THE COMPLETENESS OF SO.5

M. J. CRESSWELL

In [1] and [2] E. J. Lemmon sets out a system of modal logic in which the necessity operator L is interpreted as "It is tautological (by truth-table) that" and calls it SO.5.

SO.5 has the following basis:

PCL: If α is a PC tautology, then \vdash L α (1);

LA1: Lp \Rightarrow p;

LA2: L(p > q) > (Lp > Lq);

MP: $\vdash \alpha, \vdash \alpha \supset \beta \rightarrow \vdash \beta;$

with uniform substitution for propositional variables.

We shew that a semantics can be given for SO.5 analogous to those of [3] and [4] for other modal systems. Adopting the terminology of [5] we define an SO.5 model as an ordered triple $\langle V W x_1 \rangle$ where W is a set of objects (worlds), $x_1 \in W$, and V is an assignment from formulae and worlds to the set $\{1, 0\}$ of truth values. The basic assumption is that x_1 is the real world and in it necessity is evaluated as in the models of [3], while the rest are worlds in which only PC tautologies are true (2). This is ensured by letting $V(L\alpha x_1) = 1$ or 0 independently of the value of α (for $x_1 \neq x_1$).

We can set this out formally as follows:

 $\langle V W x_1 \rangle$ is an SO.5 model iff:

W is a set of worlds, $x_1 \in W$ and V is an assignment satisfying:

- 1.1: For propositional variable p and $x_i \in W$, $V(p x_i) = 1$ or 0;
- 1.2: For wff α and $x_i \in W$, $V(\sim \alpha x_i) = 1$ if $V(\alpha x_i) = 0$, otherwise 0;

⁽¹⁾ The numbering is ours. Lemmon actually has two rules (v. [1] p. 31), PC: If α is a PC tautology then $\vdash \alpha$, and R1: If α is a PC tautology then $\vdash \perp L\alpha$. Clearly by LA1 and MP the first of these follows from the second.

⁽²⁾ These worlds are somewhat like the 'non-normal' worlds of [4] p. 211 where $L\alpha$ is always false.

- 1.3: For wffs α and β and $x_i \in W$, $V((\alpha v \beta) x_i) = 1$ iff either $V(\alpha x_i) = 1$ or $V(\beta x_i) = 1$, otherwise 0;
- 1.4: For wff α and $x_i \in W$ $(x_i \neq x_1)$, $V(L\alpha x_i) = 1$ or 0; for x_1 $V(L\alpha x_1) = 1$ iff for every $x_i \in W$, $V(\alpha x_i) = 1$, otherwise 0. α is true in an SO.5 model $\langle V W x_1 \rangle$ iff $V(\alpha x_1) = 1$.
- α is SO.5 valid iff α is true in every SO.5 model.

We shew that every theorem is valid:

- 1.) If α is a PC tautology then by 1.1-1.3, for every $x_i \in W$, in every SO.5 model, $V(\alpha x_i) = 1$, hence $V(L\alpha x_i) = 1$ (in every model), hence $L\alpha$ is valid.
- 2.) Suppose for some SO.5 model $\langle V W x_1 \rangle$, $V((Lp \supset p) x_1) = 0$, then $V(p x_1) = 0$ and $V(Lp x_1) = 1$. But $x_1 \in W$, hence $V(p x_1) = 1$, contrary to reductio hypothesis.
- 3.) Suppose that, for some SO.5 model $\langle V W x_1 \rangle$,
- $V((L(p \supset q) \supset (Lp \supset Lq)) x_1) = 0$. Then $V(Lq x_1) = 0$; hence for some $x_i \in W$, $V(q x_i) = 0$; But $V(Lp x_1) = 1$, hence $V(p x_i) = 1$, hence $V((p \supset q) x_i) = 0$, hence $V(L(p \supset q) x_1) = 0$, contrary to reductio hypothesis.
- 4.) Uniform substitution for propositional variables is clearly validity preserving.
- 5.) Modus Ponens is validity-preserving for, if α is true in every SO.5 model and $\alpha > \beta$ is true in every SO.5 model, then for every model $\langle V W x_1 \rangle$, $V(\alpha x_1) = 1$ and $V((\alpha > \beta) x_1) = 1$, hence $V(\beta x_1) = 1$ (in every model), hence β is valid.

Hence every theorem of SO.5 is valid.

To prove completeness we use a method analogous to the adaptation in [5] of the decision procedure of [6] for T.

Every SO.5 formula will have the form of a truth-function whose constituents are:

- a.) propositional variables
- or b.) L followed by a wff.

We call these latter *L*-constituents. We draw up the modal truth table of α by assigning 1's and 0's to each constituent, as if they were all propositional variables. Obviously every wf part of α will have an assigned or calculated value in each row of the table. We call rows for which α 's calculated value is 0, *F*-rows. To shew that α

is a theorem it suffices to shew that each F-row is inconsistent; i.e. that when we have the conjunction of all the members having 1 in the row and the negations of all the members having 0 we can prove the negation of the whole conjunction. This can always be done if one of the following conditions holds of each F-row (where β , γ are wf parts of α):

I: Some L β has 1 while β has 0;

II: Some $L\gamma_1, ..., L\gamma_n$ have 1 while $L\beta$ has 0 where $(\gamma_1, ..., \gamma_n) \supset \beta$ is a PC tautology (or substitution instance of one),

III: β has 0 where β is a substitution instance of a PC tautology. If one of I-III hold of every F-row then \vdash 80.5 α .

Suppose I holds. Then from LA1 we have (by PC) \vdash \sim (L β . \sim β), and so the whole conjunction is inconsistent.

 $\vdash (L\gamma_1L\gamma_n) \supseteq L\beta$, hence $\vdash \sim (L\gamma_1L\gamma_n .\sim L\beta)$, and so the whole conjunction is inconsistent.

If III holds then by PCL \vdash L β and hence any conjunction containing \sim L β is inconsistent.

Suppose that for some F-row none of I-III hold. We define an SO.5 model in which α is false. Take the first F-row for which none of I-III hold and, for propositional variables, let $V(p x_1) = 1$ or 0 according as p has 1 or 0 in the table.

Where $L\gamma_1, ..., L\gamma_n$ are all the L-constituents having 1 in the table then, for each $L\beta_1$ having 0 form, $(L\gamma_1L\gamma_n) \supset L\beta_1$. Now $(\gamma_1\gamma_n) \supset \beta_1$ is not a substitution instance of a PC tautology (if it were condition II would obtain). This means that we can make some PC assignment to the variables (where L-constituents are regarded as variables) such that $(\gamma_1)\gamma_n \supset \beta_1$ has 0. With each such β_1 we associate a world x_1 and, for propositional variables and L-constituents δ of α , we let $V(\delta x_i) = 1$ or 0 according as the PC assignment to $(\gamma_1\gamma_n) \supset \beta_1$ gives them 1 or 0. From this we have that $V(\gamma_1 x_1) = 1$, ..., $V(\gamma_n x_1) = 1$ and $V(\beta_1 x_1) = 0$. (If there are no $L\gamma$'s having 1 in the table, then $V(\beta x_1)$ still = 0 or condition III would obtain). Let W be the set of x_1 and all x_1 associated with

each β_i . Clearly $\langle V | W | x_1 \rangle$ can be extended to an SO.5 model. Now for each $\gamma_k (1 \le k \le n)$, $V(\gamma_k | x_i) = 1$. Further $V(\gamma_k | x_1) = 1$ (or condition I would obtain (3)). Hence for every $x_i \in W$, $V(\gamma_k | x_i) = 1$, hence $V(L\gamma_k | x_1) = 1$. And since $V(\beta_i | x_i) = 0$, then $V(L\beta_i | x_1) = 0$. Hence every L-constituent is true or false in the model according as it has 1 or 0 in the F-row of the table. Hence the whole row is false in the model, i.e. α is false in the model, hence α is not valid.

Thus either α is an SO.5 theorem or it is false in some SO.5 model. I.e. SO.5 is complete. Further the method gives a decision procedure for SO.5.

Victoria University of Wellington

M. J. CRESSWELL

REFERENCES

- [1] E. J. LEMMON, 'Is there only one correct System of Modal Logic?', Aristotelian Society Supplementary Volumes, Vol. XXXIII (1959),pp. 23-40.
- [2] —— 'New Foundations for Lewis Modal Systems', The Journal of Symbolic Logic, Vol. 22 (1957), pp. 176-186.
- [3] Saul A. KRIPKE, 'Semantical Analysis of Modal Logic I. Normal modal propositional calculi' Zeitschrift fur mathematische Logik und Grundlagen der Mathematik, Vol. 9 (1963) pp. 67-96.
- [4] Saul A. Kripke, 'Semantical Analysis of Modal Logic II. Non-normal modal propositional calculi' in *The Theory of Models*, Amsterdam, North Holland Publishing Co, 1965, pp. 206-220.
- [5] M. J. Cresswell, 'Alternative Completeness Theorems for Modal Systems' Notre Dame Journal of Formal Logic (forthcoming).
- [6] A. R. Anderson, 'Improved Decision Procedures for Lewis's Calculus S4 and Von Wright's Calculus M', The Journal of Symbolic Logic, Vol., 19 (1954), (pp. 201-214).
- (3) Strictly we should add here that this is an induction hypothesis, since what we are shewing is that $L\gamma$ has 1 or 0 in x_i according as it has it in the table if γ has 1 or 0 in x_i according as it has it in the table.