CONTINGENCY AND NON-CONTINGENCY BASES
FOR NORMAL MODAL LOGICS

H. MoNTGOMERY and R. ROUTLEY

Contingency and non-contingency bases for modal logics provide
direct bases for various logical investigations of philosophical
interest. For example : for logics of causation and causal implica-
tion, for certain theories of entailment, for syllogistic systems with
only contingent propositions, and for theories of future contingents.
Furthermore by taking contingency as primitive various new ex-
tensions of weak modal logics — extensions which include systems
S6 - S8 and provide interpretations of philosophical interest for
these neglected systems — are suggested. Contingency and non-
contingency bases are also of some formal interest; for instance
S5 has a very simple and elegant formulation in terms of non-
contingency.

In this paper we present contingency and non-contingency bases
for familiar normal modal logics, specifically for T, S4 and S5. As
well as the usual symbolism we use the symbol ¢V’ read ‘it is contin-
gent (that)’ and the symbol ‘A’ read ‘it is not contingent (that)’.
The bracketing conventions follow Church.

The systems now presented are understood as subjoined to some
complete basis for classical sentential logic (SL).

System T

1. Non-contingency bases.

Definition 1 [A =p A&AA

Rule A A ——= AA
Axioms:
For T;: Tl. Ap=A-~p

T2. p>.A(p 2q)=.4p 2 Aq
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For T:: T1.
T2.
T3.

For Ts: TL".
T4,
TS.

2. Contingency bases.

Definition O DA

Rule ¥V A
Axioms :
For Ts: Tla.
T2a.
For Ts: Tla’.
T4a.
or
T5a.

A~p > Ap

pP=.4(p =9 >.Ap > Aq
Ap > A~ w~p

Ap 2 A~p or T’
Alp =q) . Ap 2 Aq
~p >.Ap=>4(p 2 q)

=pt ~(A > yA)

Yp = y~p
p>. ~v(p>q)>.vq > yp

v~p>2vyp or Tla”. yp=>y~p
~y(P =9 >.vp > vq

Tda’. (vp& ~ vq) > v(p =9q)
vip>q9 >. ~yp>p

System Ts is obtained from the Lemmon-Gjertsen formulation of
S5 by omitting the last axiom and weakening the unnecessarily

strong first axiom.

Extensions to S4

Some formulation of T plus any one of the following axioms :

S41. Ap = AAp

or S42. Ap = OAp

or S4la. yyp = yp
or S42a. $yp = yp

or 843. p& Ap =. A(p & Ap) or S43a. y(p = vp) >.p > yp
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Extensionsto S5

Some formulation of T plus any one of the following axioms :

S51. AAp
or S52. AQp
or S53. AP
or S54. A(Ap

or S5la. ~gyp
or S52a. ~y[Op
or S53a. ~gCp
> p) or 854a. ~v(p = vp)

We now prove the deductive equivalence of the above systems
to the corresponding normal modal logics. Proofs of the contingency
bases, whose axioms are distinguished by a — tags, are not given but

may be adapted

from the proofs for the corresponding non-contin-

gency bases. That is, theorems about T4 adapt from results for T,
Ts from Tz, T+ S414, from T + S44, etc.
The following abbreviations are used to indicate the justification

for steps in proofs :
SL —  Standard results in sentential logic.
Feys —  References preceded by ‘Feys’ are to results esta-
blished in R. Feys Modal Logics, Louvain (1965).
SE - Substitutivity of strict equivalents. This derived

Theorem 1. T

rule for Feys’ system T follows from Feys 81.122,
82.123.

deductively includes Feys’ system T, i.e. every

theorem of Tis a theorem of Ty

Proof : We derive the postulates of T, namely

Axioms :

Rule T:
Definition A :
ad Al. 1. Op
2. Op

Al. Op=>p

A2. O( =9 =>.0p>0q

A —= [OA

AA =pr OAVO~A
S.p& Ap Df. O, SL
>p 1, SL

adA2. 1. O(pp > &Op>.p>2qQ)&p&A(p 2 q) & Ap

Df. O, SL

2. 0p>9&0p=>.9&p&Ap&(p 2. Ap2AQ)

1, T2,SL



3. Op>qQ&0p =>.q&Aq 2, SL
4. A2 3;'Df. O, SL
ad Rule T,
1. A ——= AA Rule A
2. A —= A&AA 1, SL-usingp =.
q=>p&q
3. A — [OA 2, Df. O

ad Definition A.

1.

OpvO~p=.p&Apv. ~p&A~p

Df. 0, SL
2. OpvO~p=.p&ipv. ~p& Ap
1, T1,SL
3. Opvd~p = Ap 2, SL
Theorem 2. T deductively includes T;
Proof : Using T we derive the postulates of T,
adTl. 1. A~p=.O~pvO~~p Df. A.
2. A~p=.0OpvO~p 1, SL,SE
3. Tl 2, Df. A
adT2. 1. ~(O~p&p) Al, SL
2. A(p>2qQ)&Lp&p o.
[O >qgvOp& ~q)]&(Opv O~p) &p
Df. A, SL, SE
3. Ap>2qQ&Lp&p 2.
[(Cp = Og) v(Opl& O ~q)] &[(Op & p) v
(O~p&p)]
2, A2,SL
4 Ap>qQ&Ap&p>.[(Op > Ogv. Op & Ci~q]
& (p
3, 1,SL
5. A(p>qQ&lLp&p>.0Oqvii~q 4, SL
6. Ap>qQ&Lp&p > Aq 5, Df. A
7. T2 6, SL
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ad Rule A.

1. Op = Ap SL, Df. A
2. A — [OA Rule T

3. A —» AA 1, 2. 8L

ad Definition 7.

1. ~(p& O~p) Al, SL

2. p&Ap =.p&(Opv O~p) SL, Df. A

3. p&Ap=.p&Opv.p& O~p 2, SL

4. p& Ap = [Op 3, 1,Al,SL

Theorem 3. T1is deductively equivalent to T
By Theorems 1. and 2.

Theorem 4. Tz is deductively equivalent to Ty and to T

The proof is almost immediate from a consideration of axioms
T1, T1’, T3, sentential logic and Theorem 3.
Theorem 5. Ts deductively includes T

Proof : We first derive certain theorems of Ts
Tal. A(p =q) 2. Ap = Aq

For . p=q=.q=p SL
2. A(p=q=.q9=p) 1, Rule A
3. A(p=q) >.A(q =p) 2, T4
4, A(gq=p)>.Aq>Ap T4
5. A(p=q)>.Aq> Ap 3, 4, SL
6. Tsl T4, 5, SL

Ts2. Ap = A~~p
Byp = ~ ~p, Rule A, and Tsl.

Ts3. Ap = A~p

For 1. Ap>A~p T1".
2. A~pDA~n~p 1
3. A~p> Ap 2, Ts2,SL
4. Ts3 1, 3,SL
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Ts4. Op = 0O(q = p)

For

For

l. ~p&Ap >.A(p 2q) T5, SL
2. p&Ap 2. A(~p > ~q) 1, Ts3, SL
3. A(~p > ~q) =A(q > p) SL, Rule A, Tsl
4. Op = A(q = p) 2, .3,8L, Df.T1
5. Op>.q>p SL, Df. O
6. Tad 4, 5 SL,Df. O
TsS. Op& Oq = O(p &q)

l. Op& Oq>.Op&A(p = q) SL, Ts4, Df. O
2. Ap>q@ =A(p=.p&q) SL, Tsl
3. Op&Oq=>.0p&A(p=p&Q&(p&q)

1, 2,Df. O,SL
4 Op&0q=>.Ap&[Ap =L(p&q]&(p&q)

3, Df. O, Tsl,

SL

5. Op&Og=>.2p&qQ&(p&q) 4, SL
6. Ts5 5, Df. O

Ts6. O(p > q) =. Op = Oq

For

. Op&O(p>q>.0p&q=>p)& (P =>q)
SL, Ts4

2. Op& Op>q > 0Op&p =q) 1, Ts5SL,SE

3. Op&Op=>q>.p&Ap&(p=q&A(p =q)

2, Df. O, SL
4. Op& O(P =9 >.p&Ap&(p =q) & (LD = Ag)
3, Tsl,SL
5. Op&O(p>q) >.q& Aqg 4, SL
6. Ts36 5, Df. O

That Ts includes T now follows as in the proof of Theorem 1

Theorem 6. T deductively includes Ts

Proof: We derive the postulates of Ts using known theorems of T

ad T4.

. Ap=q&Ap=>.[0@=qvO~0p =q9l&
(OpvO~p Df. A, SL
2. Mp=q&Lp>.0p=qQ&Opv.0P =9 &
O~pv.O~Pp=q&0Opv.O~p=qQ&O~p
1, SL
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b

adT5. 1.

o

NN AW

AMp=q&Lp>. Op&p =Q]vOl ~p&(p = q)]
vOPp& ~(p=q]vO[~p& ~(p = q)]

2, Feysd44.3,SE

Ap=q&Ap>.0qvO~qvO~qv g

Ap =q & Ap = Aq
T4

~p&Ap 2. ~p& A~p
p& Ap = Op

~p& LH~p = O~p
~p& Ap > O~p
~p& Ap > Op = q)
O >9 =>4 >q)
~p& Ap = Alp = q)
T5

3, SL,SE
4, SL,Df. A
5, SL

SL, Tl (Theo-
rem 2.)

as in Theorem2.
last line

, 3,SL

, Feys43.2,SL
, SL
, 6,SL
, SL

2
1
4
2
5

-~

The remaining derivations parallel those in Theorem 2.

Theorem 7.Ts is deductively equivalent to T1, Tz, and to T

Proof : By Theorems 5., 6., and 4.

We call the system obtained by adding axiom S4j to a non-
contingency basis for T, S4j; the system obtained by adding S5j
to such a basis, S5j. We use the Godel formulations of S4 and S5
with Definition A as above. As special postulates S4 has the axiom
A3. Op = O0Op, and S5the axiom A4. ~[Op = [0~ Op.

Theorem 8. S4 deductively includes S4;

Proof: S41 is a theorem of S4
For 1.
. Ap=>.00pvOO~p
3.

4.
. Ap>.0dApvO~Ap

6

The result follows by this and Theorem 7.
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Ap =>.0OpvOd~p
Ap =.0O(Opv O~p)
Ap > OAp

S41

Df. A

1, A3,SL

2, Feys41.31
SL

3, Df. A

4, SL

5, Df. A



Theorem 9. S4; deductively includes S4

Proof : A3isatheorem of S4;

For

1. OpvO~p = Ap asin Theorem
2., last line

2. OpvOdO~p 2 Alp 1, S41,SL

3. Op = AAp 2, SL

4. Op =.OApv O~Ap 3, 1,SL

5. Op = Ap 1, SL

6. Ap > ~O~Ap Al,SL(Y)

7. Op > ~O~Ap 5, 6,SL

8. Op = 0OAp 4, 7,SL

9. OAp = O(Opv O~p) Rule T, 1, Feys
46.22

10. Op = O(Op v O~p) 8, 9,SL

1.0p =>. Op& O(Op v O~p) 10, SL

12. Op = Olp & (Op v O ~p)] 9, Feys44.1,SL

B.p&(OpvO~p)>.p& Opv.p& O~p SL

14. ~(p & O ~p) Al,SL

15.p&(Opv O~p) 2. Op 13,14, SL

16. O[p & (Opv O~p)] =. OOp 15, Rule T, A2,
SL

17. A3 12,16, SL

Theorem 10. S4, is deductively equivalent to S4

Proof : By Theorems 8. and 9.

Theorem 11. S4; is deductively equivalent to S4 and to S4;

Proof : It suffices to show the equivalence of S4. with S4
1. S42is a theorem of S4 by SL and line 4. of Theorem 8.
2. A3isatheorem of S4;

For

1. Op > Ap as for line 5.
Theorem 9.

2. JAp = AhAp 1

3. Ap> Alp S42,2

4. A3 asin Theorem9.

(1) By Theorem 7. and the fact that the extensions of T under consideration

contain no new primitive connectives, it follows that the theorems, rules of T
hold for all these systems.
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Those who accept S4 but object to S5 may be interested to com-
pare the Sdq, basis for S4 with the Gddel basis for S5, that is :

the S4 basis T + OVP 2 VP, and
the S5 basis T -4 <Op = Op.

Theorem 12. S43 is deductively equivalent to each of S4, S4; and S4:
Proof : It suffices to show the equivalence of S43 with S4

1. S43is a theorem of S4

For 1. Op =.00pv O~0Op A3, SL
2. Op =. AOp 1, Df. A
3. p&ap=0Op asin Theorem
2.,last line
4. 843 2, 3,SE
2. A3isatheorem of S43
For 1. Op=A0Op S43, Df. O
2. AQdp >.00pvO~0Op asin Theorem
9., line 1
3. Op=>.00pvO~0Op 1, 2,SL
4. Op=> ~0O~0Op Al, SL
5. A3 3, 4,SL

Theorem 13. S5 is deductively equivalent to S5

Proof: It suffices to show that S51 is a theorem of S5 and that A4 is
a theorem of S5;
1. S51isatheorem of S5

For l.Apv ~Ap SL
2. Ap © OAp as in Theorem
8., line 4.
3. ~hp=.~Op& ~O~p Df. A, SL
4. ~Op > O~0p A4
5. ~O~p > 0O~0O~p A4
6. ~Ap>. O~0Op& O~0O~p 3, 4,5,SL
7. ~0p 2 O(~0Op & ~O~p) 6, Feys44.3,SE
8. ~Ap > O~ApD 7, 3,SE
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9. OApv O~Ap 1, 2,8,SL
10. S51 9, Df. A
2. Adisatheorem of S5;
Eor l.Ap=.0Opv O~p as in Theorem
1.,lastline
2.AAp 2. OApv O~AD I, SL
3.0Ap = Ap Al
4. JAp =.0Opv ~p 3, 1,SL
5.0p > 0Cp Feys 36.0, A2,
SL
6. OAp 2. ~Opv OCP 4, 5,82
7.0~4Ap = O(~0p & Cp) 1, SL,RuleT,
A2
8.O0~Ap=>.O0~0Op & OCP 7, Feys44.3,SE
9. O0~Ap = OCP g, SL
10.O0~Ap 2. Cp 2 OGP 9, SL
11. AAp 2. $p 2 OCD 2, 6,10,SL

12. A4 11, 851, SL
The S5 axiom AAp reveals especially clearly the interpretation
of the modalities of S5

Theorem 14. Systems S5, S5:, S5;, S53 and S5, are deductively
equivalent

Proof : By Theorem 13. and the following results
1. S52yields S53 and conversely

For . AQOp <> A~p T1
2. Ap <« An~m~p 1, SL, SE
3. ATA <« ASA 2

2. A(Ap @ p) = AOpisatheorem of T

For 1. Ap>p=~(Ap& ~p) SL
2. Ap>p = ~(~p&A~p) 1, T1,SE
3. Ap2p=~[~p 2, Theorem 2.
last line, SE
4. A(Ap=>p)=AOp 3, Rule A, Tsl,
SL
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3. S52 is a theorem of T5

1. Op v~0Op SL

2. OOQpvO~0Op 1, A3, A4,SL

3. AQOp 2, Df. A
4. AOp 2. Op @ OCpisatheoremof T

1. ACp=2.00pvO~{p from Theorem

1., last line

2. OOp =2.0p > 0O0P SL

3. O~Cp > ~Op Al

4. O~Cp 2. Op 2 OOP 3, SL

5. ACp 2. Cp 2 OCP 1, 2,4,SL
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