A BASIS FOR SET THEORY

Bede RUNDLE

Although there is still some dispute as to whether truths of
number theory enjoy the status of logical truths, it is generally
thought that, like logical truths, they are in some sense necessary and
non-arbitrary. What this necessity consists in is likewise a matter of
dispute : for some it is merely that we do not allow them to be false,
for others it is rather that, the axioms and/or rules of arithmetic
being as they are, we cannof allow them to be false. At any rate,
whatever the sense and source of this necessity, it is commonly
ascribed to arithmetical truths, and almost as commonly denied of
propositions of set theory, where there appears to be neither a logical
nor even a psychological obstacle to denying even the least contro-
versial postulates. For instance, the number-theoretic proposition,
“if a divides b and b divides c, then a divides ¢’ appears on little
reflexion to be inescapable and non-arbitrary in a way not emulated
even by a set-theoretic principle as elementary as the union axiom
— “for any two sets there is a set containing just those elements
which are in either” — but confronted with this axiom it is natural
to react much as one would to a fiat or legislative pronouncement :
“you can say there is (to be) such a set if you wish (provided it
coheres with the other postulates accepted), but nothing forces
its adoption upon us”. Such a reaction is justified, given the custom-
ary presentations of set theory, and, in particular, the current eluci-
dations of the notion of set. However, it is possible to arrive at a
conception of sets in terms of which set-theoretic propositions may
appear just as inescapable as those of number theory, a conception
which is to some extent implicit in the actual practice of logicians,
though not evident in their informal explanations of set-theoretic
terms.

Before indicating how 1 believe set theory should be presented, I
shall make a few obvious remarks about arithmetic. In order to
understand even the simplest arithmetical truths, it is necessary to
have some grasp of the series of natural numbers, which, in terms
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of the series commonly used, means being able to recite 0, 1, 2, 3, ...,
preferably indefinitely, and certainly in the right order. Any truth
of arithmetic is a truth concerning the members of this series, from
the truths expressed in elementary computations to the general
propositions of number theory proper, and both the intelligibility
and the necessity of these various truths depend in an obvious way
on the series of numbers : the series confers intelligibility, just in the
sense that it provides the specific constants and a determinate range
for the variables occurring in equations and general laws, whilst
necessity, in one of its senses, is a consequence of the fixity of the
series. That is, the rule for generating the numbers prescribes their
ordering in an unambiguous fashion, fixing once and for all the
relative positions of the numbers and therewith their individual and
relational properties. Given that this rule leaves no room for repeti-
tions, omissions, or other re-arrangements which might vie with the
customary order, there remains no factor allowing of variation
which could lead to a change in the truth-value of a proposition once
established as true (or false). By way of analogy, consider a system
based on the alphabet in its usual order, and featuring a three-place
predicate, Bxyz, meaning “x is between y and z”. In this system we
could formultate such truths as Bgck, — Bthp, Bxyz -— Byzx,
vX(Bxpr -x = q), gxgy (Bxdi & Bydi & x # y), — propositions
quite without interest, but nonetheless necessary: as long as the
alphabet is regarded as fixed in its familiar order, competing alterna-
tives to the above truths are precluded. Though the two systems agree
in this respect, there is a difference between the series of numbers and
the series of letters in the alphabet, in that the former proceed by
rule rather than by rote : there is nothing comparable to the uniform
formation of successors in the ordering of the alphabet, but the order
of the individual letters must be committed to memory as brute fact.
Indeed, it is the availability of a generating rule prescribing what is
to count as a number which is what is fundamental to number
theory; the actual generation of numbers according to this rule
generally being of importance only at the level of explicit calculations.

Turning now to set theory, we find that at first sight the situation
is rather different from that which obtains in arithmetic. Thus
historically, set-theoretic axioms were not suggested by reflexion
upon the properties and relations holding for members of a given
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cequence of sets. Again, pedagogically, it is not generally felt ne-
sessary to specify such a sequence with the aim of justifying set-
theoretic theses by indicating how they hold when interpreted with
respect to this sequence. Failing the provision of a sequence standing
to the axioms of set theory in the way that the natural numbers
provide the rationale for the axioms of number theory, we are left
with a set or sets of axioms most of which are likely to impress by
their arbitrariness rather than by their inescapability. Now there is
at least one reason why this unfortunate situation may be held to be
inevitable, for if we think of sets as (primarily) determined by pro-
perties, then, since no listing of properties is ready to hand, no cor-
responding generation of sets appears to be available. Moreover,
Russell’s paradox, and others, may make us think twice about the
security of this procedure, even if it should prove feasible.

Instead of trying to work with the notion of sets as determined by
properties, I propose to abandon this approach as far as possible,
and to use a more concrete analogy as the starting point for the
elucidation of the concept of set. Texts on set theory generally
make no claim to provide a non-trivial characterization of the notion
of set, but the unhelpfulness of synonyms, such as “class”, and the
misleadingness of near-synonyms, such as “collection” and “tota-
lity”, are freely acknowledged. However, the abstract notion of a
set as employed by logicians seems 1o me to have a close analogue
in the notion of a box. The analogy of a heap is some sort of an
approximation, but a null heap is not easy to grasp, whilst an empty
box gives rise to no qualms. Moreover, it is clearer how a box forms
a unit, something over and above its “members”, the objects in it,
than a heap is something over and above the things which constitute
it — take everything out of a box and you are left with an empty
box, but a box nonetheless, something in its own right; remove
everything constituting a heap and nothing remains, but an empty
heap would appear to be a non-existent heap. Suppose, now, we
were interested in developing a “theory of boxes”, a theory concern-
ed with abstractly possible nestings of boxes within boxes. A natural
procedure would be to start by specifying a number of individuals,
a1, ..., an, thought of as eligible for containment in boxes. We
might then lay down that any one or more of these could be placed
in a box, thus: {ai1}, ..., {asn}, {ai, a2}, ..., {a1, an}, ..., the braces

173



here symbolizing boxes. We could then allow the formation of
boxes containing just one box: {{a:}}, {ai, {a=}}, etc., boxes con-
taining two boxes, three boxes, and so on for any finite number of
boxes. The abstract system of boxes generated in this way most
likely goes beyond the possibilities open to us in any actual construc-
tion and manipulation of physical boxes, but certain fundamental
features of such boxes are preserved : for instance, no allowance is
made for the containment of a box within itself, and each box
contains at most finitely many other boxes. Within these natural
limitations, this system of boxes enjoys a measure of completeness
in its coverage of all boxes of a certain sort; or, at any rate, it
could be used to give a clear sense to talk of all boxes in a way which
appears intuitively satisfactory.

Let us now ask how this abstract system of boxes differs from a
system of sets. It might be suggested that boxes differ from sets
with respect to their criteria of identity. Thus, on the one hand,
we may have two empty boxes, but there is at most one empty set.
On the other hand, whilst one set may be a member of many distinct
sets, one box cannot be in a number of distinct boxes. Both these
apparent differences may be removed by the reasonable stipulation
thart boxes, just like sets, are to be accounted the same if their mem-
bers are the same. In this sense, two boxes are the same if they are
both empty, so vacuously have rthe same members, whilst the same
box may be in any number of distinct boxes. However, the disanalogy
is not yet entirely removed, since this explanation, though adequate
to boxes, takes no account of individuals : one individual can be in
a variety of distinct sets, but not in more than one box at a time.
There is more than one way of overcoming this discrepancy, but I
propose simply to ignore individuals altogether, and rest content
with no more than boxes. For mathematical purposes there is no
need to allow forindividuals in set theory, since nothing ofinterest
can be said about them within such a framework, though if their
inclusion is thought desirable, what I have to say about sets calls
for only slight modification to meet the case. So, corresponding to the
system of box theory taking the empty box as starting point we have
the theory of pure sets, sets built up solely from the null set. Not
only is the parallel between pure box theory and pure (finite) set
theory so close as to involve perhaps no more than a difference in
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wording, but the procedure which I suggested for forming all
arrays of boxes within boxes coincides with the procedure for spe-
cifying what are known as “natural”” models for set theory. This
procedure, restricted to pure sets, can be expressed more precisely
by the following conditions (* A’* symbolizes the null set) :

(1) A isaset.

(2) If Zy, ..., Z, are sets, then so is {Za, ..., Zn}.

(3) Nothing else is a set.

This way of providing a domain of sets related to the axioms of
(finite Zermelo-Fraenkel) set theory as the natural numbers are
related to the axioms of number theory makes no use of the notion
of a set as given by stipulating a property which its members are to
satisfy. This does not necessarily mean that the two conceptions of
sets are in conflict, but the intensional approach seems to me to be
of only secondary interest. It is true that sets are often introduced in
purely intensional terms, as when we speak or the set (more com-
monly : class) of dogs or of red objects, butin its informal use this
terminology is generally so much dispensable verbiage : saying that
Fido is a member of the set or class of dogs is no more than a pon-
derous circumlocution for “Fido is a dog”, a proposition which does
not commit us to the existence of sets in any significant sense (*).
Set terminology acquires significance when sets are ascribed a
unitary character, when propositions concerning them do not
reduce to instances of schemata of first-order logic, and this unitary
character is in no way elucidated by appealing to an alleged corres-
pondence between sets and properties. Admittedly, the approach via
properties is not without its attractions — e.g., specification of a
property provides a rationale for the grouping of objects together
in a set — but by and large the present procedure appears more
satisfactory. Thus, as long as we confine ourselves to the property
approach, the conception of a set as something over and above its
members is bound to remain mysterious, whereas the analogy with
boxes serves to make intelligible the notion of set involved in the
recursive specification given above. Again, the conception of sets
as determined by arbitrary properties, though more comprehensive,

(%) There are, of course, everyday uses of “set” which are more than jargon,
as in “a set of matching knives and forks™, but such sets are not the logician’s;
nor are those given by collective nouns, e.g., flock, herd, family, group.
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threatens to be comprehensive to the point of paradox, and in any
case the theory of sets as a branch of mathematics makes no use
of properties in any unrestricted sense of this term. It is true that
we do have the Axiom of Separation, yzgyyx(x ey <> x ezvo(x)),
which is said to enable us to form, given a set z, a set y containing
just those members of z which have the property ¢, but the “pro-
perties’’ appealed to here are confined to those given by conditions
expressible in terms of “ €” and “="". There is no question of using
arbitrary descriptions to generate new sets, but the axiom merely
allows us to form subsets of sets already secured.

If, then, we take the notion of set as prior to that of property,
reverse the usual presentation of set theory by starting with the sets
as given by conditions (1), (2) and (3), and consider set-theoretic
propositions in the light of this interpretation, we find that the status
of such propositions is, in point of necessity and non-arbitrariness,
much the same as that enjoyed by those of arithmetic. In a given
caseitmay benot casy to tell whether a proposition holds under this
interpretation, but the provision of a determinate domain of sets
gives a clear sense to the notion of truth-conditions for such propo-
sitions and provides an alternative to the conception of postulates
as mere stipulations serving to generate sets. We are not, of course,
compelled to adopt the conception of sets here presented, but there
may well be acceptable alternatives based on different analogies.
The point is rather that some prior specification of sets seems to be
called for if there is to be any chance of judging the adequacy of
suggested postulates. For the sets yielded by the above conditions
a suitable axiom system would be the following :

Extensionality : yx(xey«—rxez) >y =z

Pairing : AYVX(X Ey X = ZVX = W)
Sum: AYVX(X €y —gZ(X EZAZ €W))
Power Set : gAyvx(x ey«x Cz)
Separation : AYVX(X €y X €z A ¢(X))

Regularity : X # A->gy(y exavz(z ey - —(z €x)))
Transitive Hull : gyyx(x ey «>yw(trans w Az ew —>X w))

All but the last of these axioms are familiar from standard for-
mulations of Zermelo-Fraenkel set theory without an axiom of

176



infinity. The last, due to Kurt Hauschild (2), enables us to form, for
a givenset z, its “transitive hull”: UzU UUzU UUUzU.... This
axiom, along with the other six, can be shown to hold in the intended
interpretation, and for our purposes it has the added attraction of
enabling us to prove that any model of these axioms in which all
sets are finite is isomorphic to the natural model (3). The categoricity,
and hence completeness (as to consequences) of this axiom set is not
thereby assured, since the isomorphism holds only between models
whose sets are finite, but even this limited categoricity constitutes a
strong point in favour of the adequacy of these axioms to their
intended interpretation. Morevover, as indicated earlier, this inter-
pretation itself leaves nothing to be desired in its coverage of all
finite sets constructible from an initially given set.

While there is no difficulty in providing an underlying basis of sets
for a theory encompassing individuals, the extension to transfinite
sets stretches to breaking-point the analogy of sets with boxes.
This is not surprising, but it might well be argued that to treat an
infinite totality as a determinate unit, as something more than an
indefinite or arbitrarily large totality, just is to misapply an analogy
with finite sets, however we conceive of these. Even if we do find the
notion of an infinite set intelligible, there is still the question of de-
ciding just how far into the transfinite we are going to go, a decision
which is not taken merely by agreeing to allow for more than finite
sets. Thus, using the functions ¢ defined

¢(0) = A,
¢(a + 1) = the power set of ¢(a).
For A a limit ordinal, ¢(A) = the union of the sets ¢(B) for p < A,
we can continually extend our natural model by appropriate choice
of A, adjusting our axiom set to the successive domains by means of
suitable axioms of infinity. There is an appareent difficulty here, in
that the machinery necessary for generating the requisite ordinals is
not generally available until the theory of sets has itself been suffi-
ciently developed, though, just as there is no necessity to present

(*) Kurt HauscHILD, “Modelle der Mengenlehre, die aus endlichen Mengen
bestehen”, Zeitschrift fiir mathematische Logik und Grundlagen der Mathematik,
Band 9, Heft 1, (1963), pp. 7-12, “trans w*’ abbreviates
"yuyv(uevavew —>uew)i”,

(*)HAUSCHILD, op. cit., pp. 11-12.
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arithmetic in a set-theoretic framework,so ordinal number theory
allows of an independent development (*). Supposing, then, that we
have succeeded in specifying a domain of sets, I wish to emphasize
that the necessity of a corresponding set of axioms is in no way
impugned by the arbitrariness of the stopping-point of the progres-
sion of sets into the transfinite. The necessity for postulating an
axiom of infinity has been taken to show the breakdown of attempts
to reduce mathematics to logic, but while I do not wish to maintain
that such an axiom is within the province of logic, I do not believe
that its status is significantly different from that of the other axioms
of set theory. It may be possible to represent set-theoretical theses
as truths of logic, but the conception of sets which I have been advo-
cating suggests a more immediate parallel with geometry and other
systems of pure mathematics. Thus, in setting up a mathematical
theory we may proceed by considering certain physical entities and
operations in a more or less abstract way, in the sense that we pre-
scind from certain features of the actual or possible phenomena being
envisaged.In geometry, for instance, we set aside the physical diffi-
culties which might actually be met in constructing a figure of a given
shape and size. In the theory of combinations and permutations we
disregard the possibility that certain re-arrangements might be too
numerous for anyone to accomplish. For the purposes of theory,
possibilities which in practice might be quite real — that objects
should be mislaid or decay, that anyone should have the time,
energy or ability to perform a certain action, — are ignored. This
elimination of possibilities in the idealized theory is the source of
the necessity of its propositions, in that the exclusion of certain
possibilities means the exclusion of falsifying conditions. It is worth
emphasizing that the immunity to falsification enjoyed by such pro-
positions depends on this restriction of possibilities and not on the
creation of a new domain of abstract entities. Abstraction leaves
the original entities intact, bringing with it a change in viewpoint but
not in subject matter. There is no call for additional entities; indeed,
no call for any actual entities at all, but it suffices that we should be
able to understand the supposition that there should be entities of a

(4) Cf. Gaisi TakeuTI, “A Formalization of the Theory of Ordinal Numbers”,
The Journal of Symbolic Logic, vol. 30, (1965), pp. 295-317.
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certain kind, and that we should be able to prescind from certain
of their features. Indeed, it is perhaps misleading to speak of the
conditions defining natural models as providing a means of generat-
ing sets, since this suggests that some actual construction of sets,
whether on paper, in the mind, or elsewhere, is a necessary prelimin-
ary. These conditions specify what is to be admitted as a set just as
a rule for generating numbers specified what was to count as a
number. Any actual application of the rules to construct sets is of
only secondary importance, like the use of diagrams in geometry
as an aid to understanding. However, this fact does little to modify
the problematic character of infinite sets, since there is still the ques-
tion of whether there could be sets of this sort. In the case of finite
sets, the ideographical representation given by the brace notation
may offer some sort of reassurance to the nominalistically inclined,
but no representation of an actual infinite can be provided in this,
or it would appear, in any other way. Still, granted that we can at-
tach a coherent sense to the conception of an infinite set, the justi-
fication of an axiom of infinity is straightforward : as with the other
axioms adopted, it is justified by its holding in any domain confor-
ming to the initial prescription of allowable sets; it functions not
as a creative postulate, but as a description of the contents of any
such domain. To a large extent it may be arbitrary just what sets
we allow beyond finite sets, but this arbitrariness does not extend
to the propositions which are true of a domain once fixed.
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