“NEXT” AND “OUGHT”
ALTERNATIVE FOUNDATIONS FOR VON WRIGHT’S
TENSE-LOGIC, WITH AN APPLICATION TO
DEONTIC LOGIC

Lennart AQvisT

1. Introduction

In his paper entitled entitled “And Next” ([13] in the bibl-

iography) Georg Henrik von Wright studies a new tense-logical
constant which he pertinently characterizes as a kind of asymmetrical
conjunction.
The axiomatic system set forth in [13] — the T-calculus — is intended
to capture the formal properties of this constant. A first attempt to
study it was made in von Wright [11], where he also emphasized the
importance of the present type of tense-logic to a satisfactory
development of deontic logic; later, in [10], E. J. Lemmon made a
similar point in connection with the logic of imperatives.

In the present paper, we first give a new axiomatic basis for the
T-calculus by defining an equivalent system DT, which, we think,
is in several respects more easily handled than the former. Next, we
present a semantical, or model-theoretic, treatment of the system DT
(and indirectly of the T-calculus) which is essentially based on the
techniques of Kripke [8] and Hanson [6]. The system is then proved
sound and complete by means of the method of semantic tableaux,
which is also seen to provide a decision procedure for it that appears
to be much smoother than the normal-form method suggested
in [13] for the T-calculus (). Finally, we consider a combination
DDT of our tense-logic DT with deontic logic as well as some philo-
sophical applications of it — inter alia, a way out of what may be
called “Chisholm’s Puzzle of Contrary-to-Duty Imperatives”
(see [5]).

(1) An interesting further object of investigation would certainly be that of
relating the present kind of tense-logic to the systems considered by A. N. Prior
in his well-known work in the field — in particular, see [14] and [15]. We
have to refrain from this here.
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2. von Wright’s tense-logic T

The tense-logic T is based on a denumerably infinite list of pro-
positional variables, two primitive truth-functional connectives ~and
A (in terms of which V, =, and = are defined in the usual way),
and a primitive binary tense-logical connective T (“and next”).
The wifs (well-formed formulae) of the calculus are given as usual
except that we have an additional stipulation: if A and B are wifs,
then (ATB) is a wif. Moreover, in T we define a unary tense-logical
connective [ (“next™) by

Def 0. [OA =ar A*TA, where A+ is an arbitrary fixep
tautology, say, the wif “* ~(p A ~p)’.

Brackets may inter alia be omitted under the convention that T
makes a greater break than =, = than >, > thanV/, V than A,
and A than ~.

The axiom schemes and rules of inference for von Wright’s
T-calculus (?) are as follows :

PC. A set of axiom schemes adequate for the classical proposi-
tional calculus, with Modus Ponens.

Al. (AVBTCVD) = (ATC) V (ATD) Vv (BTC) Vv (BTD)

A2, (ATB) A(CTD)=(A ACTB A D)

A3. A=(ATB VvV ~B)

A4, ~(ATB A ~B)

Substitutability of provable equivalents (Subs =): If — A = B,
and D is the result of substituting B for one or more occurrences
of Ain C, then — C = D.

3. The “quasi-deontic” tense-logic DT

The vocabulary of the tense-logic DT now to be considered is like
that of the T-calculus except that the unary connective [] replaces
T as a primitive logical constant, the latter being defined by

Def T. ATB =4t A A OB.

(®) Inessential deviations from von Wright’s own formulation of the T-cal-
culus consist in our not taking v, =, and = as primitives, and in dispensing
with the rule of variable-substitution in favour of axiom-schemes. On the other
hand, our addition of Def [] constitutes a somewhat more substantive deviation.
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DT has the following axiom schemas and rules of inference :
PC.
al. OA > ~0O~A
a2. ~O~A > 0A
a3. O(A = B) = (0JA = OB)
Necessitation (Nec): If — A, then — OA.

The reason for speaking of DT as a “quasi-deontic” system is
this. On one hand, DT contains such deontic logics as F = {PC,
a3, Nec} and D = {PC, al, a3, Nec}, given by Hanson [6] p. 178,
as well as the systems D1 and D2, given by Lemmon [9] p. 184
(although it does not contain any of the stronger deontic systems
considered by these authors); in addition, DT meets the familiar
requirement that neither [JA > A nor A > [JA should be derivable
in a deontic logic (cf. e.g. [1] p. 101). On the other hand, a deontic
interpretation of DT is effectively precluded by the presence of a2
(which would then assert that permissibility entails obligatoriness);
moreover, the presence of a2 yields the result that DT is not contain-
ed in the modal system S5, nor in any of the deontic logics considered
by Hanson and Lemmon, since these are all weaker than S5. Fi-
nally, it may be noticed that if in DT we replace al by JA > A,
or a2 by A > A, we obtain a very strong “degenerate” modal
system which collapses into PC.

4. The inferential equivalence of T and DT

In this section we show that T contains DT and, conversely,
that DT contains T. To establish the first result we derive in T the
schemata al-a3, the rule Nec, and the definition Def T in the form
of an equivalence.

To derive alin T':
(1) (AfTA) A (A*T~A) > (A* AA'TA A ~A) A2, PC
2) ~(A+*tAA+*TAA ~A) A4
(3) (A*TA) > ~(A+T ~A) (1), (2), PC
(3) = al by Def [O.
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To derive a2:
() ~(A*T ~A) o ((A*T~ ~A) V (~A+*T~A) V

(~A+T ~ ~A)) PC, von Wright’s T1 ([13] p. 295f.)
2) ~(AAN~ATB) von Wright’s T3 ([13] p. 296)
(3) ~At=A A ~A PC
4 ~(~A'T~A) (2), (3), Subs = ,PC
(5) ~(~A'T ~ ~A) Similarly
6) ~(A*T ~A) > (A*TA) (1), (4), (5), PC, Subs =

(6) = a2 by Def (1.

To derive a3:
(1) (A*T A = B) A (A*TA) A ~(A+TB)
(At A A*T(A = B) A A) A (A*T~B)
A2, (6) in the proof of a2,
PC, Subs =
(2) (A+* A A*YT(A > B) A A) A (AT ~B) o
(At A At AN A*T(A 2 B) AA A ~B) A2
(3) ~(A* NA* NA*T(A>B) AA A ~B)
A4, PC, Subs =
(4) (A*T A = B) > ((A*TA) >(A+*TB)) (1), (2), (3), PC
(4) = a3 by Def [O.

To derive Necin T:

(1) —A hyp.

(2) —A+ PC

(3) —A*TB vV ~B (2), A3, PC

(4 —A =BV ~B (1), PC

(5) — A+TA (3), (4), Subs = ,PC

where (5) = — [JA by Def .

Finally, we give a T-derivation of Def T in the form of
(1) (ATB) = A A (A+TB).

To prove the left-to-right implication in (1):
(2) (ATB) > A von Wright’s T4
(3) (ATB)=(A AA*TB AB) PC,Subs =
(4 (ATB) A(A*TB)=(A AA+*TB AB) A2
(5) (ATB) = (ATB) A (A+TB) (3), @), PC
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(6) (ATB) > (A+TB) (5), PC
(7) (ATB) > A A (A*TB) (2), (6), PC
(7) = QE.D.

To prove the right-to left implication in (1) :
(8) A A(A*TB) > (A A A*TB) von Wright’s T5
(99 A A (A*TB) = (ATB) (8), Subs = ,PC
(9) = Q.E.D.

Thus, T contains DT, To establish the converse result we derive
in DT the schemata A1-A4, the rule Subs = , and Def [J in the
form of an equivalence.

To derive Al in DT:
(1) AvB)A(OCVOD)=(AADOC V(A AOD)V
(B A OC) V(B A OD) PC
(2 ~O~CvVD)=(~O~CV ~O~D)
Familiar already in
{PC, a3, Nec}
(3) DA = ~0O~A al, a2, PC
4 Oo(CvD)=QOCv oD (2), (3), PC
(5) AVB)ADO(CVD)=(A AOC) V(A ADOD)V
(B A OC) V(B A OD) (1), (4), PC
(5) = Al by Def T.

To derive A2 in DT:
() AANOBACAOD=AACADOBADOD PC
2) OB AD)=0OB A OD Familiar already in
{PC, a3, Nec}
(3) AAOB)A(CAOD)=(AAC)AOBAD)
(1), (2), PC
(3) = A2 by Def T.
To derive A3:
(1) A=A ADOBYV ~B) PC, Nec

(1) = A3 by Def T.
To derive A4 :
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(1) ~O@B A ~B) familiar already in
{PC, al, a3, Nec}
(2 ~(A A OB A ~B)) (1), PC
(2) = A4 by Def T.

In order to derive the rule Subs = in DT it is again sufficient to
appeal to {PC, a3, Nec}, which admits these well-know rules :
(i) if —A =B, then — ~A = ~B, (il) if —A =B, then
—A ANC=BAC, (iii) if — A =B, then —C A A =C A B,
and (iv) if — A = B, then — [JA = [JB.

From these four rules Subs = follows at once.

Finally, we note that the DT-derivation of Def [] in the form of
(1) DA =A* A DA

is immediate by virtue of PC (A+ being a tautology).
The proof that T and DT are inferentially equivalent is complete.

5. A modelling for the tense-logic DT

A model sequence is either a non-empty finite sequence (Hi,
He, ..., Hx > (k = 1) of arbitrary objects or a denumerably infinite
sequence {Hi, Ho, ... ... > of arbitrary objects. Given any H; in a
denumerable model sequence (i = 1, 2, ...) we say that H;4, is the
unique successor of H; in the sequence; similarly for any Hi, Hi
in a finite k-termed model sequence where 1 < i < k. Moreover,
we stipulate that in a finite k-termed model sequence (Hj, ..., Hx >
(k = 1) the last term Hy is to be its own successor in the sequence.
Let ‘RH’ denote the successor of H in a model sequence. According
to the above stipulations, then, our successor-function R is taken to
satisfy the condition : if H belongs to a model sequence — whether
finite or denumerable — then RH always belongs to it as well.

By a primary valuation for DT we mean any binary operation ¢
associated with a model sequence & which, for each member H
of &, assigns a truth-value to each atomic wff (propositional
variable) of DT. Thus, if P is atomic and H is any member of &,
then ¢(P, H) = 1 (truth) or ¢(P, H) = 0 (falsity).
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Next, we define a certain ternary operation w which, given ¢ and
H (H any member of a model sequence %), assigns a truth-value to
each wff of DT. w is called the secondary valuation for DT and is
inductively defined as follows :

(i) w(P, 9, H) = o(P, H), when P is an atomic wif.

(i) w(~A, ¢, H) = 1,iffw(A, ¢, H) = 0.

(iii) w(A A B, 9, H) = 1,iffw(A, ¢, H) = 1 and w(B, ¢, H) = 1.
(iv) w(OA, ¢, H) = 1, iffw(A, ¢, RH) = 1.

By a DT-system we understand an ordered quadruple (¢, Hi,
&, R), where ¢ is a primary valuation, and where % is a model
sequence, R its successor-function, and H; its first term. Awff A is
said to be frue in a DT-system (¢, Hy, &, R) if w(A, ¢, Hi) = 1;
false in (p, H1, &, R) if w(A, o, H)) = 0. A is valid in DT iff A is
true in every DT-system. Finally, by a DT model of (countermodel to)
a wif A we shall understand a DT-system (o, H;, &, R) such that
w(A, ¢, Hi) = 1(0). Evidently, A is valid iff there is no counter-
model to A.

We show below that our calculus DT is sound and complete in
the sense that a wff is valid if and only if it is provable in DT.
Since DT is equivalent to von Wright’s T-calculus, the soundness
and completeness of the latter is then indirectly established as well.

Informal explanation. The members of a model sequence are only
known to us via their position in the sequence; what they are in
other respects is left unspecified. For our intuitive tense-logical
purposes we may think of them as states of the world at successive
moments of time; the first term H; of a model sequence is singled out
as the initial state taken up for consideration, RH; (= Hg if the
sequence is at least 2-termed)is the state that comes next to H;
in time, and so on. We do not assume that two successive world-states
represented by H; and H;4; in a model sequence have to be tem-
porally contiguous in any strict sense of the word. It is also plain
that we suppose time to be discretized into units whose length is
left unspecified. Finally, by paraphrase of the valuation clause (iv)
in the definition of w above, a wif ‘NextA’ is taken to be true in a
state H under the “interpretation” ¢, iff, A is true under ¢ in the
state RH that comes next to H (where H occurs as a term of a se-
quence of world-states succeeding each other in time).
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The modellings given by Kripke [8] for alethic modal logics
(M, B, S4, S5) and by Hanson [6] for deontic logics (D, DM,
DB, DS4, DSS5) are based on appropriate notions of a model struc-
ture, i.e. an ordered triple (G, K, R) such that K is a non-empty set,
G €K, and R is a binary relation defined on K. A similar notion is
available in our model-theory for DT: a DT model structure is a
triple (Hi, &, R), where % is a model sequence, H; its first term,
and R our successor-relation over &. This notion differs most
conspicuously from those employed by Kripke and Hanson in that
it assumes R to be a functional, or many-one, relation; obviously,
a DT model structure will always have the property : if H is a term
of #, then there is a unique H' in % such that HRH' (H’ = RH).
Kripke’s and Hanson’s model structures, on the other hand, are
all taken to satisfy the weaker condition : if H e K, then there is a
(not necessarily unique, by any means) H’ e K such that HRH' (3).
If in addition R is assumed to be reflexive (reflexive and symmetric,
reflexive and transitive, an equivalence relation) over K, we get
Kripke’s notion of an M- (B-, S4-, 85-) model structure. To obtain
the corresponding deontic notions, one must first of all drop the
assumption that R is reflexive over the whole of K; further appro-
priate restrictions on R closely parallelling Kripke’s then yield
Hanson’s concepts of a DM-, DB-,DS4-, and DS5-model structure.

6. Semantic tableaux

A neat device for testing whether or not a given wff is valid
(in DT) is afforded by the method of semantic tableaux, originally
developed by Beth [4] in the field of quantification theory, further
elaborated by Kripke [7], [8] in that of alethic modal logic, and quite
recently extended to deontic logic by Hanson [6]. Clearly, a ne-
cessary and sufficient condition that a wff A should not be valid is
that there should exist a countermodel to A, i.e. a system (¢, Hy,
<, R) such that w(A, ¢, Hi) = 0. We represent this situation by
putting Ain the right column of a tableau. Further tableaux willbe
introduced later as a result of the rules Yl(a) and Yr(a) given below;

(3) With just this restriction on R, the result is Hanson’s modelling for the
deontic logic D = {PC, al, a3, Nec}.
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these are said to be auxiliary, while the initially introduced tableau
is said to be the main one. As we shall see, we are in general not deal-
ing with a single tableau but with a finite sequence of tableaux
C= (u,te,...,tx ) whereforeachisuchthatl <i < k, tj11 = Sty,
and tx = Stk, so that S is a successor-function among tableaux
parallel to the function R in the modelling for DT, and where the
first term t; is singled out as the main tableau. Moreover, we shall
see from the rule Ar below that a tableaux-construction may in-
troduce a system of alternative sequences of the kind mentioned.
Given, then, a main tableau with A in the right column, we continue
the construction by the following rules (which apply to any tableau,
main or auxiliary) :

Nr. If ~B appears in the right column of a tableau, put B in the
left column of that tableau.

NI1. If ~B appears in the left column of a tableau, put B in
the right column of that tableau.

Ar. If B AC appears in the right column of a tableau t, there
are two alternatives : Extend t either by putting B in the right column
or by putting C in the right column. More precisely, if t is the i-th
(i=1,2,...) tableau in a sequence T and t has B AC on the right,
replace T by two alternative sequences T’ and T'’ which are like
T except for having as their i-th term tableaux t’ and t"/, respectively,
where t’ (t"’) is like t except that in addition it contains B (C) on the
right.

Al. If B AC appears in the left column of a tableau, put B and
C in the left column of that tableau.

Yr(a). Suppose that (1B appears on the right of the i-th ta-
bleau t; (1 < i) in a sequence T and that there is no tableau ti41
in T. Then start out a new auxiliary tableau ti4+1 = St; with B on
the right of ti.1.

Yr(b). Suppose that (B appears on the right of t; in T but
that there is already in T a tableau t;+1 = St; (by virtue, originally,
of an application of Yr(a), or of Yl(a) below). Then put B on the
right of tis.

Yli(a). Suppose that [JB appears on the left of t; in T and that
there is no ti+1 in T. Then start out ti+1 = St; with B on the left.

YI(b). Suppose that [(JB appears on the left of t; in T but that
ti+1 = St;is already in T. Then put B on the left of ti41.
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Following Kripke we define a tableau as closed iff some wff A
appears on both sides of the tableau, a sequence of tableaux as
closediffsome term in it is closed, a system of alternative tableaux-
sequences as closed iff each of the alternative sequences is closed.
Furthermore, a construction is closed if at some stage of the con-
struction a closed system of alternative tableaux-sequences appears.
Finally, to facilitate termination of a construction, we adopt Kripke’s
restriction that a rule is not to be applied to a wif occurringin a
closed tableaux-sequence, noris it to beapplied if it is “superfluous”
(e.g., Yr(b) — YI(b) —is superfluous if B already appears on the
right — left —of t;+1; and so on).

7. Decidability, equivalence of tableaux to models

By means of arguments analoguous to those of Kripke in [8],
we can show that the method of semantic tableaux yields a decision
procedure for the calculus DT. It is enough to establish these two
lemmata :

L1. For any wif A, the tableaux-construction for A terminates
in finitely many steps.

L2. For any wif A, the construction for A is closed if and only
if A is valid.

L1 is obvious already in view of the fact that each of our tableau
rules eliminates a connective. A rigorous proof may proceed on
Kripkeesque lines (see [8], p. 87 f.) by an induction on the degree
of A, where this notion is defined inductively as follows:
Deg(A) = 1, if A is atomic; Deg (~A) = Deg (A); Deg(A A B)=
Max (Deg (A), Deg (B)); and Deg ([JA) = Deg (A) + 1. We note
incidentally that, by virtue of the DT-definition of von Wright’s
connective T, the present notion of degree extends his concept of the
degree of a s.c. history — a special kind of wff in the T-calculus —
to all wifs of that calculus; the extension is effected by adding to the
above inductive definition the clause: Deg (ATB) = Deg (B) + 1,
if Deg (A) < Deg (B); otherwise, if Deg (A) > Deg (B), Deg (ATB)
= Deg (A). We also observe that the Kripkeesque argument
for L1 guarantees an analogue to the stronger result for M and B
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stated in [8] (p. 88 at the bottom): Let A be a wif of DT such that
Deg (A) = m; then the DT-construction for A terminates in a
closed or non-closed system of alternative tableaux-sequences,
each of which contains at most m terms.

Again, L2 can be established in essential analogy with Kripke’s
proofs of Lemma 1 and Lemma 2 in [8] (pp. 76 ff.). In the ‘if*-part
of L2, only the finite case needs to be taken into account, because
of L1.

8. Soundness and completeness of DT

To verify that all provable wiffs of DT are valid we just check that
the tableaux-construction for each DT-axiom is closed, and that the
rules, i.e. Modus Ponens and Nec, preserve validity (cf. [8], p. 82,
and [7], p. 11).

To establish the completeness of DT, i.e. that every valid wff
is provable, we have recourse to the notion of the characteristic
Jormula (chf) of a system of alternative tableaux-sequences at a given
stage of a construction. First, define the chf of a tableau t at a stage
as A1 A... NAm A ~B1 A... A ~B,, where the A; are the
wifs occurring on the left of t at the given stage and the B; are the
wifs occurring on the right of t at that stage. Further, let (ti, ..., tz )
be any one of the alternative tableaux-sequences present at a given
stage; define the chf of such a sequence as C; A O!Cz A ... A
O%—2C¢—1 A O%'Cy, where C; is the chf of t; (1< i < k),and
where we write ‘0% for a string of kj O’s (j = 1, ..., k-1) and
nothing for the empty string of [1’s. Finally, let Dy, ..., D, be the
chf’s of the alternative sequences in a system of sequences at a
stage; then the chf of (the system at) that stage is defined as
Dy V...V D,

The completeness of DT is a consequence of the following
lemma: if A is the chf of the initial stage of a construction, and B is
the chf of any stage, then — pr A > B; and one obtains this lemma
by showing, along Kripkeesque lines, that the chf of the m-th stage
implies the chf of the (m + 1)st stage (cf. sect. 4.2 of [8]). The follow-
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ing theorem-schemata and derived rules are needed for the proof:
dl. —~A > ~A
d2. —~~ADA
d. —AAB>AAB
d4. — ~(A AB)>(~(A AB) A ~A) V(~(A AB) A ~B)
d5. —AANBVC)>2(AAB) VA ACOD
d6. If—A >B,then—C AA>CAB
d7. If — A = B, then — OmA > O"B (1 < m)
Familiar in {PC, a3, Nec}
d8. — O™A v B)=>OmA v O™B
Proof, by an easy induction on m, using d7 and OA Vv B) =
O'A V [O'B (see sect. 4 above).
d9. — OmA A O"B > O™A A B)
Proof, by an induction on m, using d7 and ['A A (O'B =
O%A A B).

The proof of our analogue of Kripke’s lemma is then broken down
into cases, depending on the rule applied to obtain the (m -+ 1)st
stage from the m-th. Cases NI, Nr, and A1 are justified respectively
by d1-d6-d7, d2-d6-d7, and d3-d6-d7 — plus some obvious PC-
applications.

Case AT.

Before: (%) A1 A ... AQi 2 (~(A AB) AX)A ... A OF1Ay;
1 <i<k (~(AAB) AX)=A.

After: () (A1 A ... AOH(~AAB)A~AAX) AL A
OF1AK) V (A1 A ... A O (~(A AB) A
~B AX) A ... A O1Ag).

Justified by
(1) ~AAB)AX2(~AABA~AAX)V
(~(A AB) A ~B AX) d4, ds, d6, PC

2 O ~A AB AX)=>DO~AAB A ~AAX)V
4 ~(A AB) A ~B A X) (1),d7,ds, PC
(3) (Before) = (After) (2), d6, d5, PC

(%) In the spirit of Hanson, we mean by “before’” and “after” the chf of the
relevant alternative tableaux-sequence, before and after the application of the
rule that obtains the (m + 1) st stage from the mth one.
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Case Y1(a).
Before: Ar A [(1'A2 A ... A O¥Y0OB AX); 1 <k,
(OB A X) = Ap.
After: A1 A OAz A ... A OF-Y(OB A X) A O%B; B = Ag+.
Justified as follows :

() OBAX>0OB PC

(2) O*YOB AX) > O*OB (1), d7

(3) (Before) > (After) (2), d6, PC
Case Yr(a).

Before: A1 A .... A O (~0OB AX);1 <k,

(~0OB A X) = Ag.
After: A1 A ... A Y(~0OB AX) A O¥~B; ~B= Ags.
Justified by

() ~OBAX>[O~B a2, d7, PC
(2) O~Y(~0OB AX) > O+ —'O~B  (1),d7
(3) (Before) = (After) (2), d6, PC
Case Y1(b).
Before: Ay A ... A O—YOB A X) A DA A ... A OF1Ax;
1 <i<k.
After: A1 A ... AOY(OB AX) A OB A Ain) A
oo A OF 1AL
Justified by

() OBAXA JAia> OB AAin) d9,PC
(2) O—(OB A X A DAn) @ 0108 A A (1), d7
(3) O—YOB AX) A O '0OAin =

O—(0OB A X A DAi+) do
(4 O—4(OB AX) A OfAx = OB A Aiv)  (2),(3), PC
(5) (Before) = (After) (4), d6, PC

Case Yr(b).
Before: A; A ... A O (~0OB A X) A A A
e AN OFA 1 <i < k.
After: AL A ... A (~0OB AX) A O(~B A A1) A
o A OF A
Justified as follows :
() ~OB AX A QA 2 O(~B A Air) a2, d7, PC, d9

243



Then the argument proceeds just as in Case Y1(b). This completes
the proof of the desired lemma.

The completeness result for DT is then obtained from the lemma
by an obvious adaptation of Kripke’s corresponding proof’: since,
by hypothesis, A is valid, the construction for A is closed, i.e. there
is a stage, say the m-th, when every alternative tableaux-sequence
is closed, and with the chf D1 Vv ...V D,; concentrate on any D:.
By hypothesis, D;j=A1 A ... AO"C A ~C AX) A... A
O%—tAg, for some i (1 <i < k) and for some wff C. Of course
— ~(C A ~C A X) by PC, hence — ~ i—(C A ~C A X) by
Nec, al, PC, d7, so — ~Dj; by PC. Since j was arbitrary, — ~(D;
V... VDyp). By the lemma, — ~A >D; V... VD, (~A
being the chf of the initial stage of the construction, D; V ... V Da
that of the m-th one). Since — ~(D; V ... V Da), —A. Q.E.D.

9. Combining DT with deontic logic: the caleulus DDT

We close this paper by a discussion of some possible ways of
textending DT into a deontic logic proper. To that purpose we add
ao the vocabulary of DT a unary obligation-connective O (read
as ‘it ought to be the case that’ or ‘it is obligatory that’), which we
suppose to satisfy the principles of Hanson’s system D, i.e.

PC,

Ol. OA o ~O~A,

03. O(A = B) o (OA > OB),

O-Nec: If— A, then — OA.

We shall not consider any combinations of DT with any of Hanson’s
stronger systems (DM, DS4, etc.). The deontic-tense-logical calculus
that results from addition of 01, 03, and O-Nec to DT will be
called “DDT?”. Our present problem is : How are we to characterize
DDT model-theoretically? '

Well, as was intimated in section 5 above, Hanson’s modelling
for D is based on the notion of a D model structure, i.e. an ordered
triple (G, K, R) with K a non-empty set, G € K, and R a relation
defined on K satisfying the condition: If H € K, then there is an
H’ eK such that HRH'. Intuitively, ‘HRH” might be read as
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‘H’ is permissible with respect to H’; moreover, a formula OA is
evaluated as true in a world H just in case A is true in every world
permissible with respect to H, i.e. in every H' such that HRH’.

Given these rough preliminaries, we suggest a modelling for DDT
as follows.

A DDT model structure is an ordered triple ( %, #°, &), where ¢
is a non-empty set of model sequences, ¥ € A", and £ is a binary
relation whose domain consists of terms of members of ', and
whose counterdomain consists of members of #". Furthermore,
the following condition is placed on Z by a DDT model structure :
For each & € and for each term H; of (i =1, 2, ...) there is
an %! e such that H; Z %%,

Primary valuations (for DDT) are now understood as assigning
atruth-value to each atomic wif, in each term of every member of 2
in a DDT model structure. The secondary valuation for DDT re-
sults from the clauses (i)-(iv) of section 5 by addition of

(v) wW(OA, o, H;) =1, iff w (A, o, ¥9) =1 for each &% such
that H; #Z &1,

Here, H; is the i-th term of an arbitrary & € "; moreover, we sti-
pulate that w(A, ¢, ¥) =1 iff w(A, ¢, 1:%) =1, where ‘1:%’
simply denotes the first term of &. A DDT-system can then be
defined as a pair (9, ( 9, X", Z#)), a wif A being true in (¢, (4,4, X))
just in case W(A, ¢, ¥) = w(A, ¢, 1: ¥) = 1. The definitions of
DDT-validity, DDT-model, and DDT-countermodel, with respect
to a wif A, are then obvious enough.

We are fairly convinced that DDT is sound and complete with
respect to the modelling just given. However, all details have not
been checked yet, and we refrain from going into them here. Instead,
we wish to consider some philosophical applications of DDT that
appear to be of a certain interest.

10. Applications of DDT
A striking and important feature of the combined deontic-
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tense-logic DDT is that none of the following ‘“commutation”-
schemata are valid (derivable):

() OOA>[O~0~A

(2) OOA = OOA

(3) OOA > O0A

(49) OOA = OOA
Of these, (4) is obviously stronger than (2) as well as (3), both of
which are in turn stronger than (1): moreover, (2) and (3) are
independent (given DDT, of course). To see that none of (1)-(4)
are DDT-valid, it is thus sufficient to establish the non-validity
of (1). To the latter purpose we define a DDT countermodel to (1),
i.e. a DDT model of OOJA A OO ~A, as follows. (Without loss of
generality we can assume A to be atomic.) Well, let

G = (Gy, G2 Pl — &l
F'= (Hy, Hz ) Fl2 = 1
Fr= > G2 — P2

A ={%, F1, 52}

% = {(Gls ‘9”)3 (G2s ‘992)5 (Hls yll)’ (H2: ‘?12)3 (Jl’ "9021)}'
Furthermore, let w(A, ¢, H2) = ¢(A, Hz2) = 1 and w(A, ¢, 1) =
o(A, J1) = 0. (The value of w(A, ¢, H) for H = Gi, Gs, H; can be
defined arbitrarily; similarly for the value of w(B, ¢, H), where B
is any atomic wff other than A and H = Gy, Gs, Hi, He, J1.).

On this definition, then, it is obvious that (¥, ", #)is a DDT
model structure and that the system (o, (¥, o, %)) is a DDT
model of OJA A 0O ~A, so that (1) is not valid. It is also clear
that one cannot make for the validity of (1) unless one is prepared
to adopt some condition or other to the effect that, in the present
example, J; (= the first (and only) term of %?) is identical wih Hs
(= the second term of 7). However, no suchcondition seems
admissible — for our deontic-tense-logical purposes, at least — and
I shall try to illustrate this point by discussing the present example
more informally. Broadly speaking, acceptance of any of (1)-(4)
as valid would deprive us of certain highly interesting and useful
distinctions in deontic logic, so their failure of validity is only to be
welcomed, after all.

An intuitive paraphrase of our example may run as follows.
At a given stage of a particular round of chess, White argues
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thus : “if I don’t take Black’s subsequent acting into account, then
it now certainly ought to be so that I have my queen on f7 at my
next move, because then I am bound to win; however, since this is
obvious to Black, he’ll play in a way that makes it impossible for
me to have my queen on f7 at my next move : so it will certainly be
true at my next move that I ought not then to have my queen on {7,
because, if I have, I am bound to loose.” Let A be the statement
that White’s queen is on f7, and let G; be the situation in which
White’s argument takes place. In the first part of the latter he consi-
ders what would be the best continuation of the play from his point
of view, if he were allowed completely to disregard the actual conti-
nuation of the play — in other words, he considers the sequence
{Hi, Hz > which he takes to be “ideal” relative to Gi, and just to
G, and reaches the conclusion that O[JA is true in Gi. In the
second, more realistic, part of his argument, White takes the actual
continuation of the play into account, i.e. Black’s countermove, as
well as the ensuing situation with respect to himself (= Gg); he
then finds out that A is false in <J; > which is ideal relative to Gg,
and concludes that [1O ~A must be true in Gi. In short, then the
difference of O from (O, given a common “starting-point” G,
amounts to this: O[] speaks of what takes place at the next stage
in a course of events supposed to be ideal relative to G; (i.e. at Ha
in our example); whereas []O speaks of what takes place at the
first stage in a course of events which is ideal relative to the next
stage Gz in the actual course of events (i.e. at J1 in our example).

Our present distinction between O[] and []O, moreover, ap-
pears to be helpful in connection with what might be called the
“Puzzle of Contrary-to-Duty Imperatives” — a tricky situation in
deontic logic with which, among others, Chisholm [5], von Wright
[12], and I myself [2], [3] have been dealing. Consider four statements

(i) It ought to be that B — formally: OB,

(i) It ought to be that if B then A — formally: O(B = A),

(iii) If not B, then it ought to be that not A — formally:
~B > O~A,

(iv) Not B — formally: ~B.
(iii) is here a contrary-to-duty imperative which tells us what ought
to be the case if the duty expressed by (i) be neglected. The trouble
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with (i)-(iv) is that they jointly entail a contradiction, e.g. in the
system D we have — (OB A OB = A) A(~B > 0~A) A
~B) > OA A O~A as well as — ~(0OA A O~A); on the other
hand, the set (i)-(iv) appears to be perfectly consistent intuitively.
Now, one aspect of the Puzzle of Contrary-to-Duty Imperatives
concerns the problem of adequately formalizing the hypothetical
norms (ii) and (iii); apparently, the difficulties encountered here are
bound up with the peculiarities of material implication. However,
it seems to me that the present puzzle can be fruitfully discussed
quite apart from that aspect, viz. by bringing in the distinction of
0] from OJO.

Let us restate the puzzle as follows. Consider

(i) It ought to be that B,

(v) It ought to be that A, since it ought to be that B,

(iv) Not B,

(vi) It ought to be that not A, since not B.
Evidently, the joint force of (i)-together-with-(ii) in the previous
formulation of the puzzle is just that of (i)-together-with-(v) in
the present one. Similarly, the joint force of (iv)-together-with-(iii)
is just that of (iv)-together-with-(vi). Now, (v) patently contradicts
(vir-however, even the restated argument does seem to make good
sense. How? Well, as one possible (and good, I think) explanation,
I want to suggest that the argument be formalized in the following
way, in disregard of the ‘since’-clauses:

(i) OB,

(v) ODA,

(iV') "’Bs

(vi) OO~A.
There is no difficulty in defining a DDT model of the conjunction
of these four wffs : we just add to our previous stipulations concern-
ing (¢, (%, ", #)) that w(B, ¢, G1) = ¢(B, G1) = 0 — supposing B
to be atomic — and that w(B, ¢, Hi) = ¢(B, Hy) = 1. To make
another chess-paraphrase involving a supposed argument of White’s,
let B mean that White’s bishop is on e6. Then the ideal course of
events from White’s present point of view would be, first to have
his bishop on e6 (B true in H;) and next to have his queen on 7
(A true in Hp), i.e. OB and O[JA are both true in Gi. However, in
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view of the fact that White’s bishop is not on €6 in the initial situation
(and in view of Black’s actual countermove, if you like to take one
into account), White again reaches the conclusion that (JO~A is
true in G1, O ~A in Gg, and ~A in J5.

Examples illustrating the present kind of reasoning may of course
be multiplied. To give just one further illustration, let B mean that
Jones refrains from stealing and let A mean that Jones is not punish-
ed for theft.

We now turn to a different matter. von Wright [11] and Lemmon
[10] argue that a proper study of deontic statements and of impera-
tives, respectively, should be based on a tense-logic or ‘change-
logic’ like the T-calculus. Disregarding the facts that in [11] von
Wright also works with a logic of action and thart in [10] Lemmon
applies change-logic to imperatives rather than to deontic staiements,
they may both be taken to be concerned with the formalization of
such locutions as

It ought to be that A changes to B,
and It is wrong (forbidden) that A changes to B,

where, perhaps, A and B are to be restricted to s.c. state-descriptions.
Essentially, their suggestions could be paraphrased as follows
within the framework of DDT. We are to introduce into the latter
suitable formal counterparis of the above locutions, by defining
a binary obligation-operator Ox( , ) and a binary forbiddance-
operator Fx( , ). It is, moreover, to be understood that the
definition of these operators be framed in terms of O and [ (or
T, if you prefer) in such a way that every occurrence of the tense-
logical connective falls within the scope of some O-occurrence —
thus, e.g., we dismiss forms like A A [(JOB and A A JO~B as
obviously failing to render the intended intuitive meaning of the
above locutions. Let us then consider some Ox-(Fx-) candidates:

Oi(A, B) =4 O(A A [B), ie. O(A T B),
Fi(A, B) =ar Oy(~A, ~B),ic. O(~A A [1~B), ie.
O(~AT ~B),

249



Ox(A, B) =art A A OB, ie. A A O(A+TB),
Fa(A, B) =g 02(A, ~B), i.e. A A OO~B, ie.
A A O(A*T ~B),
Fa(A, B) =a: O~(A A [OB), i.e. O ~(ATB), i.c.
O((AT~B) V (~ATB) V (~AT ~B)).
Fs could obviously be viewed as the negation of the following
binary permission-operator :
Py(A, B) =at ~O~(A A OB), i.e. ~O~(ATB).
Another such operator would be
Py(A,B) =at A A ~O~[B,ie. A A ~O~(A+TB),
as the negation of which we could define the forbiddance-operator :
Fia(A,B) =at ~ (A A ~O~ [B), equivalent to (A A OJ~B)
V(~A A ~O~OB) V(~A A OOJ~B).

Comments We note that O;, F;, P; fail to be ‘normatively
neutral with respect to the initial state of affairs” because
(1) 0u(A, B)= OA,
(2) Fi(A,B) > O~A,
(3) Pi(A,B) > ~O~A
are easily seen to be DDT-valid. If O,, Fi, P; are replaced here by
02, F2, P, respectively, the resulting schemata are nolonger valid.
In addition to being thus normatively neutral with respect to the
initial state of affairs, the latter trio of operators obviously assert
the (present) existence of that state of affairs. As for the operators
Fs and Fs, we observe that none of
(4) F3(A,B) > O~A,
(5) Fs(A,B) o A,
(6) Fi(A,B) > O~A,
(7) FiA,B)> A
are valid, and that
(8) Fl(As B) = F3(Aa B)a
(9) Fz(A, B) o Fi(A, B),
(10) Fz(A, B) @ Fui(A, B)
are valid, whereas the converse results all fail. Finally, we may note
the validity of
(11) (A A Fa(A, B)) = Fz(A, B); on the other hand,
(12) (A A Fs(A, B)) =F*(A,B) fails to be valid.
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From an intuitive viewpoint, the above considerations should
certainly lead us to prefer O, Fz, P2 to Oi, Fi, P; in connection
with the formalization of the locutions at stake. We are convinced
that von Wright and Lemmon would agree with this, in spite of the
fact that their actual notation might suggest the contrary. Again,
Lemmon ([10] p. 59) in effect suggests the distinction of Fsfrom Fs
as well as the validity of (11); so, by virtue of the non-validity of
(12), we conjecture that he would favour F4 rather than Fs, in spite
of his actual notation which precisely suggests Fa.

University of Uppsala, Sweden Lennart AQVIST
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