QUANTIFIERS AND UNIVERSAL VALIDITY

John T. KEARNS

In this paper I will consider those features of predicate calculus
which make it possible to prove that there is at least one individual.
The limitation on the validity of normal systems of predicate
calculus (i.e., their limitation to non-empty domains) will be traced
to the failure to distinguish different uses of individual variables.
Both Mostowski (in [2]) and Hailperin ([1]) have presented systems
of predicate calculus whose theorems are universally valid, and I
will make use of their results (*). Instead of obtaining new results,
I want to achieve a new understanding of old results.

The following

()f(x) = (7x)f(x)

is a characteristic law of those systems of predicate calculus which
are valid only for non-empty domains. It seems strange that this law
has been readily accepted, while in the analogous case of the inter-
pretation of sentences whose form is

AllSareP.,

greatdeal of energyhas been expended in arguing that the non-existen-
tial interpretation is best. Students of elementary logic are commonly
taught that Boolean inclusion is more useful for logical purposes
than Aristotelian (traditional)inclusion. But when we are talking
about all things instead of all Greeks or all men, then we agree
that there must be at least one. It appears that this assumption
can also be justified in terms of utility. Professor Quine writes,

The following fact is demonstrable regarding quantifica-

tional schemata : those which turn out valid for all choices

(*) Hailperin does not present a system of predicate calculus. But his
schemata can be used as the basis for a system of predicate calculus.
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of universe of a given size also turn out valid for all
smaller universes, except for the empty one....

It behooves us therefore to put aside the one relatively
inutile case of the empty universe, so as not to cut our-
selves off from laws applicable in all other cases (?).

The argument for accepting systems valid only for non-empty
domains on grounds of utility is a weak one. For if we distinguish
the theorems of predicate calculus valid for all domains from those
valid only for non-empty domains, the first class will contain most
of the important theorems. And the result that a formula valid for
any domain of a given size is valid for all smaller non-empty do-
mains can be obtained only because first order predicate calculus
does not possess sufficient resources to state that there is more than
one individual. If it were possible to say that there are at least two
individuals, then there would be a formula valid for a two-element
domain but not for a one-element domain.

Even if systems valid only for non-empty domains were more
useful than systems valid for all domains, it would be worth while
to distinguish those features that produce universally valid results
from those which yield results of more limited validity. It is an ad-
vantage of formalized languages that they assist us in getting clear
about the concepts we employ. If there is a system valid for all do-
mains and an axiom which makes the system valid for all non-
empty domains, this system will provide a clearer understanding of
predicate calculus and the conditions of its validity than does an
ordinary system of predicate calculus.

I think that the fundamental reason why standard systems of
predicate calculus are so formulated as to yield

(Of(x) = (ax)f(x)

and related formulas is that the uses of free individual variables
have not been sufficiently understood. In discussing this point,
I will make use of the system of predicate calculus presented by

(2) W.V. QuINE, «Meaning and Inference,» From a Logical Point of View,
p. 161.
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Hilbert and Ackermann,in Mathematical Logic. The axioms of this
system are

(0f(x) = (y)

f(y) = (axf(x) (x)(%),

as well as axioms common to propositional calculus. These axioms
are valid for all domains : if the free variables are replaced by signi-
ficant expressions, the resulting statements will always be true.
However, for an empty domain, there will be no expressions which
can replace ‘y’; any names which belong to the same category as the
individual variables must be names which have referents. Although
the axioms above are universally valid, they can be used to derive

(Of(x) = (ax)f(x),

which is not valid for an empty domain. To obtain this result, one
can substitute in the following tautology,

p>q>.q>r=>.p>r (%,

and use Modus Ponens twice.
We can better understand the features permitting the proof of

(0f(x) = (@x)f(x)

if we revise this system of predicate calculus to eliminate free in-
dividual variables. Since the axioms above are universally valid,
so are the following
(v)-(0f(x) =1(y)
(M-£(y) = (@x)f(x).

For to say that the axioms are universally valid means that they are
true for all values of their free variables. But this is what is indicated
(for individual variables) by the initial universal quantifier. These
generalized versions of the axioms will be the axioms of the revised
system.

(3) I have not employed the symbolism of HiLBERT and ACKERMANN. In their
book, these axioms appear as
(X)F(x) = F(y)
F(y) —» (gx)F(x).
(4) Parentheses are abbreviated according to the convention of A. CHURCH,
in Introduction to Mathematical Logic.
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Certain changes must be made in the rules, if free individual
variables are to be eliminated. The definition of a (well-formed)
formula can remain unchanged (*) — but not all universally valid
wits will be theorems. The rules of substitution for propositional and
predicate variables must be modified so that when expressions con-
taining free individual variables are substituted, the free variables
are then bound by an initial universal quantifier. These rules can be
formulated so that the quantifiers added are immediately to the
right of whatever initial (universal) quantifiers are there already.
These rules must also make possible the substitution of a wff con-
taining a free variable bound in the original formula, so long as
this variable is bound by an initial universal quantifier (). There
will be no rule of substitution for free individual variables, but there
will be a corresponding rule for those variables bound by an initial
universal quantifier. This rule must provide for deleting an initial
quantifier when a distinction between individual variables has col-
lapsed.

The rule permitting the change of a bound variable can remain
unchanged (7). The two rules for quantifiers must be rewritten as

yl From a wff (ar)(asz)...(an).A >B(es) in which the con-
sequent contains the free variable a; while a; does not
occur in A, the wif (a1)..(ai1)(ai+1)..(an).A =(a;)B(a;) is
obtained.

y2 From a wff (o1)(o2)...(en).A(a)) =B in which the an-
tecedent contains the free variable «; while a; does not

() HiLBerT and AckeErRMANN do not allow vacuous occurrences of quantifiers.
This practice can be defended on intuitive grounds, for a vacuous quantifier
is not usually given any significance. Such quantifiers are admitted in order to
simplify the axioms and rules. Since my goal is to achieve a better understan-
ding of predicate calculus rather than a simpler system, it seems convenient
to follow the practice of HILBERT and ACKERMANN.

(5) The rules of substitution can also be based on the simplified rules given
by David PAGER in «An Emendation of the Axiom System of Hilbert and
Ackermann for the Restricted Calculus of Predicates,» The Journal of Sym-
bolic Logic, Vol. 27, N°, 2, pp. 131-138.

(") Because free variables are not allowed, the rule for changing bound
variables does not need the correction that is made by PAGER in the article
cited in the preceding note.
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occur in B, the wif (a1)...(a1.1) (@i 4 1)...(an).(Fa1)A(a)) B
is obtained.

To insure that this revised system yields the desired results, it
is sufficient to add two more rules : the ordinary rule of Modus Po-
nens and the following,

n From a wif (a1)(0z)...(an). A(e;) ©B(a;)in which both the
antecedent and consequent contain the free variable o,
the wif (a)..(aia)(ai+)..(an).(a)A(o) =(a;)B(a;) is ob-
tained.

Now it is possible to prove that

(1) The theorems of this revised system are valid in all
domains,

(2) Any formula containing no free individual variables
that is valid in all domains is a theorem of this revised
system,

(3) The addition of the formula

(gx).f(x) v ~f(x)

as an axiom will produce a system which contains (as
axioms or theorems) all those formulas valid for all non-
empty domains (so long as these formulas do not contain
free individual variables).

The proof of these results follows very closely the proof given by
Mostowski in [2], and will not be given here (5).

(®) In [2], MosTowskI is dealing with the system of predicate calculus found
in Church’s Introduction to Mathematical Logic. Mostowskl retains the
axioms and rules, except for Modus Ponens, for which he substitutes,

If A, B are wifs such that all individual variables free in A are also
free in B, if A, A > B are theorems, then B is a theorem.

An analogue to this rule for the revised system of HiLBERT and ACKERMANN
would be
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p If A is a wif containing distinct free individual variables oy, as,...,

an and no other free individual variables, B is a wif containing dis-

tinct free individual variables as, 0z,..., On, B1, B2,..., Pm and no others
if (aa)ag)...(on)A, (e1)(@z)...(en)P1)(Be)...(Fn). A = B aie theorems
then (at1)...(0n)(B1)..-(Bm) B is a theorem.



By eliminating free individual variables and changing the rules
as required by this elimination, it is possible to reconstruct predicate
calculus so that its theorems are valid in all domains. Now con-
sider a derivation of

(Of(x) = (ax)f(x)

in the original system. Substitution in the tautology given earlier
yields

(0f(x) = f(y) = .f(y) = (ax)f(x) = .()f(x) = (Ffx).
By using Modus Ponens twice, the formula above is obtained. Sup-

pose a parallel maneuver is made in the revised system. Substitu-
tion in the same tautology yields

()-(0f(x) = £(y) = .£(y) = (@) (x) = .(x)f(x) = (G ().

M) =1(y)] = (y)-£(y) = @) = . () = (GOf(X).

Then by Modus Ponens,

By =,

(¥)-£(y) = (@f(x) =.()f(x) = (Gx)f(x).
It is not possible to go farther. This formula is equivalent to
(@) = (@] = .(Rf(x) = (Fx)f(x),

but the antecedent of this last formula is not universally valid and
cannot be proved. The occurrence of free variables in the original
system, and the possibility of substituting ‘f(y)’ for a propositional
variable, make it possible to derive

(If(x) = (Fx)f(x).

It is a simple matter to prove that p is equivalent to Modus Ponens plus 7.
This equivalence makes it possible to utilize Mostowskr’s proof for the revised
system of HILBERT and ACKERMANN.
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The elimination of free variables has also eliminated this result.
If we consider the axioms of the original system :

(f(x) =1(y)
f(y) = (gxf(x),

it is natural to construe the variable ¢y’ as bound by an initial univer-
sal quantifier. But in the two formulas

()-(f(x) >f(y)
()-£(y) = (@xf(x),

the variable ‘y’ is playing two different roles. Just what the differen-
ce is can be understood if we consider

(Of(x) = (y)f(y)
(@ay)fly) > (@x)fx),

which are equivalent to the formulas above. f(y)’ in the consequent
amounts to the same thing as ‘(y)f(y),” but in the antecedent it is
equivalent to ‘(gy)f(y).” In the original system, the distinct roles of
“f(y)’ are confused — this confusion is made all the easier to overlook
by the presence of free individual variables.

It is possible to formulate a system of predicate calculus whose
theorems are valid for all domains, where some of these theorems
contain free individual variables. The system formulated by Mos-
towski is such a system. But the most natural way to construct a
system valid for all domains seems to be by way of eliminating free
individual variables. For if free individual variables are allowed, they
must be treated as if they were bound by an initial universal quan-
tifier. The occurrence of free individual variables in an ordinary
system of predicate calculus makes it easy to overlook the introduc-
tion of existential claims. When all the variables are bound, it is
less difficult to detect the assumptions which guarantee the existence
of at least one individual.

There are systems which contain no free individual variables, in
which it is possible to prove that there is at least one individual. The
outline of such a system is presented by Quine, in Mathematical
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Logic (°). A system of predicate calculus based on Professor Quine’s
schemata would be much like the system which results from Hil-
bert and Ackermann’s system if the free individual variables in the
axioms and theorems are bound but no other changes are made
(i.e. such a system contains the same essential results as Hilbert and
Ackermann’s system). The principal difference between a system
based on Quine’s schemata and one containing the closures of the
axioms and theorems of Hilbert and Ackermann’s system is that the
former contains vacuous quantifiers (and in Quine’s system, it is
possible for a quantifier to occur within the scope of another quan-
tifier which contains the same quantified variable). A system with
no free individual variables which is valid only in non-empty do-
mains is one whose rules justify quantificational replacements that
are not justified in dealing with an empty domain — this will be
shown below.

Hailperin, in [1], has revised Quine’s schemata *100-*105 to pro-
duce a system which is universally valid. However, in doing this,
he has made important use of vacuous quantifiers. Hailperin re-
places

*104 If @' is like @ except for containing free occurrences
of o’ where ® contains free occurrences of a, then

—{(a)® > @’].

by
QE4 If @' is like @ except for containing free occurrences
of o' wherever ® contains free occurrences of a, then
(@)@ > (a) @’ (*°).

And he adds

QESIfaisnotfreein @, —® > (a) yo.(a)( D> v).

(®) In the first edition of Marhematical Logic, schemata *100-*105 are
found on p. 88. In later editions, the number of schemata is reduced by elimina-
tion of

*101—@B)® > BN WD),
However, in [1], Hailperin refers to *100-*105, and I shall follow him in this.

I have said that schemata provide the outline of a system of predicate cal-
culus, because Professor QUINE does not himself use these schemata as a basis
for a system of predicate calculus.

(1) The expression '—®"’ is used to designate the (universal) closure of '®’.
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In Hailperin’s treatment, a formula bound by an initial universal
quantifier, even a vacuous quantifier, is valid in the empty domain.
In a system based on schemata *100-*105, itis possible to prove.

(X)[p & ~p]=p & ~p.

But this cannot be obtained in Hailperin’s system; for in an empty

domain the antecedent will be valid and the consequent invalid (11).
In [3], Professor Quine argues that Hailperin’s treatment of va-

cuous quantifiers is a natural one. He claims that we must equate

®)p
®)Ip & [f(x) =>f(x)]],

p=.p & [f(x) =>f(x)]

with

because

is tautologous. However, his argument does not succeed in esta-
blishing its conclusion. For the argument depends on our accepting
schema *102,

H(@)(@= y)=.()®@>(0) y].

When quantifiers are interpreted in such a way that vacuous quan-
tifiers do not contribute to the meaning of the formulas in which they
occur (I take this to be the normal interpretation of vacuous quan-
tifiers), then schema *102 is not universally valid. Accepting this
schema requires one to accept Hailperin’s treatment of vacuous
quantifiers, but nothing requires us to accept this schema.

If one adopts an ordinary interpretation of vacuous quantifiers,
schema *102 fails to be universally valid. To see this more clearly,
consider the following proof of

(Of(x) = (ax)f(x).

(') Professor QUINE, in [3], has shown that Hailperin’s system can be
simplified by eliminating QES and replacing QE4 by

QE4’ Ifa occurs free in @, and @’ is like ® except for containing free

occurrences of @’ wherever ® contains free occurrences of o, then

Ho)d> @,
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i (9)-(0f(x) =1(y) *104

i (y).(0f(x) =f(y) = .£(y) = (@x)f(x) = .(x)f(x) D(HX)f(Ji)wO

i [ii] 2. (M) = f(y)] = (y).f(y) = (@x)f(x) =.
(f(x) = (gx)f(x) *102

iv. (MIXFx) =£(y)] = ()-f(y) = (GRf(x) =. () > (F)f(x)

v (D(y) = @xfx) =.(0f(x) = (gx)f(x) iv, i, *105

vi [v]=2.(If(y) = (@x)f(x)] = (v).(0f(x) = (gx)f(x) *102
vii (Y)f(y) = (@0)f(x)] = (v)-(0f(x) = (gx)f(x) vi,v,*105
viii (y).f(y) =(gx)f(x) will not be proved

ix  (y).(x)f(x) = (gx)f(x) vii, viii, *105

x  [ix] 2.(x)f(x) = (3x)f(x) *104

xi  (X)f(x) = (gx)f(x) x,ix, *¥105

The formula at step vi is the first one in the proof that is not univer-
sally valid. This is the key step in the proof, for it makes possible
the transition from formulas that are universally valid to the
formula valid only for non-empty domains. *102 makes it pos-
sible to begin with

(0)£(y) = (30f(x)
and derive
(NI(y) = (ax)f(x).

But the original formula is equivalent to
(@yfly) = (@x)f(x).

In effect, *102 permits the replacement of a particular quantifier in
the antecedent by a universal quantifier. But this move is only
justified if thereis at least one individual in the domain being con-
sidered — this is the point where existential presuppositions are
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involved. To modify schemata *100-*105 so that they yield univer-
sally results, it is sufficient to replace *102 by

*102' If y contains free occurrence of «,
H()(@>¥)>.(0) @ >(a)¥] (*2).

In the Hilbert and Ackermann system, it is possible to begin with
universally valid formulas and derive formulas valid only in non-
empty domains, because all occurrences of a free variable are
treated in the same way. But a variable occurring free in the an-
tecedent and not in the consequent is being used in a different way
than a variable free inthe consequent and not free in the antecedent.
The difference becomes clear when free variables are eliminated in
favor of variables bound by initial universal quantifiers. There are
also systems containing only bound variables in which the distinc-
tion between the use of ‘y’ in

)-fx) > 1(y)

(¥)-f(y) = (Ex)f(x)

and

isignored. Ignoring this distinction leads to adoption of a system valid
only for non-empty domains. It may be the case that systems whose
theorems are universally valid are less important than systems valid
only for non-empty domains. But there is surely some value to
understanding the difference between the two kinds of systems.
And there is also a value in making assumptions explicit, even if
these are only the assumptions inherent in a formal system. By for-
mulating a universally valid system, and then considering the con-
sequences of assuming that there is at least one individual, it is pos-
sible to realize these values (13).

(12) This will not be proved here. A system based on the revised schemata
will be essentially like the revised system of HILBERT and ACKERMANN, except
for the occurrence of vacuous quantifiers. The proof that the system based
on the revised schemata is universally valid is basically the same as the proof
presented by MosTowsKI in [2].

() I would like to acknowledge the helpful comments I received when
writing this paper from Professors W.T. PARRY and Alan Ross ANDERSON.
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