TENSE LOGIC AND THE LOGIC OF CHANGE (%)

John E. CLIFFORD

In his paper “And Next” (2), Professor G. H. von Wright lays
down the following axioms for what he calls the T-calculus :

A0 Any set of axioms which yield the complete classical propo-
sitional calculus by means of substitution and detachment,

Al (pvq) T (rvs) < (pTr)v(pTs)v(qTr)v(qTs),

A2 (pTq) & (1'Ts) <> (p &1)T(q & 3),

A3 popT(qv ~q),

A4 ~(pT(q & ~q)).

The rules for the calculus are detachment, substitution (of T-ex-
pressions for variables),and extensionality (the intersubstitutability
of provably equivalent T-expressions). A T-expression is simply a
wit of the T-calculus, that is, either a wff of the propositional cal-
culus, or two T-expressions joined by the connective T, or a truth-
function of T-expressions.

The T-calculus is meant to be a formal representation of the
logic of change which Professor von Wright sketched in Chapter 2
of Norm and Action (3), with an extension to allow representation of
descriptions of chains of events leading stepwise off into the future.
It is easily shown that this T-calculus has the properties which
Professor von Wright had argued informally the logic of change
should have (4). In the case of the extension, where any T-expression,
not merely wffs of the propositional calculus, are allowed to be
connected by T, there has been a change from his previous posi-
tion (%), however. He once maintained that T should be associative,

(1) This paper is a revision of the first two sections of the Rudolf Carnap
Essay for 1965, given at UCLA., The results of the original paper are sketched in
the third, fourth and fifth paragraph. I wish to thank Professor David Kaplan
for his guidance on the original and Professor A. N. Prior for his many valua-
ble suggestions for this revision.

(®) Acta Philosophica Fennica, fasc. 18 (1965), pp. 293-304.

(}) New York, The Humanities Press, 1963, pp. 17-34.

*) Ibid.

(®) As reported in a talk given before the Southern California Logic Collo-
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i.e. thatpT (qTr) < (pTq)Tr should be a theorem. In the present
system, this does not hold and is replaced by (pTq) Tr <> pT (q & 1).

On the basis of the intended interpretation given with the informal
presentation of the logic of change, it is possible to show that it may
be represented as a definitional extension of a tense logic. A T-ex-
pression of the form ¢Ty is to be read “¢ now, and on the next
occasion y”’. In the F-calculus, to be described, this is simply
¢ & Fy, where F is to be read ‘“‘on the next occasion”. Such a
definition satisfied the requirements for the logic of the book but not
the extension as earlier presented. Rather than the associativity
of T, it gave the theorem which Professor von Wright now employs.

The F-calculus is a modification of the logic of the future presented
in Time and Modality, by Professor A. N. Prior (). The language is
that of the propositional calculus (translated from Professor Prior’s
Polish notation) augmented by the one-place connective F (for
Professor Prior’s F1). The axioms are a subset of the original set:

A0 Any set of axioms which yield the complete classical pro-
positional calculus by means of substitution and detachment,

Al ~Fp -F ~p,

A2 F ~p — ~ Fp,

A3 F(p »q) - (Fp - Fq).

The rules are detachment, substitution (of F-expressions for varia-
bles) and RF: if — ¢, then — F ¢.

By adding to this system the definition pTq =atp & Fq, the
results of the informally presented logic may be reproduced for the
axiomatized T-calculus, in light of the modified position on extended
T-expressions which the axioms entail. However, it is now possible
to show that the two logics are, in fact, equivalent, for, within the
T-calculus, Fp may be represented as (pv ~p) Tp. In the light of
Professor von Wright’s proof of the completeness of the T-cal-

quium, November 1, 1963. See also note 1, p. 297 of the article described at 2.
(6) Oxford, Oxford University Press, 1957, p. 13.
The modifications were suggested by an unpublished system of Professor
Dana Scott, discussed in a talk before the Southern California Logic Collo-
quium, October 18, 1963.
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culus (7), the F-calculus is also shown to be complete by this
equivalence.

The two systems for the future may be mirrored for the past,
yielding complete systems by the same proofs. The logics of past and
future may then be combined to yield complete systems which
embrace mixed expressions, referring to both the past and the future,
as well expressions which go entirely in one direction.

The T-calculus as a definitional extension of the F-calculus

In this proof, it is unnecessary to consider AO or the rule of de-
tachment as they are the same for both systems. The same is true
for the rule of substitution once it is noted that, under the definition,
all T-expressions are F-expressions. For the proof of the remaining
T-axioms and the rule of extensionality, the following theorems of
the basic F-calculus will prove useful. It should be noted, for the
proof sketches for these theorems, that extensionality holds every-
where except within the scope of an F, by propositional calculus.

FT1 F(pvq) - (FpvFq)

1. F((pvq) = (~p—>q)) propositonal calculus (pc), RF
F(pvq) > F(~p>q) 1, A3 (p/pvq, q/ ~p—>q), det
F(~p—-q) - (F~p->Fq)A3 (p/~p)

F~p« ~Fp Al, A2, pc
F(~p—+q) > (~Fp—>Fq)3, 4, ext
F(pvq) - (~Fp—-Fq) 2,5, syl
(~Fp-Fq) -~ (FpvFq) pc

F(pvq) —» (FpvFq) 6, 7, syl

00 SN W ke L ko

{As the remaining proofs follow the same pattern the steps will be
indicated only by the annotation).

FT2 (Fp & Fq) —~ F(p & q)
FT1(p/ ~p, q/ ~q), pc; Al (p/ ~pv ~q), syl; pc, RF,
A3 (p/~(~pv ~q), q/p & q), pc; Al, A2, pc; Al (p/q),
A2 (p/q), pc; ext, pc.

(") “And Next”, section 8, p. 303 f.
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FT3 F(p &q) - (Fp & Fq)
pc, RF, A3 (p/p & q, q/p); pe, RF, A3 (p/q & q); pe.

FT4 (FpvFq) - F(pvq)
FT3 (p/ ~p, 9/ ~q), pc; Al, A2, pc; Al (p/q), A2 (p/q), pc;
ext, ext; pc, syl; Al (p/~p & ~q), syl; pc, RF,
A3 (p/~(~p & ~q), q/pvq), syl.

FT5 (Fp -~ Fq) - F(p »q)
FT4 (p/ ~p); pc, RF, A3 (p/ ~pvq. q/p—>q); syl; Al, A2,
pc, ext; pc, syl.

FT6 F(peq) - (Fp—Fq)
pc, RF, A3 (p/pq, q/(p ~>q) & (q>p);
FT3 (p/p —>q, q/q ->p), syl; A3, FT5, pc; A3 (p/q, q/p),
FTS5 (p/q, q/p), pec; ext, ext; pe, syl.

FT7 (Fp—Fq) - F(p+~q)
pc, RF, A3 (p/(p +q) & (q>p), a/p<q); FT3 (p/p—>q,
a/q-p), syl; A3, FT5, pc; A3 (p/a, a/p), AS (p/q, a/p),
pc; ext, ext; pc, syl.

FT6, and FT7, together with RF and the principle of extensionali-
ty for the propositional calculus, justify the rule of extensionality for
the F-calculus. As noted, it is only necessary to show that inter-
substitutivity holds within the scope of F. Suppose, then, ¢ <> y
is a theorem. It follows f(¢) < f(y) is a theorem, where f(’) is any
truth function of a single sentence. By RF, F(f(p) « f(vy)) is a
theorem. By FT6 and FT7 together, this is equivalent to Ff(¢) <«
Ff(y). This latter is, therefore, a theorem. The components may be
substituted for one another by the extensionality of the propositiona
calculus.

Given extensionality and the five equivalences, represented by the
ten theses of the F-calculus so far stated, the T-axioms follow imme-
diately from familiar theorems of the propositional calculus:

FT8 (pvq) & F(rvs) « (p & Fr)v(p & Fs)v(q & Rr)v(q & Fs)

which, by the definition, is TAIl, follows from an instance of the
thesis of distribution of & over v by the equivalence FT1-FT4;
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FT9 (p & FqQ)&(r & Fs) «» (p & r)&F(q & s), i.e., TA2 is derived
from a thesis of the commutativity and associativity of & by FT2-
FT3;

FT10p < (p &F(qv ~q)), TA3, comes from p < (p &(qv ~q))
by extensionality based on the thesis stating that (qv ~q) and
F(gv ~q) are equivalent as both are theorems;

FT1l ~(p & F(q & ~q)), TA4, is from ~(p & (q & ~q)) by a
procedure similar to that used for FT10, though now requiring
Al-A2.

Finally, the definition of F in terms of T, to be given in the next
section of this paper, represents a valid equivalence if T were
defined in terms of F:

FT12 Fp < ((qv ~q) & Fp), which is merely another instance of
the propositional theorem mentioned in TF10, under the commu-
tativity of &.

The F-calculus as a definitional extension of the T-calculus

To the T-calculus is added the definition of F:
Fp =ar (qv ~q) Tp. As in the previous section, A0, substitution,
and detachment need not be considered. For the proof of the re-
maining axioms and the rule RF, the following theorems will be
needed.

TT1 (pTQv(pT ~qv(~pTqv(~pT ~q)

1. (pv~p) pe

2. (pv~p)T(qv ~q) 1, A3 (p/pv ~p), pc

3. (pTqv(pT ~q)v(~pTq)v(~pT ~q)

2, Al(q/ ~p, 1/q, s/ ~q), pc

TT2 ~(pTq) > (pT ~qv(~pTqv(~pT ~q)  TTI, pc
TT3 (pT~q) > (pTq)

1. pTQ&ET ~q) ~ (p&p)T(q& ~q) A2 (r/p, s/ ~q), pc

2. (pTQ)&(pT ~q) - pT(q& ~q) 1, pe, ext

3. ~(pT(q& ~q)) A4
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4. (pT ~q) - ~(pTq) 2,3, pc
TT4 pT(qvr) = (pTqv(pTr) Al (g/p, 1/q, s/1), pc, ext
TT5 ~((p& ~p)Tq)

1. (p& ~p) < (p& ~p)T(qv~q) A3 (p/p& ~p)
2. (p& ~p) < ((p& ~p)Tv((p& ~p)T ~q)
1, TT4 (p/p& ~p), pC
3. (pv ~p) < ~((p& ~p)TqQ)& ~((p&~p)T ~q) 2, pc, ext
4. (pv~p) > ~((p& ~p)Tq) 3, pc
5. ~((p& ~p)Tq) 4, pc
TT6 p&(qTr) - (p&q)Tr

L. (pT(qv ~q)) & (qTr) > (p&QPT((qV ~q)&1)
A2 (q/qv ~q, 1/q, s/1)
2. p&(qTr) - (p&qQ)Tr 1, A3, ext, pc, ext
The F-axioms now follow immediately.
TT7 ~((@v~q)Tp) > (@Qqv~qT ~p

1. ~((qv~q)Tp) > (qv~qT ~p)v(~(qv~q)Tp)
v(~(qv ~q)T ~p) TT2 (p/qv ~q, q/p)
2. ~(~(qv~q)Tp) TTS (p/q, q/p), pc, ext
3. ~(~(qv~q)T~p) TT5 (p/q, 9/ ~p), pc, ext
4. ~((qv~qTp) ~{(qv~q)T~p) 1,23, pc
By the definition of F, this is FAL.
TT8 ((qv~q)T ~p) » ~((qv ~q)Tp) (FA2)
TT3 (p/qv ~q, q/p)
TT9 (qv~q)T(p—>q) - (((qv~q)Tp) >((qv~q)Tq)) (FA3)
1. (qv~q)T(p>q) > (qv~qT(~pvg)  pc, ext
2. (qv~q)T(p>q) - ((qv ~q)T ~p)v((qv ~q)Tq)
1, TT4 (p/qv ~q, q/ ~p, £/q), pc
3. (qv~q)T(p—>q) - (((qv ~q)Tp)>((qv ~q)Tq))
TT7, TTS, pc, ext, pc, ext

The rule RF is justified as follows. If ¢ is a theorem, then,
by pc, ¢ <> (pv~p) is a theorem. By A3 (p/qv ~q,q/p) and
pc, (qv~q)T(pv ~p) is a theorem. Therefore, by extensionality,
(qv ~q)T ¢ is a theorem.

Finally, it will be useful to have that the definition of T in terms of
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F,as used in the last section, represents a valid equivalence when F
is defined in terms of T.

TTI10 pTq <> (p&((qv ~q)Tq)) TT6 (q/qv ~q, r/q), pc, ext

The completeness of the F-calculus

A T-expression is said to be elementary if its propositional com-
ponents are several occurrences of the same variable, each with or
without a prefixed ~, e.g. pT ~pTp. An important meta-theorem
of the T-calculus, stated already in Norm and Action (%), is that
every T-expression is equivalent to an expression in full disjunctive
normal form, each of whose truthfunctional components is an ele-
mentary T-expression. By applications of A3, it can be brought that
all of these expressions are of the same length (contain the same
number of T’s). A T-expression is said 1o be a T-tautology if its
equivalent full disjunctive normal form is a disjunction of all possible
conjunctions of elementary T-expressions, one for each variable.
That is, if m is the number of distinct variables in the original for-
mula and n 1he length of the longest T-expression in the original
formula, the original formula is a tautology just in case its equivalent
full disjunctive normal form has (22+')™ disjuncts, each containing
m conjuncts. Professor von Wright has shown that all T-tautologies
are theorems of the T-calculus (°).

Let an F-expression be called elementary if it is a propositional
variable or the result of prefixing an F to an elementary F-expres-
sion. An F-expression may then be said to be in F-normal form if all
iws truth-functional components are elementary F-expressions. By
the first ten theses of the F-calculus, it is clear that every F-expres-
sion is equivalent to an expression in F-normal form. If m is the
number of distinct elementary F-expressions in the F-normal equi-
valent of a given expression, that given expression is an F-tautology
Jjust in case its F-normal equivalent has the value truth on every line

(®) p. 30. see also “And Next”, sect. 7, pp. 300-303 and H. N. CASTANEDA,
“The Logic of Change, Action, and Norms”, Journal of Philosophy, LXII,
no. 13 (June 24, 1965), pp. 333-4.

(%) See reference at note 7.

225



of a 2™ line two-valued truth tabel in which the lines are determined
by values assigned to the elementary F-expressions in the usual way.

Given an F-tautology in F-normal form, an equivalent expression
in full disjunctive normal form may be obtained directly from the
truth table. Each disjunct represents a line of the table, and within
each of these each conjunct is either a column heading or its negation,
depending on whether or not that expression has the value truth for
that line. This full disjunctive normal form is, of course, an F-tauto-
logy. It may now be converted into a T-expression by FT12 and the
definition of T. Further manipulation, using TA3, TAl, and pc,
will bring this expression into the form mentioned in the first para-
graph of this section.

This resulting formula is clearly a T-tautology, since only tauto-
logies (instances of pv ~p) have been added to a tautological for-
mula. This formula is, therefore, a theorem of the T-calculus, by
Professor von Wright’s completeness results. By the reduction given
above, it is, thercfore, a theorem of the F-calculus. But its equival-
ence to the original F-expression is also a theorem of the F-calculus.
Therefore, the original F-expression is a theorem of the F-calculus.
Hence, the F-calculus is comp!ete in the sense that all F-tautologies
are theorems.

The theorems of the F-calculus are exactly the F-tautologies.
From the way that F-tautologies are defined it is clear that each
has as equivalent F-normal form an instance of a propositional
tautology. The three axioms are F-tautologies by this criterion and
the rules of inference preserve this property.

The logic of the past

From the T-calculus and the F-calculus it is possible to obtain
analogous complete logics of the past. The most direct way is 1o
replace F in the axioms and rules of the F-calculus by P, “on the
latest (past) occasion”, and similarly T by Y (for Professor von
Wright’sT) (°) in the T-calculus. As the furure-looking systems and

(1) “And Next”, sect. 9, p. 304.
The choice of Y was suggested by Professor Prior’s report of an unpublished
system of Professor Dana Scott.
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the past-looking ones are formally identical, all of the results for
one direction hold also for the other.

It would be useful to combine the F- and the P-calculi and the
T- and the Y-calculi. Again, the most direct way is to add to the
F-calculus and the T-calculus a mirror image rule (MI) (*Y): if ¢
is a theorem of the PF-(YT) calculus, then the result of replacing
F (T) by P (Y), or vice versa, throughout ¢ is a theorem of the
PF- (YT-) calculus.

This approach requires also a change in the formation rules to
allow expressions which contain both F and P (T and Y). When
this is done, a problem of interpretation arises. Within the YT-
calculus it can be shown that the following is a theorem, by Al, MI,
pc, A3, and extensionality :

ETEYPIVETEY ~pIv(PT(~pYP)V(pT(~pT ~p))v
(~pTEYPIV(~pTPY ~p)V(~pT(~pYP)V(~pT(~pY ~p))

In this, the second, fourth, fifth, and seventh disjuncts go against the
intended interpretation. The second, for example, says that now p is
true and on the last occasion before the next occasion ~p is true.
But the last occasion before the next occasion is just now. It is not
possible to prove within the YT-calculus, however, that p T(pY ~p)
implies a contradiction. Similarly, in the PF-calculus, p and PFp are
independent of one another. To retain the interpretation, a new
axiom must be added to each system.

The choice of an axiom for the PF-calculus is easy :

A4 p ->PFp
For the YT-calculus several possibilities present themselves. Only
one of these, however, is similar in form to any of Professor von
Wright’s original axioms, the others being only conditionals :

A5 ~(T@QY ~p).

The two new systems are still equivalent. To show this, it is
sufficient to show that the new axioms are equivalent as the results
for the other axioms and the rules are not affected by the additions.

Within the PF-calculus, the converse of the new axiom is a theo-
rem (the initial 27 theorems are FT1-12, their mirrors images and
the mirror images of the axioms):

(11) This rule was suggested by its use in several papers of Professor Prior.
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PT28 PFp —»p

1. ~p >PF~p A4 (p/ ~p)
2. ~PF~p »>p 1, pc, ext
3. PFp »p 2, Al, A2, pc, ext, Al, A2, pc,

MI, (p/Fq), ext, pc
The equivalent of TAS, under the definition, follows :
PT29 ~(p&F(q&P ~p))
1. (p&Fq&FP ~p) > (p&Fq& ~p)
pc, A4, PT28, pc, MI, ext
2. ~(p&Fq&FP ~p) 1, pc
3. ~(p&F(q&P ~p)) 2, PT2, PT3, pc, ext

For the reduction of the PF-calculus to the YT-calculus, the fol-
lowing theorems are required (as before, the first 24 theorems are
TT1-10, their mirror images and the mirror images of the axioms):

YT25 pTq - p
1. p - pT(qv ~q) A3
2. po(@TQv(pT ~q) 1, TT4 (r/ ~q), pc
3.pTq »p 3, pc

YT26 pTq - (rv~1)Tq
L (p&(@v ~1)T(q&q) ~(pTq)&((rv ~1)Tq)
A2 (q/rv ~r, 1/q, 8/q), pc
2. pTq - (rv ~1)Tq 1, pc, pc, ext
YT27 pT(qYr) »r
1. pT(qYr) - (p&(rv ~1))T(qYT) pc, pc, ext
2. pT(QY1) > ((PTQ@YD)&ETQYD)))v((pT(qY)&
(~rT(qY1)) I, pe, ext, Al (p/p&r,
a/p & ~r1,1/qYT, 8/qYT)
ext, A2 (q/r, r/q YT, s/qYT)
ext, A2 (q/ ~1, r/qYT, s/qYT)

ext
3. ~(~rT(qYTr)) AS (p/ ~1), pe, ext
4. pT(qYr) >rT(qYr) 2,3, pc, pc
5. pT(qYr) »r 4, YT25 (p/r, q/q Y1), pc
YT28 pT(qYr) »pTq
1. geqY(@v ~r1) A3 (p/q, q/r), MI

2. pTq o pT(qY(rv~1)) pc, 1, ext
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3. pPTq < (pT(QYD)V(pT(qQY ~1))2,TT4 (p/q, q/r, 1/ ~1),
MI, ext, TT4(q/qYT, r/qY~T1)

ext.
4. (pT(qYr) - pTq 3, pc
YT29 (pT(qu)) — (p&n)Tq
1. pT(@Yr) »>r YT27
2. pT(qYr) - pTq YT28
3. pT(qYr) - (p&n)Tq 1,2, pc, TT6 (p/r, q/p, r/q), pc
4. (p&r)Tq »1&(pTq) A2 (q/r, 1/q, s/q), pc, YT25

(p/r), pc
5. pTq = (pT(QYD)v(pT(qQY ~1))
pc, A3 (p/q, g/r), MI, ext,
Al (p/q, s/ ~1), pc, MI, ext
TT4 (g/qYr, r/qY ~1), pc
pT(QY ~1r) > ~r YT27 (r/ ~1)
(p&r)Tq »r&((pT(q Y1)V ~1) 5, 6, pc, 4, pc
(p&r)Tq - pT(qYr) 7, pc
(pT(qYr), & (p&r)Tq 3,8, pc

© % N

PA4 follows immediately by substitution (p/qv ~q, q/qv ~q, 1/p)
in YT29; with the help of pc and ext:

YT30p ~(qv ~qT((qv~q)Yp)

Both of these systems are complete. This is most easily seenin the
case of the PF-calculus. By virtue of A4 and its converse, every
formula in which an F occurs within the scope of P is equivalent to
one without this overlay. By MI, the same holds for formulae with P
within the scope of F. Formulae without overlay divide into two
parts, one purely P-expressions, the other purely F. To make this
explicit, the formula may be reduced to full disjunctive normal form
and the separation made within this form. Clearly, the whole will
be a tautology just in case the F disjunct is or the P disjunct is.
Whichever disjunct is a tautology, it is a theorem of the PF-calculus
since it is a theorem of the P-calculus or of the F-calculus, by the
completeness results for these separately. Within the PF-calculus,
this theorem implies the entire full disjunctive normal form, hence
also the original mixed formula equivalent to it.
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To show the completeness of the YT-calculus, the followign theo-
rems will be needed :

YT31 (pTQYr«—(pYr)Tq

L (pT@)Yr »pTq YT25, MI, (p/pTq, q/r)

2. (pTQ)Yr - (pv~p)Yr YT26, MI, (p/pTq, q/r)

3. (pTQYr —»p 1, YT25, syl

4. (pTq)Yr - (pv~p)Tq 1, YT26 (r/p), syl

5. (pTQ)Yr »pYr 2, 3, pc, TT6 (q/pv ~p), MI,
pe, pc, ext

6. pTqQ)Yr - (pYr)Tq 4,5, pc, TT6 (p/pYT,

q/pv~p, 1/q), pc, pc, ext
The converse is proved in a similar manner.

YT32 (pTq)Yr < (pTq)&(pYr)

- (pTQYr >pTq YT25, M1, (p/pTq, q/r)
. (pTQ)Yr - (pYr)Tq YT3l
. (pTQ)Yr »pYr 2, YT25 (p/p Y1), syl

. (PTQYr > (pT&(pYr) 1,3, pc

. (pPTQ&(PYr) - pYr pc

. (pTQ&((PYr) —(pv~p)Yr 5, YT26 (g/r, M1, syl

. PTQ&(pYr) - (pTq) pc

8, PTQ&(pYr) - (pPTqQYr6, 7, pc, TT6, MI, (p/pTq,
QIPV Np)s Pc

9. pTQYr « (pTqQ&(pYr) 4, 8, pc

NN AW N

Every occurrence of a Y within the scope of a T, or vice versa,
must be either on the right or on the left. If it is on the right, the
formula may be reduced by YT29, or its mirror image, to a purely T,
or Y, expression. If it is on the left, YT32 performs a similar function.
The remainder of the argument is essentially the same as that for the
PF-calculus.

University of California John E. CLIFFORD
Los Angeles
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