every commander commands that subordinates be bound by the
commands of their superiors. Notice, however, that wifs of the
form (Ccj)a = (Cep)a are not in general DEH valid, even if j > k.
This is as it should be since it is not even factually true, much less
logically true, that subordinates always obey their superiors.

As a second example consider the wif scheme

(Cee)((Cep)a = @) (2).
Its construction is ;

t1
(Ccs) ((Ceg)a = 0)

CCgO‘. a

Notice that closure in this case (and hence DEH validity) results
from the fact that R9 is reflexive over all auxiliary tableaux and
hence that o can be obtained on the left of ts by CI. It is obvious
from this example that any wff of the form (Ce;) ((Cep)a = a) is
DEH valid, for any i and j. (Indeed our motivation in adopting
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the restriction that each R; must be reflexive over K-{G} — or,
equivalently, over the set of auxiliary tableaux — was to insure
that wifs of the form of (2) would be DEH valid.) Hence our
interpretation of L incorporates the assumption that every comman-
der commands that the commands of each commander actually
be carried out. Of course wifs of the form (Ce;)a > a are not in
general DEH valid.

We consider now two wiff schemes that are most conveniently
discussed in terms of a defined connective, P, that expresses per-
mission. Specifically, we define (Pci)a as ~(Cei) ~a and (Py:)a as
~(ci)~a. Hence we interpret sentences of the form ‘u is per-
mitted by commander ¢;’ as ‘It is not the case that ¢; commands
that ~a’. This is in accordance with the standard definition used
in deontic logic.

First we notice that for any i and for any j and k such that cx > c;
all wffs of the form

(Cci) ((PCJ)UL > (PC;;)O.) (3)

are DEH valid. The reader can easily verify this by means of se-
mantic tableaux. Hence just as example (1) showed that commands
are intended to flow «down» a command hierarchy, so (3) shows
that permissions are intended to flow «up» a command hierarchy.
Although this result may not seem quite as intuitive as (1), it is
nevertheless a consequence of the stipulation H (which is also
crucial for (1)) and our definition of P.

The second wff scheme involving P that we wish to consider is

(Pci) (Exp)a(xy) = (Exy) (Pei)olxs) (4).

(Here we assume that the existential quantifier (E) is defined in the
usual way.) The scheme (4) is the command-logic analogue of the
well-known Barcan formula (7), which has been widely discussed
in the literature on modal logic. The controversy over expressions
like (4) centers around whether or not we should be allowed to
conclude that something exists from the mere hypothesis that (in

(") Sonamed by Prior [9], p. 26.

340



this case) it is permitted that something should exist. Wffs of the
form (4) are DEH valid, as the reader can verify by constructing the
appropriate semantic tableaux. And this is to be expected, since
our interpretation of L specifies that the set of individuals DU E
is the same in all worlds, both actual and allowable. If we wereto
allow different sets of individuals to be associated with each world
of amodel structure, then of course there would be countermodels to
(4).

We have now seen several examples of the way that semantic
tableaux can be used to determine whether or not wffs of L are
DEH valid for given choices of D, E, and H. In general, we can
see that L is a language that could be used both within a command
hierarchy for issuing commands and outside a command hierarchy
for describing the activity that takes place within it. And such a
language, I would argue, ought to be a useful tool in understanding
the complex workings of real command hierarchies. Of course the
artificial language L and the analysis that we have given of command
hierarchies are simple by comparison with their analogues in the
real world. But I nevertheless hope that this simple beginning will
lead to more realistic analyses.

4. Application

I shall conclude by sketching briefly a problem that might arise
within a command hierarchy and that is solvable by means of the
formal machinery we have developed for L. In order for the solu-
tion given to be generally effective, the particular interpretation of
L that is being used must be one for which DEH validity is effec-
tively decidable. Hence any interpretation in which D and E are
both finite will do. But even for interpretations in which D, say, is
infinite, there will be classes of wifs for which DEH validity is
effectively decidable. The solution given will therefore also be
effective in cases that involve only wifs of this kind.

The problem is that of locating an inconsistency among the com-
mands of the various members of a command hierarchy. Suppose
that each member of the hierarchy issues a statement (perhaps a
very complex statement including commands, permissions, com-

341



mands that are conditional on the statement of some other com-
mander or on the state or the world, etc.) within a given period of
time. Let each of these statements be expressed in the language L,
and let the statement of commander ¢; be called A;. Suppose that
A1 A ... A A,, the conjunction of all these statements, is incon-
sistent in the sense that a subordinate has issued a statement that
conflicts with the statement of one of his superiors. As an example,
consider the very simple case in which n = 2, ¢1> ¢z, A1 = (Cei1)a,
and Az = (Pcz) ~a. Here there is an obvious conflict between A1
and Az, but A1 A Az is not a contradiction (i.e., ~(A1 A Az) is not
DEH valid). Notice, however, that (Cc;) ~ (A1 A A2) is DEH
valid (both for i =1 and i = 2). Hence, in the general case, in
order to identify the kind of conflict that we are interested in it
seems appropriate to test

(Ces) ~ (AL A ... A Ayp) (5.

for DEH validity (for any i).

In general if a wff of the type (5) is DEH valid it may be because
(a) one or more commanders has issued an inconsistent statement;
or (b) the statements of some subset of members of the hierarchy
are jointly inconsistent. The source of the inconsistency can be
pinpointed by first testing (Cci) ~A; for DEH validity (for each j),
then testing (Ce;) ~ (A; A Ax) for DEH validity (for each j and
k), and so on. If (a) an inconsistency is found by this procedure in
a set of two or more statements, and (b) the procedure does not
disclose an inconsistency in any subset of this set, and (c) one of
the commanders involved is a superior of one or more of the other
commanders involved, then we will have discovered, by purely
formal methods, a case of insubordination.

It does not seem unreasonable to hope that there may be other
problems, similar to the one discussed above, that are solvable by
means of formal techniques related to L. But independently of
L’s ability to solve specific problems, the existence of a precisely
defined and interpreted language that incorporates at least some of
the important features of discourse concerning commands and
command hierarchies may be of value and interest.

University of Minnesota William H. HANSON
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