NOTES TOWARDS AN AXIOMATIZATION OF
INTUITIONISTIC ANALYSIS

John MYHILL

The situation of intuitionistic mathematics today is not unlike
the situation of set-theory at the beginning of the century; it is in
process of being made an honest woman of by axiomatization. The
underlying Jlogic (predicate calculus with identity) has as is well-
known been definitively formalized by Heyting ([5] passim, [6]
pp. 57-65; and cf. Kleene [9] pp. 108-166 for a more rigorous
version) so that the first-order intuitionistic theories (in particular
‘Peano-Heyting’ arithmetic — Heyting [6] pp. 67-71, Kleene [9]
pp. 181-204) can be regarded as legitimated beyond dispute. It is
with the axiomatization of higher-order logic (intuitionistic ana-
lysis, theory of free-choice sequences) that this paper is concerned.

For the sake of making it more or less self-contained, at least on
an informal level, I shall make a few remarks about the intuitionistic
predicate calculus before proceeding to my main topic; however,
these remarks will not be formal or axiomatic, but will concern
the interpretation of the logical connectives and quantifiers (cf.
Kreisel [12] pp. 121-131). In order to follow this interpretation
it is essential to bear in mind that (roughly speaking) the notion of
truth plays no role intuitionistically, at least not at the elementary
level corresponding to that at which the classical connectives are
explained as truth-functional. The role of the notion of truth at
this level is carried in intuitionism by the notion of (valid) grounds
Sfor asserting something. In other words, one does not regard
mathematical problems as existing outside of the human mind
with their correct answers predetermined, for us to find out. What
is sometimes thought of as a confusion, in the intuitionistic writings,
between ‘being able to assert ‘4 or B’ ’and ‘being able to assert A
or being able to assert B’ is no confusion at all since any sense of
‘being able to assert ‘4 or B’ ’in which it does not reduce to being
able to assert one of the two alternatives is intuitionistically unac-
ceptable.
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There are two and only two kinds of grounds for asserting a
disjunction ‘A or B’ — firstly, any ground which would justify
us in asserting A; secondly, any ground which would justify us
in asserting B. Thus one can only assert ‘4 or not A’ if one knows
which.

A ground for asserting ‘4 implies B’ consists of two parts:
first, a method p which, applied to any ground for asserting A,
yields a ground for asserting B; second, a ground for asserting that
p does indeed have this property. [One might think that p alone
was indeed as the ground : this is not so because e.g. if we knew
(non-constructively) that there was no (intuitionistic) ground for
asserting A, there would exist (even constructively) a p of the kind
described — e.g. the identity map on grounds : but this would not
justify us in asserting ‘A implies B’] Briefly: we can assert ‘A4
implies B’ if and only if we know how we could obtain a proof of
B if we were given a proof of A. And here ‘proof’ means (not
formal proof, but) grounds for asserting.

A ground for asserting ‘not A° means simply a ground for
asserting ‘A4 implies 1 = 0’; from this together with the preceeding
paragraph it follows that it makes no difference whether we say
‘we have grounds for asserting that A4 leads to a contradiction’
or ‘we have grounds for asserting that 4 cannot be proved’ (i.e.
for asserting that there can be no grounds for asserting A.) [The
phrase ‘there are no grounds’ is ambiguous — it could mean we
have at present no grounds or that (we have grounds for asserting
that) the assumption that there are grounds leads to contradiction.
In the latter case, we shall usually say for clarity as above ‘there
can be no grounds’: this is the mathematical sense of negation as
opposed to the historical sense: we shall see, however, that the
historical sense is not entirely irrelevant to mathematics.]

A ground for asserting (gx) Fx consists of two things: first an
entity a in the range of the variable x : secondly a ground for asser-
ting Fa. Thus one is in no position to assert an existence statement
without possession of an example.

A ground for asserting (yx) Fx consists of two things: first
a method p which yields, when applied to any entity a in the range
of the variable x, a ground for asserting (= proof of) Fa: second,
a proof that p does indeed have this property. [Here again as in
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the case of implication, one might think that p alone would suffice :
but consider the following example. If we knew (non-constructively)
that there were no Fermat exponents > 2 one could express this
knowledge by the formula.

(nyZW) (xw+3 + yw+3 _—}é zw+3)

and the method p would exist (even constructively) — namely the
method which yields, when applied to four non-negative integers
x, ¥, z, w, calculations of xw+3 + ypw+3 and z»+3 and a comparison
of the results of these calculations. But this would not justify us in
asserting that if Fermat’s conjecture was true classically it was
assertable intuitionistically.] Briefly : we can assert (yx) Fx if and
only if we know how to prove Fa for each a. Thus the statement
~ (yx) Fx is weaker than (gx) ] Fx; one might be able to prove
the absence of a universal method of proving Fa without being
able to produce an « for which one could prove the impossibility
of proving Fa. (It is in fact the (formal) justification of a certain
counter-example to the inference

71 (vx) Fx > (gx) 7 Fx

which will occupy us centrally in the body of this paper).

No counter-examples to this or any other valid formula of the
classical functional calculus are to be found in the (conventional
formalizations of) intuitionistic number-theory. This is obvious
because such formalizations are subsystems of the classical (Peano-
Hilbert) one. Matters become very different at the next level, that
of intuitionistic analysis: this is not a subsystem of classical ana-
lysis, but contains theorems which contradict theorems of classical
analysis. Assuming the formalizations of intuitionistic number-
theory to be completed and known (full details are in Kleene loc.
cit., and cf. [10] pp. 22-43) we now discuss the formalization of
intuitionistic analysis (theory of free-choice sequences).

The two central new notions of intuitionistic analysis over and
above those of intuitionistic number-theory each correspond to
the classical notion of number-theoretic function. Classically, such
a function fconsists of all its values

J0), f1), £(2), (3)-..
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but the standpoint of intuitionism rejects such a completed in-
finite totality as this. It maintains that the unanlysed classical
notion of (number-theoretic) function is a conflation of two ideas
neither of which involves the actual infinite : the notion of a rule
or computable function, which is finitely specifiable (e.g. the func-
tion (An) n2 which is a rule of computation we know how to apply
to each number) and the notion of a free-choice sequence, which
involves only the potential infinite. (Whether ‘computable function’
coincides with ‘recursive function’ is a question we shall return
to briefly at the very end of this paper. For the present, it is to be
taken as a primitive idea.)

It is easiest to approach the notion of (ordinary) free-choice
sequence via another related and simpler notion due to Godel
(cf. Kreisel [11] pp. 371-378), that of an absolutely free choice
sequence. An absolutely free choice sequence {a(n)} has no proper-
ties that cannot be asserted on the basis of a finite number of
values. Formally this can be expressed by the schema

A()>(an) (vB) (B=a~>4 (8)) 1

(axiom 5.1 of [11]) where B 5= o is short for (yx <n) (a(x)=B(x)),
and where A(a) contains no variables for free-choice sequences
other than o. [Remarks. I. To see the need for this restriction,
take A(a) as(yx)(a(x)=1(x)) and get an absurd conclusion. II. Since
we are only using absolutely free-choice sequences for expository
purposes, we have slightly simplified the original (Godel-Kreisel)
notion. The reader who refers to [11] for further details can resolve
the discrepancy by noting that our ‘absolutely free choice se-
quences’ are Kreisel’s ‘absolutely free choice sequences chosen
from the universal spread’.]

For such sequences we can of course never assert (yx) (a(x) = 0).
The property of being identically zero is clearly not guaranteed by
any finite initial segment of values. For this reason absolutely free
choice sequences are not the ones we need in analysis. (For there is
no real number zero!) They are useful only (a) for pedagogic
purposes as in the present paper (b) (perhaps, on the basis of some
recent work of Kreisel) foundationally — inasmuch as they are
simpler objects to understand than ordinary free-choice sequences
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and the latter are apparently (contextually) definable in terms of
them and (c) to provide counter-examples. For example, the for-
mula

(vx) (a(x) = 0)

we have just seen to be true of all absolutely free o, while the for-
mula

(2x) (o(x) # 0)

is assuredly not; this is a counter-example to the formula —(yx) Fx
-(gx) 1Fx mentioned above.

In order to clarify the notion of ordinary free-choice sequence
(sometimes called Brouwer free-choice sequence), which is the
central notion of intuitionistic analysis, we first introduce the idea
of a spread, which corresponds (roughly) to (a special case of) the
classical ‘set’ of number-theoretic functions (or of sequences, or
of real numbers). A spread is a law (thus a computable function)
which places a restriction on finite sequences — i.e. classifies them
into admissable and inadmissable. It admits the empty sequence :
if it admits a sequence it admits also all its initial segments : if it
admits a sequence it admits also at least one continuation (which,
by the intuitionistic reading of 7, we can effectively find). Thus
if we identify finite sequences with their indices in some fixed
enumeration, and spreads with their characteristic functions :

Spd (f) = f < > =0 & (vx) (f(x) = 0~>(ay) (fx~{y} = 0))
& (vxy) (f(x~{yh=0-/(x)=0).

[Notation: ¢ ) is the index of the empty sequence; m-n is the
index of sequence number m followed by sequence number n;
{»} is the index of the sequence whose sole term is y.] A spread can
be regarded as a promise that we make concerning a sequence of
numbers that we choose otherwise freely. We do not pick the
terms of a Brouwer free-choice sequence absolutely freely : we may
decide at some (not necessarily the beginning) to pick only zeros,
or to pick a monotone increasing sequence of natural numbers,
or a convergent sequence of rationals with a prescribed rate of
convergence. On the other case we cannot promise to pick a se-
quence that will contain some zero (at an unspecified place) — such
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a promise would mean nothing because we could not tell after each
choice, whether we had kept our promise ‘so far’. The promise’
is compatible with any finite initial segment of choices, and finite
initial segments are all we have to go on to decide whether the pro-
mise has been kept or not. Nor, for the same reason, does it make
sense to promise to choose a convergent sequence of rationals
without specifying the rate of convergence. The species of all se-
quences that contain at least one zero, and that of all convergent
sequences do not form spreads.

An ordinary free-choice sequence is thus gradually determined
by selecting for each number n> oits nth stage; this consists of a
number (the ntt term o (1)) and a spread (the ntt spread Sy, or Sx(a)
if there is a risk of ambiguity). They must satisfy the following two
requirements : (1) the sequence (a(0).....,a(n)) belongs to the nth
spread (2) the »n*® spread must have been shown to be included in
the n-1st (for n>0). It is from amongst (equivalence classes of)
these somewhat complicated objects that intuitionistic analysis
selects its real numbers. Whatever can be asserted of a free-choice
sequence (the prefix ‘ordinary’ or ‘Brouwer’ will henceforth be
suppressed) can be asserted after a finite number of stages. But after a
finite number 7 of stages all we have done is confine it to a spread
(namely the intersection of the spread S, with the spread of all
extensions of (a(0), ...,a(n)). Thus the old schema (1) gives way to

A(0)~(af) (fis a spread & (yB) (Bef>A(B)) & aef)  (2)

(Kreisel [12] p. 135, axiom 2.521), where again A(a) contains no
Greek letters free other than a, and where Bef is short for (yn)
LA{B(o)}{B(1)}"....{B(m)})=0].

(For a possible restriction on (2) (to extensional A4) see the very
end of the present paper. This restriction will not affect the validity
of any of our arguments.)

The question arises as to what axioms, other than (a possibly
restricted) (2), we are to postulate for these objects. There are two
axiom-systems extant, that of Kleene’s book [10] and that of Krei-
sel’s so far unpublished Stanford report (of which an outline is
available in [12], pp. 133-143). (We find Heyting’s axiomatization
in [7] pp. 163-165 so lacking in rigor that we are loth to regard it
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as a system; contradictions remain even after the trivial incon-
sistency between axioms 12.1 and 12.12 is repaired by stipulating
that g be non-empty. However, we find the whole of § 12 of [7]
extremely suggestive (that was where we firstencountered a clearly
stated notion of ‘stage’ such as we used above) and some of the
formalizations of analysis that we intend to construct on the basis of
the present paper will be much closer in spirit to [7] than to [10] or
Kreisel’s Stanford report). We shall concentrate our attention on
Kreisel’s system, because it is more powerful than Kleene’s and
makes explicit the distinction between free-choice sequences and
(computable) functions, which Kleene’s does not. (In particular,
we do not see that the notion of a spread is definable in Kleene’s
system: certainly his definition ([10] p. 56) does not accord with
Brouwer’s intention since it implies (cf. [10] p. 167, *R 14.9 with
a=p) that every free-choice sequence is sole member of some spread,
which should be true only for free-choice sequences whose nth
term is given by a rule.) However (to avoid complicated formulas)
we shall suppose Kreisel’s system supplemented by a notation for
functionals, i.e. mappings F from free-choice sequences to integers
and mappings @ from free-choice sequences to free-choice sequen-
ces.

The crucial axioms of Kreisel’s system other than (2) relate to
the interpretation of prefixes (yx) (gy), (vo) (gx), (Aa) (gB) etc.
Recalling our informal explication of the quantifiers, we see that
we can assert (yx)(gy)A(x,y) if and only if we know a method
given the x to find the y. That is, there is a function or functional to
compute the y from the x and we have axioms of choice :

(vx) (@) Ax,y) > (@ f) (vx)A(x,f(x)) (3)
(va) (gx)A(a,x) > (FF) (vo)A(e,F(e)) 4)
(va) (@B A(a,p) - (3 P) (Vo) A4(a, D(a)) &)

where fis a variable for (computable) functions, and where A4 con-
tains no additional free-choice variables as parameters. (There is a
like axiom for the prefix (yo) (g f) : cf. Brouwer [1], p. 253, second
paragraph: we shall not discuss it further because it is entirely
analogous to (4) and does not raise the problems connected with
(5) which will be crucial below.) Our central question is what
further we can say about the F and @ of (4) and (5). This hinges on
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what is meant by being ‘given’ a free-choice sequence. We clearly
never are ‘given’ a whole freechoice sequence, but only an initial
segment (a(0),...,a(n)) together with the spreads S,...,S»; thus the x
in (4) and the B in (5) must depend only on these. This requires
that in a suitable sense F and ® must be continuous. We maintain
that Kleene and Kreisel have slightly misunderstood the sense of
‘continuous’ which is appropriate, and that their misunderstanding
hasrendered it impossible for them to formulate certain arguments
of Brouwer (cf. Heyting [8] pp. 114-120, Kleene [10] pp. 174-176,
and references therein given). (A hint of where we are going is
contained in the observation that Heyting’s continuity axiom 12.22
([7] p. 164) requires (roughly) x in (4) to depend continuously on
the stages of a (including the S;) whereas the corresponding theorem
in Kleene ([10] p. 73, *27.2) and axiom in Kreisel ([12] p. 140,
2.6211) requires continuous dependence only on the values ofi).
We shall argue that for extensional A (which are the only kind oc-
curring in the systems of [10] and [12]) the misunderstanding makes
no difference and (4) with an F continuous in the ordinary (Kreisel)
sense can be justified anyhow : but that even for extensional A4 the
corresponding strengthening of (5) (® continuous in the product
topology) cannot be made.)

Kreisel defines the species K of continuous functionals F induc-
tively as follows ([12] p. 140, 2.621):

All constant functionals (Aa)n are continuous. (6)

If F has the property that for each number » we can find a con-
tinuous functional F, such that

(VoO)[F({n}"a) = Fa(a)] (M
then F is continuous.
F is continuous only as required by (6)-(7)
[{n}ca in (7) is defined by {n}*a(0) = n,{n}*a(x+1) = a(x).]
(3)

Classically this is equivalent to F(o) depending on a finite number of
values of a. Intuitionistically it gives the added condition that F(a)
can always becalculated in a finite number of steps, which is just what
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weneed (cf. Brouwer [3],p.13 atthetop) for formalizing the proof of
e.g. the bar theorem. (We regard Kreisel’s deduction (in the un-
published Stanford report) of the bar theorem from (4") (=(4)
with the added condition FeK), even though it is not at all techni-
cally difficult, as a truly major advance in the clarification of Brou-
wer’s thought: it transforms his metamathematical argument into
a mathematical one, and the most we expect from the present line
of thought is that it may perhaps ultimately accomplish the same
for the controversial ‘historical’ proofs begun in [2] and discussed
in Chp. VIII of [8] and IV of [10].)

Let us consider whether the functional F of (4) has to be conti-
nuous (in the strong sense of (6)-(8)). There is a distinction here
according as A is or is not extensional in ¢ — i.e. whether a appears
in A4 only through its values a(z) or whether the spreads S, also
occur. In the latter (intensional) case there is certainly no need
for F to be continuous : for example, let 4 (e, x) be

{0}eSe(a) &n =0
{0}eSo () &n =1 9)

where {0}eSo(c) means that the spreadlaw of So admits the one-
termed sequence whose only term is 0: then the functional F of
(4) is unambiguously defined and non-extensional, i.e. it takes dif-
ferent values for extensionally equal values of the argument; on
the other hand, it is easy to prove by induction, using the defini-
tion (6)-(8), that every FeK is extensional,

Thus the stronger formula

(va)(@x)4(e,x) = (gFeK)(ya)A(o, F(a)) “)

(essentially 2.6211 of [12], p. 140) fails for intensional 4; however,
it is not possible to express such intensional conditions as (9) in
the Kreisel (or Kleene) formalism; there free-choice sequence
variables a occur only in the context a (T1)={Cx so that

A(a,n) & a=p= A(B,n) (10)
is a provable schema (cf. [10] p. 16, lemma 4.2; here a=pabbrev-
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iates (yx) (a(x) =B(x)). It consequently becomes important to
verify (4") for extensional A4, i.e. A4 satisfying (10).

What is obvious on our interpretation of quantifiers and of what
it means to be ‘given’ ais this:

If (yo) (ax)A(a,x), there exists a uniform method p by which
we can compute such an x from any given o using only finitely
many values a(0),...,a(n) and finitely many spreads S.,...,Sn.

What we need to show for extensional A4 is that we do not need
to use spreads at all; i.e. there exists a uniform method p’ such
that for each « there is a number n’ (possibly > n)suchthat we can
compute a suitable x using only «(0),...,a(n’); such a p would
correspond to an FeK. (Also, we must not assume that A4 exten-
sional in (4) guarantees that F can be chosen extensional, though
this will turn out to be in fact the case : extensionality of A4 in (5)
does not guarantee extensionality of ®, as we shall show by a
counter-example later.)

The general idea of the proof is this. We are given a sequence

<a(0),S0 »
<a(1),81 >
<u(2)582 >

and a method p to obtain an x with A(a,x). Let U be the univer-
sal spread (admitting all finite sequences, i.e. the constant function
(Ax)0). Operate with p on the sequence

<a(0),U>
<a(l),U>
<o(2),U>

then eventually (after »’ steps) we will get a value x’. We know
however not yet that A(a,x") but only that 4A(a’,x"), where o’ is like
a except that each of S.,...,Sa, have been replaced by U. If how-
ever A is extensional, by (10) A(a,x"), g.e.d.
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There is some difficulty in adequately formalizing the above ar-
gument which can be taken care of only by rigorously develop-
ing a theory of ‘stages’; this we shall do in a forthcoming continua-
tion of this paper. (A hint as to the difficulty : It is reasonable to
accept as an axiom (cf. axiom 12.21 of [7], p. 164. and note that the
‘stages’ are explicitly mentioned) the existence of a free choice se-
quence with any prescribed beginning (B(0),So,.....,8(n),S%); in
particular this would enable us, given a and »’, to construct an o’
with a'(i) = a(i), Si(a) = U for i=0,...,n". Unfortunately we are
not given n’, but have to compute »’ from o’ itself!) The remedy is
roughly to prove using intensional analogues of (4) and (6)-(8)
that the algorithm p’ will terminate : thus p’ is to be directly defined
in terms of p. This is not hard if we are careful : We first define the
species K* of continuous intensional algorithms (c.i.a’s) by which we
permit the x to be obtained from the sequence {< a(i),S:>}; this
will contain all constant functionals (Aa)n and also all functionals F
such that for each np and S, we can find a c.i.a. Fpo,s0 for which
always

F(<n9,S0> "0t) = Fo,s0(0t)

By induction using the clauses (6')-(8") (corresponding respectively
to (6)-(8) above) in the definition of K* we fill in the missing step in
the above proof, namely (I): For every c.i.a. F, there is another
c.ia. F' such that F'(a)=F(a'x), where o'z is like a except that in a
certain initial segment ( < a(0),S0> ,...., < a(k), Sx>) the spreads S;
are replaced by U, and the computation of F(o'x) uses only the
values a(0),...., a(n), and the spreads S%,...,S'x all = U; further,
this F’ is continuous on Kreisel’s definition.

For (I) to make a’; must exist; i.e. we require (II). For each
free-choice sequence o and each number k there is a free-choice
sequence 'y obtained by replacing each of Sy(a),...,Sk(a) by U.

Then

(vo) (@x)A(a,%) > (aFeK*)(y0)A(e, F(0))
- (FFeK*)(ya)(@k)A(a’s, F(ak"))
> (aF'eK) (v @)(FK)A(o' 1, F())

But if 4 is extensional a'x=a->[4(as,F'(0)) - A(a,F'(a))
and so
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(Vo) (@x)A(e,x) > (FF'eK)(ya)A(a,F'(a))

which proves (4'), q.e.d. All this requires detailed verification in a
formal system.

Briefly : There always exists an F satisfying (4) but possibly
using the S;; thus FeK*; if in addition 4 is extensional, FekK, i.e. F
is continuous in the ordinary (Kreisel) sense (and hence, using
(6)-(8), is itself extensional). Since only extensional contexts occur
in the systems of Kreisel and Kleene, the presence of the con-
tinuity axiom 2.6211 ([12], p. 140) in the former and the continuity
theorem *27.2([10], p.73; also the bar theorem, axiom *26.3,
pp. 54-55)in the latter are justified.

Matters are much subtler with (5). Both Kleene ([10]. p. 73,
axiom *27.1) and Kireisel ([12], p. 135, axiom 2.511) assert (5) for
a @ continuous in the produce topology, i.e., such that

(vm(ra)(Pa)(m)eK)].

We denote the species of such ® by K,

Evidently this is false for intensional A4, but Kleene and Kreisel
are not concerned with these. What we claim is that even for ex-
tensional A we do not have

(ve)(@a)4(e.p) ~ (7 PeK ) va)A(a, D(a)) (57

In other words, 4 may be extensional but there may be no ex-
tensional @ which always computes a B with A(a,p). (If there
were, an argument to be given later in this paper would prove that
it must lie in K%.)

Let us see first why the ‘obvious’ method for obtaining from a
possibly intensional @ satisfying (5) an extensional and hence con-
tinuous one with the same property does not go through. We are
given a free-choice sequence

< a(O),So >
< a(l)aSI >
< t]"(2),32 >

and want to compute successively the terms p(0), B(1),... of a se-
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quence B such that A(c,B). Proceeding as above (the argument
would claim) we first compute B(0) by applying the (algorithm for
computing the) possibly intensional @ to (sufficiently many terms
of) the ‘purified’ sequence o', i.e.

< a(0),U>
<a(l),U>
<a2),U>

then we compute f(1) by applying ® to perhaps more terms of this
sequence, and so on. But 4(a’,®(a")); (Ao)(Pa)eK®; and exten-
sionality of A4 yields

a'=a - [A(a, ®(a))« A(a’, ()]

g.e.d.().

This argument is not valid because there is no such (Brouwer)
free-choice sequence as o'. Principle (IT) above yields only: For
each o and n, there is a sequence o'y, differing from « only in that
each of S.,...,Sx is replaced by U. Consequently we can assert:
If (wo)(gP)A(a,p), and if A is extensional, there exists ®eK such that

(W) (FPBn)[A(0,Bn) & Br= ®(a)]

This by no means implies 4(c,®(w)) (trivially, taking 4(a,p) to be
e.g. (Fx)(B(x) # 0)and ®o to be Ax0).

Returning to our remark (the crux really of this whole paper)
that there is no such (Brouwer) free-choice sequence as o', we recall
that whatever can be said about a (Brouwer) free-choice sequence o
can be said on the basis of a finite initial segment { < a(i), Si(c)> }
i <n. So we can never say of such a sequence «All the S; are = U»
(i.e. «No restriction will ever be imposed»). Only for absolutely free
o can this be asserted; and they do not fall within the range of the
quantifier (ya) in (5). (In fact we can verify that (5") holds if the
quantifiers are restricted to only absolutely free choice sequences;
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but again, not if we restrict them to the union of the two species of
absolutely free ones and ordinary ones.)

To sum up, we have
(vo)(@x)4(o,x) ~ (3F)(yo)4(e,F(a))
F extensional —F continuous
A extensional —F extensional
(va) (@P)A(a,p) ~ (FP)(vo)A(a, D(a))

® extensional —® continuous (i.e. eK %)

[Proof. (4') which we have justified implies (cf. [10] p. 89, *27.1')
(vo) (3 'B)A(a,B) ~ (g PeK ®) (va)A(a,®(c)) (for extensional A).
Take A(o,Blas ®(a)=P, q.e.d. Kleene observes (loc.cit. p. 73) that
he knows no statement of (5) in Brouwer’s writings; and van
Heijenoort, who has an encyclopedic knowledge of the Dutch
papers, has assured me that no such exists; this paper claims to
offer a reason why. The lack of (5") does not impoverish ‘classical’
intuitionistic mathematics (real function theory) because all we
need in practice is the (ya)(q !B) continuity schema.] Finally

A extensional does not imply @ extensional; more precisely we
have not yet established that A extensional >-® extensional; the
argument that seemed to establish it turned out invalid. Now we
proceed to exhibit an actual counter-example to

A extensional - ® extensional
(i.e. to (57).

In fact it will be more than a pedantic correction to the axioms
of Kleene (x27.1, [11], p. 73) and Kreisel (2.511, [12], p. 135); it will
turn out to be essentially connected with the notorious ‘historical
arguments’ of Brouwer ([2]; [8] Ch. VIII; [10] Ch. IV), which have
prove so recalcitrant to axiomatization. [Kripke has given an axiom
which enables us to formalize them. We shall explain and adopt it
later. The (or a) reason it has not been usually adopted is that it
contradicts (5°); people had been reluctant to give up (5" because
they felt that if they did they would have to give up (4') too. Our
argument above showed that the reasons which compel us to ac-
cept (4') do not extend to (5').)

First let us give a typical Brouwer historical argument; the con-
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struction of a counter-example to —(yx)Fx— (gx) 71Fx and more
specifically the proof (cf. [8], p. 117, Theorem 1) of

v o) [(yx) (a(x)=0) - (3x) (a(x)=0)] (11)

For every (canonical) real number (generator) ae[0,1] define ®(a)
as follows : ®(w)(n) is [computed immediately after a(n) is known;
it is] to be 0 until a has been proved to be either rational or irra-
tional; after that it is to be 1. (The words between [ ] seem mys-
terious and irrelevant in the present context; they will receive their
formal justification in my detailed formalized article «Systems of
Intuitionistic Analysis» which was referred to above.) We claim
that

(va)(ee[0,1] > (vx) [D(e)(x) = 0]) (12)

For we could only assert (yx)[®(a)(x)=0] if we knew (a) that we
could never show a to be rational and (b) that we could never
show o to be irrational. But we could only know this if we knew
that « was neither rational nor irrational ; contradiction.

On the other hand

(ve) (2e[0,1] ~(gx)[@(a)(x) = 1]) (13)

is certainly false. If there were such an x by the fan theorem there
would be a fixed finite number k such that any two (canonical) real
numbers (generators) whose first k terms (as the first k£ terms of
two free-choice sequences) agreed would give the same x. Then all
we would have to do to determine whether ag[0,1] was rational or
not would be to compute this first £ terms (and the associated
terms of ®(a)). By this time we would have proved «a is rational or
irrational» which we could not do without knowing (or at least
having discovered a method of finding out) which it was. [This
part of the argument again differs from Brouwer’s in ways which
will be analysed in the forthcoming more formal paper.[ So (12)
is true and (13) is false; this proves (11).

The initial shock of this odd-looking argument (the prototype
of many sophisticated ones in Brouwer’s later writings — references
in [8], p. 115) is mitigated by the isolation of the underlying prin-
ciple called Kripke’s schema; this reads
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@B sl(vx) Eglz(x)=0)<—> -4

(B restricting B to the complete binary spread), where 4 may con-
tain parameters. B is obtained by setting P(x)=0 until a proof of
A is obtained, and then =1. [Parenthetical remark : Brouwer in
[3], p. 4, penultimate paragraph, asserts [14] rather unambiguously
with a biconditional in the second conjunct : i.e. if A4 is true it must
eventually be proved (and (16) below can be strengthened to
A<>(gn)(—ad)). This strengthening (which is not used in those
historical arguments of Brouwer which / have examined — certainly
not in those cited in Heyting [8] or Kleene [10]) raises problems of
interpretation. Kleene and Moschovakis in conversation with the
writer suggested that this presupposes a linear ordering of all pos-
sible proofs, so that the apparent reference to time is really a referen-
ce to Godel-numbers of (informal) proofs. All the creating subject
has to do while the free-choice parameters of A flow by him is (not
to experience the truth of 4 but) to apply the algorithm of (15)
below to all successive strings of symbols (checking references to
those parameters against the available constantly-growing informa-
tion about their stages). I cannot accept this interpretation of
A—>(gx) (B(x)=1) firstly because it does not accord with Brouwer’s
language ( ‘experience the truth of A’ is his phrase) and secondly
because it savors of von Dantzig’s attempted rescue of the his-
torical arguments in [4] ,which it seems to me has been conclusively
refuted by Kleene himself ([10], pp. 175-176). On the other hand I
can offer an alternative interpretation of 4 —->(gx)(B(x)=1) (in view
of the intuitionistic interpretation of implication this means ‘given
a proof of A4 one can find a stage at which it will have been proved’)
not open to these objections. If proofs are given with so to speak a
date attached, we have only to look at this date to find the x! —
it depends what constitutes being ‘given’ a proof. Further examina-
tion of this curious question seems idle until more of Brouwer’s
historical arguments have been analysed : for those cited by Kleene
and Heyting only — is necessary in the second conjunct of (14), and
we shall so state it.] In the historical argument just given (proof of
(11)) A is ‘a is rational or « is irrational’. As long as we have a
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sufficiently clear idea of the meaning of ‘4 has been proved by the
ntt stage’ (written —,4) to justify the three following proposi-
tions

F—nAV T—nd (15)
(—nd)—>A (16)
(1(Fa)—nd)—> 14 (17)

derivation of (14) is a simple exercise. ((17) is interesting : it is called
by Kreisel the ‘axiom of Christian charity’ because it says the only
grounds we could have for asserting that a proposition would never
be proved are that we already know it to be absurd — and not e.g.
that people are too stupid.)

However, when we have gotten over the shock of the ‘his-
torical’ definition of a free-choice sequence (even of a function,
if 4 in (14) contains no free-choice parameters), there still re-
mains to trouble us, the moment after constructing the highly dis-
continuous function(al) ® of (12)-13), Brouwer’s appeal to the
fan theorem — i.e. to continuity. However ® is a functional from free
choice sequences to free-choice sequences, so since we no longer
have (5") we do not require it to be continuous; the functional
from o to x, assumed for reductio ad absurdum to exist in (13),
is on the contrary an integer-valued function, continuous by (4").
Thus we have iustified (4') in such a way that Kripke's schema (14)
can be kept and the result (not quite the method —that must await
our future formalization) of Brouwer’s argument remains intact.
That is the central result of this paper.

Concluding remarks. (a) For the formalization of the resulting
theory we can take as a first step either Kreisel’s axioms, replacing
(5") by (14); or if we wish a deeper analysis we replace (5) by
(Kreisel’s own) axioms (15)-(17) for the ‘creating subject’ and put
into (4") the condition that 4 must be extensional. (Also in a few
other axioms : either in (2) (axiom 2.521 of [12]) 4 must be required
to be extensional, or else we extend the formalism by the notation
Sz(a) with suitable axioms and replace (2) by

A(0)>(gn) (vB) [(Ax <n) (Bx)=a(x) & Sz(B) = Sx(a))>A(B)]

where =denotes intensional identity.)

(b) Kripke’s schema has as a consequence that the species of com-
putable functions cannot be enumerated by a formula, i.e. for any
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formula 4 (n,x,y) with only the three (numerical) free variables
indicated

@) 1@ vNf(x)=y<>A(n,x,y))

For suitable 4, this is sometimes called the negation of Church’s
thesis: but this is ill-advised since this formula f ranges over histo-
rically as well as mathematically defined functions.

University of Hlinois John MyHILL
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