ON THE TRANSFORMATION OF CLOSED
SEMANTIC TABLEAUS INTO NATURAL AND
AXIOMATIC DEDUCTIONS*

E. M. BARTH

1. Preliminary remarks

In his books and articles E. W. Beth has often remarked that it
is always possible to transform a closed semantic tableau for a se-
quent K/Z, with one formula Z in the consequent, into a natural
deduction of a sort very similar to Gentzen’s N-systems. With res-
pect to implicational logic, the rules according to which one can
perform this transformation are sufficiently clear. But when we go
outside of this field the system of rules needed is present in Beth’s
work only in a rather embryonic form. The reason for this lies in the
fact that Beth never presented the method of deductive tableaus
systematically except for implicational logic, while the conversion
of a semantic tableau into a natural deduction in general will consist
in adding certain formulas, so that it can be read as a deductive
tableau (*). If this is done correctly and systematically, the subse-
quent transformation of the deductive tableau into a natural
deduction is a quite trivial affair. More precisely, a closed deductive
tableau is a natural deduction, presented in a special graphical ar-
rangement,

It turns out that several readers of Beth’s book “Formal
Methods™, where his semantic tableau-method is most completely
explained, do not see how to obtain the natural deduction from the
closed semantic tableau in the general case. There are also instances
of examples and fragments of such conversions in Beth’s works

* My thanks are due to professors A. Grzegorczyk, A. Heyting, R. Mon-
tague and dr. J. J. A, Mooy for talks I have had with them about the topic
treated in this paper.

(!) The best discussion of deductive tableaus is perhaps found in Logigue
inférentielle etc., which may well have been written later than the corresponding
chapters of Formal Methods; see note (4).
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which, in my opinion, do not always represent the most natural
way of doing it. The points on which I deviate from Beth’s usage
have to do with seemingly very unimportant repetitions of formulas
already present in the tableau. For instance, Beth always stressed the
repetition of the formula Z in his deductive tableau-rule for the
exploitation of a premise U — V; his rule is as follows:

Prem Concl
K’ V4
U->V
1 ‘ 2 1 I 2
v U Z

Read: if (1) U can be deduced from the set (K’, U - V) and
(2) Z can be deduced from the set (K’, U - V, V), then (see above
the horizontal line!) Z can be deduced from the set (K', U - V).
The rule reads, then, from bottom to top, and states the validity
of the original sequent K’, U — V/Z given the validity of the two
sequents mentioned in the antecedent. It can be given the following
form, which shows its close relation with Gentzen’s L-rule FEA :

K, U>V~—U K, U->V,V—Z
K, U>V—Z

But when we regard the tableau-rule as a tactical rule, then it may
be read : In order to deduce Z from the set (K', U — V), (1) deduce,
if possible, U from (K', U - V) and (2) Z from (K’, U -V, V).
If we read it like this, we see that there is no reason for the repetition
of Z in subtableau (2). This of course makes a difference to the way
in which the (closed) tableau is converted into a natural deduction.
When Z is repeated, this means that the formula V is taken as a
hypothesis (right-hand figure above the line in the Gentzen-like
formulation), and the repeated Z is deduced under this hypothesis :
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U->V
U
|
v (hyp)
z
|
z (— hyp)

If, however, we take the tableau-rules to be tactical rules and hence
do not repeat the Z, then V is justified by an appeal to the modus
ponens which Beth used in examples of natural deductions :

KJ‘.
U-=V

U
VvV mp.

Z

Similarly, one may choose between these two natural deduction
schemas:

K’ and K’
(Ev)U(v) (Ev)U(v)
l
U(p) (hyp) U(p) existential

. . instantiation

z
|

Y/ (hyp) Z
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In the first, which is almost Gentzen’s N-rule EB in another
graphical arrangement, U(p) is introduced as a hypothesis (?).
Then it should be visible in the natural deduction that Z is first
deduced under this hypothesis. In Beth’s examples, where U(p)
is introduced as a hypothesis, this Z is never written down (3).
But then one could as well take the full step and recognize the
schema to the right as the form of natural deduction which corres-
ponds to the tableau-construction. Here U(p) is not a hypothesis at
all, but a conclusion following from the premise (Ev)U(v). If one
wants to appeal to the schema to the left, then both Z’s should
preferably be visible in the tableau too, in order to make the subse-
quent conversion into a natural deduction a completely mechanicai
procedure requiring no thinking.

Coming now to negation, we find that for purposes of converting
a closed tableau into a natural deduction — and in general, if we
want to see what really happens in the deductive tableau — certain
repetitions are desirable which Beth mostly omitted (#). This con-
cerns the rule for the exploitation of the form of a potential conclu-
sion U, as well as the rule — valid only from the classical point of
view — that a formula U in the right-hand column can be “conser-
ved” in negative form to the left. The ensuing natural deductions
in both cases represent a reductio ad absurdum (this is the simplest
analysis). Hence the corresponding tactical rules will be :

Prem | Concl Prem 1 Concl
K O K U
insert: U 18 insert: U U

The U under “Prem” in the tableau to the left is a hypothesis,
and U should be deduced under this hypothesis; then the hypothesis
may be withdrawn and U asserted unconditionally (not counting

(3) But in Gentzen’s rule EB the K’ is missing; in his L-rule EEA, T needs
not contain ExFx.

(®) See for instance Formal Methods, p. 141f.

(¥) Loc. cit. — To my knowledge, such repetitions are only found in the na-
tural deduction on p. 21 of Logique inférentielle etc., but even there they are not
taken up in an explicit statement of the tableau-rules.
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earlier hypotheses). The repetition of the formula in the right co-
lumn should therefore not be omitted if one wants a smoothly
running natural deduction.
Consistency in the treatment of formulas which are deduced under
a hypothesis will make pratical examples easier to make and to fol-
low. Another important point is the notation one chooses for the
introduction and withdrawal of hypotheses. I shall use the signs:
s Il » > and so forth, to be inserted
in the natural deduction immediately before the introduction of
the first, second, third, ..., hypothesis, and the signs: — 1,
I, n, and so forth, to indicate the w1thdrawal
of the first, second, third, ..., hypothesis. Thereby I think the natural
deductions become easier to read. In order to facilitate the conver-
sion of a closed deductive tableau into a natural deduction, these
hypothesis-signs will be shown also in the tactical rules for the de-
velopment of the tableau, see below. If we also take up in these
tactical rules the name of the natural rule by which the potential
conclusion is eventually justified, then a closed deductive tableau is
converted into a completely clear natural deduction by the simple
procedure of writing the formulas in the tableau in a vertical arran-
gement in the order in which they appear along the arrow :

Prem. | Concl. Prem. | Concl.

h T L
2—-:————-.
L .

—_ ] S

The principles of natural deduction we shall use will these be called :

Abbreviation  Gentzen

(1)® the trivial deduction triv
(ii®)® modus ponens mp FB
(ii*)? conditionalization cond FE
(iii#)P distinction of cases de OB
(iii*)P disjunctive weakening dw OE
(iv®)? specification of terms st UB
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(iv®)D  conjunctive enumeration ce UE
(v®)D ex falso sequitur quodlibet efsq
(v?)?  reductio ad absurdum raa
(v®)® classical (non-intuitionistic) reductio
ad absurdum cl.raa

(vi*)? universal instantiation ui AB
(vi*)® universal generalization ug AE
(vii#)P existential instantiation (exposition) ei

(vii®)P existential generalization eg EE

Apart from (v®)P, the form of the reductio ad absurdum which is
forbidden from the intuitionistic standpoint, all these principles
are valid in intuitionistic logic, as is well known.

In order to obtain complete accordance with Gentzen’s
N-system in the sentential calculus, we would have to introduce a
sign for the absurd proposition (see below, under the treatment of
Minimal Calculus). We shall not do that at the moment.

2. Rules for constructing deductive tableaus

In the complete list of deductive tableau-rules that follows
here, we shall assume that the sets of formulas in both columns are
ordered. Z, then, always indicates the last formula in the right-hand
column, when the form of this formula is unspecified in the rule.
We shall shorten “Prem” and “Concl” to “P” and “C”. C is
the column of formulas which we successively want to obtain as
(intermediate) conclusions. P is the column for the premises,
hypotheses, and already deduced formulas. K is the class of all for-
mulas under “P” at the moment when we apply the rule, and L
the class of all those under “C”. K’ and K’ are sub-classes of K,
and L', L" are subclasses of L; each of these classes may be empty.
J is the empty class of formulas. The rules are given the form of
transformation rules in order to make them easier to read ; the double
arrow should be read as follows : “A tableau of this form (left-hand
tableau-fragment) may be enriched as follows (right-hand tableau-
fragment).” On the extreme right is added the ensuing natural de-
duction, which is valid provided the dotted vertical lines can be

152



filled in validly. We assume the formulas in L’ to be justified al-
ready, on the same condition. The double vertical bars between
subtableaus (1) and (2) in rule (iii®)? indicate that only one of these
subtableaus need be closed, then the whole tableau counts as closed :

P c
1 J 2 1]
@{@)r P C
K! L!
Z Z
KH’
(ii®)D P C
K’ L
U-=V| Z
K!I

P C
1 2 1 2
P C K’
V4
KI LI Kf’
Z Z triv Z triv
K’f Lf
P C K’
U=V
Kf LI‘ Kl!
U->V| Z ;
K.H :
[ - U
1(2] 1 2 V mp
U| Vmp
Z
Ll
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@r)P

(iiii®)P

(iii®)®

P C P C K
— = |
K | 4 K L’ U
U-V U -V cond
o g | = :
U v A
1
U -V cond
LI
P C P C K’
- TS, —— UVV
K | K | L K"
Uvv| Z UvV| Z dc |
K,, Ku U
112112 :
—| == |— Z
ulvi|z|z .
i
v
Z
1
Z dc
Ll
P (o) P C (1) or (2
= K K
K | B K L
UvVv UvV dw - :
%] P S 18) v
1.2 12 UvVdw UvVdw
UV L L
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(ive)P P

Kf
U&v
K'l‘

(ivh)? P

(v#)P Ly
Kf

K”

(v»)? P

C P C
=
L’ K’ L
Z U&vV| Z
Kl’f
U st
V st
C P C
= .
L’ K L’
U&v U&V ce
o e e
112112
Uu|vVv
C P C
=
L’ K’ L’
Z 0 Z efsq
KI!
U
C P C
—
L' K L'
9] U raa
o ] 1=
U U

KI
U&v
Klf

U st
A" st

U&V ce
LP

KI

Kll

efsq

NG ..



(ve)P P C P C
. N
K | L K | LU
U U clraa
%] —|—
8] U
(vi®)D P C P C
K’ j g K’ 4
WUW)| Z WUW)| Z
K" K"
U(p)ui
(viv)P P C P C
=
K L’ K L'
(V)U(W) (MU(v) ug
o U(p)
(vii®)D P C P C
E R
K | L KU
(Ev)U(v)| Z (Ev)U(v)| Z
K" K=
Ul(p)ei
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LP

Kl
(VU()
KI”
U(p) ui

Z
LI

K

Ufp)
(MU(v) ug
Lr

Kl
(EV)U(V)
K! ’
U(p) ei

Z
LJ



(viiP)P P C P C K

K L’ K L :
(EVUE) EWVUWeg U
0 ) EUC) cg

Conditions for the individual constants p :

in (vi*)?: none. Any number of formulas U(p:), U(pe), ..., may
be inserted;

in (vi®)?: p must not occur in K, L’ or in (v)U(v). Only one for-
mula U(p) may be inserted;

in (vii#)? : p must not occur inK’, (Ev)U(v), K”,L"or Z. Only one
formula U(p) may be inserted (this is sufficient, and
also the most natural, but it is not a strictly necessary
condition. Also the corresponding semantic rule (vii®)s
has this clause);

in (vii®)? : none. Only one formula U(p) may be inserted.

3. The deductive tableau-form of Minimal Calculus

Such tactical rules can also be given for the theory of negation
of I. Johansson called Minimal Calculus. The form these rules were
given by Beth () is not entirely adequate for the general form of
the problems to be answered by these rules, namely : (2) How do I
exploit a premise U? and (b) How do I exploit the fact that the
formula to be deduced has the form U?

Let A be a propositional constant standing for “the false”,
“the absurd”, or “contradiction”. Then the tactical rules for
Minimal Calculus will be the following :

(%) Formal Methods, p. 128. In general, when P; is a premise and we want
Pla PZ
toexploit a natural deduction-rule

, the tableau-rule will recommend a

Q
splitting of the tableau : (1) try first to deduce Ps, and (2) thereafter to deduce
Z from K and Q.
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(v#)PM

P

Kf

Kf’

Lf

P

Kl
8]
K"

2
A(NB)

Here “NB” refers to the Gentzen-rule by that name, which clearly
justifies our tactics, and which is valid in Minimal logic: from U
and U we can infer A. So if U is among the premises, one should
try to deduce U; then A follows immediately. Thereafter one must
try to deduce Z from K’, U, K, and A.

(vp)oM

P

K

C

1’
0]
1)

&

LI
U (NE)

A

Here “NE” refers to Gentzen’s rule that if from U we can infer A,

then U may be asserted.

The intuitionistic principle which is excluded by minimal calculus
is that from the absurd one can infer anything. As a tactical rule it
can be formulated as follows, as a new closure rule :

(V)DI
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(Gentzen did not give any name to the rule by which we justify Z
in this case. It seems reasonable to say that this is the “real” ex
falso.)

It is easy to see that if this rule is added to (v#)PM, then sub-
tableau (2) of the latter closes, and sub-tableau (1) corresponds to
the original intuitionistic rule (v#)? as we stated it in Par. 2.

Following Beth (°), we have in Par. 2 construed the difference
between intuitionistic and classical logic as consisting in the rule
(v)P, corresponding to the “classical reductio ad absurdum’. As
the basic non-intuitionistic principle for negation one can of course

also take: from a double negation U, infer U. As a deductive
tableau-rule we then allow :

WP P | C P | C
- 5o e

K | L K | L

U U

9 U

By applying the intuitionistically valid (vP)P to this latter tableau-
fragment, it js easy tosee thatany “supplantment” of the formula
U by a later formula under “C’’ can be rendered ineffective.

The following well-known axiom-schemas will eliminate appli-
cations of these rules:

(ve)?%: O (U > A)
(v?)PM: (U > A) -0
(V)PL . A >Z
(v)PX :-ﬁ_—>U

() In Formal Methods, p. 144, and Logique inférentielle etc., p. 20. Peirce’s
Law, which he uses more often, does not fit very well into a system of natural
deduction, and the Law of the Excluded Middle as well as the inference from
U to U lead to more complicated tableaus than (v¢)P does, as one can easily
verify.
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4. From semantic tableau to deductive tableau

Most of the rules Beth gave for developing semantic tableaus
(S-rules) resemble the D-rules of Par. 2 for the same logical sign
very strongly, although their motivation is different (7). But there
are some differences, such as the repetition of certain formulas in
the D-rules, which of course has no function in the S-rules. Further-
more we have added certain class-signs K’ in the left-hand column of
the rules (—=?)P and in (i)P; but these should also be added to Beth’s
(—»®)s - rules in order to facilitate the comparison. The L in the
right column of an (—#)S-rule must of course be understood as the
(L', Z) of the corresponding D-rule. It is important that where the
D-rule has the sign for the empty class, @, one should insert an L"
in the corresponding S-rule. Then the classes of formulas in the two
columns of a semantic tableau may be considered as ordered.
Disregarding the signs in the D-rules for the introduction and
withdrawal of hypotheses and the names of the rules with which the
conclusions are justified, all of which can easily be added to the
completed semantic tableau, there is yet the conspicuous differe-
nce between (iii*)? and (iii®)5, and between the clauses on (viit)?
and (vii®)8; we shall come back to this presently.

Let us first consider the general case of a formula U in the right-
hand column which produces, when treated with the appropriate
S-rule, new formulas in the right column, and assume L" non-
empty.

True False

K L’
U
LI ’

If we “treat” U, according to the rule (—?)s for the main connective
in U, after the introduction of the formulas in L”, then it will be
necessary to transform this fragment of the semantic tableau into
a fragment of a deductive tableau in the following manner :

(") Formal Methods, pp. 11, 40-44, 49, 55.
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P C
K L'
U clraa
(ve)b: 0] U
L= L
Z efsq
(v¥)D: U

before we “treat” the last formula according to the rule (—P)D.
If we do not do this, the possibility of defending U in the natural
deduction we are about to construct is not guaranteed. But if one
follows this advice, one can be certain that every application of a
rule that leads to the introduction of a new formula in the right-hand
column, at the same time will inform us about how to defend the
formula just preceding it. That is, assuming the formulas under C
to be Zy, Zs, Zs, ..., the insertion in the tableau of Z.+1 goes together
with the defense or justification of Zy.

Some special attention must be paid to the difference between
the two rules (iii?)? and (iii?)s for disjunction. It is clear that, with
the aid of the classical principle (v¢)P, we can so to speak construct
the classical disjunction-principle (iii®)8, starting from the intuitionis-
tic principle (iii?)? :
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P C
K L'
— — UvV cl.raa
*UvV *UvV
LH o LI.H
Z efsq
*UvV dw

1 2 1 2
U cl.raa v
n

—_—

I
*U * U efsq
*UvVdw

1.1

1.2 1.1] 1.2
Uujlv

The sub-tableau (1.2) contains both formulas U and V in the right
column, just like the rule (iii*)%, and U is “conserved” in the left
column (as 0), for later use.

It is now obvious that the following fragment of a (closed)
semantic tableau wherein (iii)® has been applied :

True False

K L’
UvV
LII
U
L'

may be transformed into a fragment of a (closed) deductive tableau
by adding the formulas in sub-tableau (1.2) above which are preceded
by an asterisk.

Finally we must consider the difference between the clauses on
(vii®)? and (viit)S. When the latter rule is applied, any number of
formulas U(p1), U(pe), ..., may be inserted (), since they all have to

(®) This is clearly the intention, considering the equivalence between
(Ev)U(v) and (v)U(v) in two-valued logic.
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be false if (Ev)U(V) is to be false, but the former rule allows for the
nisertion of only one such formula. The way in which we transform
a semantic tableau-fragment where (vii®)® has been used in a de-
ductive tableau-fragment where (vii®)? has been employed, is of
course quite analogous to the way in which we transform an applica-
tion of (iii®)® into applications of (iii®)? :

True False P C
K L’ K L'
(E‘B'U(v) (Ev)U(v) cl.raa
(vii®)s: U(py) (ve)P: *Ev)U(v) I* (EV)U(v)
U(p2) L"=|L"
Zefsq
4700 i *(Ev)U(v) eg
(vii®)D: U(p1) cl.raa
(ve)D: *Ulpy) H * U(py) efsq
(v¥)P: (EV)U(v) eg
(vii?)P: U(pe)

Of course, if one of the U(p,;)’s in the semantic fragment [or : one
of the formulas U and V in the fragment where (iii*)® is used] has
not contributed to the closure of the semantic tableau, we may start
by crossing it out in the semantic fragment, thereby simplifying the
construction to the right.

However, in practice one will not as a rule develop a semantic
tableau if a natural deduction is wanted, it will be more natural to
construct a deductive tableau directly. In order to avoid unnecessary
applications of the non-intuitionistic (v¢)D, it is wise to make it
a rule always to “treat” Z first with the appropriate rule for the
main logical sign in Z, and then such formulas under’P*’as do not
lead to the introduction of anynew formulas under”’C’’. Applications
of (ii*)P and (iii#)? should be postponed as long as possible in order
not to complicate the construction unnecessarily.
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5. From deductive tableau to axiomatic deduction

Beth has shown how a closed semantic tableau can be converted
into an axiomatic deduction (°). He does this by giving, for each
semantic tableau-rule, one or more axiom-schemas which will allow
us to perform the deductive step to which the tableau-rule corres-
ponds. Thereby he makes the tableau-rules superfluous one by one,
until we are left with an axiomatic system employing only the two
inference rules modus ponens (henceforth: R1) and the universal
generalization of theses (R2). But some of the axioms Beth uses for
this purpose arenot intuitionistically valid, and for that reason they
are not as intimately related to the tableau-rules as one may wish
them to be. For the sentential calculus he does list also an intui-
tionisticaxiom system (°), which does the same job of making the
tableau rules superfluous as the non-intuitionistic system. But the
heuristic by which he professes to obtain it is unnecessarily indirect,
for he seems to arrive at these intuitionistic axioms by performing
certain simplifying manipulations on the more complex axioms he
already has constructed for the elimination of his semantic tableau-
rules. But the intuitionistic axioms are of course quickly written
down once the deductive tableau-rules are explicitly stated, and
they are all of them well known from several axiomatizations of
inferential logic.

For quantificational logic, however, Beth gives us only one axiom
system, consisting of four axiom schemas, two of which are not
intuitionistically valid (**). He proves, first, that if there is a closed
semantic tableau for a sequent @/Z, then Z is a thesis of his axioma-
tization of elementary logic. Thereafter he proves that if there is a
closed semantic tableau for a sequent K/Z, then there is an axiomatic
deduction of Z from K. This proof makes use of the former theorem.

One can prove the latter theorem directly, for any K, without
making the roundabout via a sequent with K = @, for an axiom

() Formal Methods, pp. 32f, 41-42-45, 50-52, 55; see also: Semantics
as a Theory of Reference, p. 70, pp, 77-81.

() Formal Methods, p.127f.

(') Formal Methods, p.50 (Ax, XIV) and p.55 (Ax. XVI). Also the
axiomatization in “Semantics as a Theory of Reference” contains two
non-intuitionistic axioms, but different ones.
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system which contains only one non-intuitionistic principle, while
usingthe same very simple inference rules R1 and R2. Asthe non-
intuitionistic principle we may take the axiomshcema (U —-U) - U,
corresponding to the“classical reductio ad absurdum”, but Peirce’s
Law, the Law of the Excluded Middle or U — U would of course
also be possible choices. — All the axiom schemas in this system are
intimately connected with the rules for constructing deductive
tableaus (and therefore also with the semantic tableau-rules).
We list them along with the numbers of the deductive tableau-
rules (D-rules) to which they correspond. The part of the system
belonging to sentential calculus is the intuitionistic system referred
to above which Beth also mentions, with the additon of (U—U)—U.

(mm{u+w*m

[U >V =>W)]>[U->V) >(U ->W)]
(iiX)P: (U - 2) >[(V > 2Z) >[(UvV) >Z]]

[ U =(@UVY) (1)
G {V S>(UVY) (2

(U&V) U
(U&V) =V

voo: |
@WDP: U [V (U & V)]

v9P: O > (U > 2)

(WWP: (U > 0) >0

(v9P: (O > U) >U

vi9D: WUGW) > Ulp)  for all individual constants p
(FDP: @IW - UW] > [W > WU

whereby applications of (vi*)P are reduced to applications
of R2
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(vii®)?: MU() »>Z] - [(EV)U() - Z]
whereby applications of (vii#)? are reduced to applications
of (vi*)P

(vii®)?: U(p) - (Ev)U(v) for all individual constants p

The second and the third from the bottom replace Beth’s two
non-intuitionistic quantificational axiom schemas in Formal Methods.
Proof that the axiom schema (V)[U(v) - Z] — [(Ev)U(v) — Z]
reduces applications of (vii#)® to applications of (vi*)? (not counting
applications of the rules for sentential connectives):

P C
K’ L’
(Ev)U(v) V4 triv
Kff
WIU) ~Z] »[(Ev)U(v) ~Z]
1 | 2 1 2
(ii®)r: (Ev)U(vl) ~Zmp |(V[U(V)—>Z]ug |
2.1 2.2 2.1 2.2
(ii®)?, ()P Z mp (Ev)U(v) triv
(vit)D: U(p) +Z cond
@®°:  U(p) Tz

The formula U(p) occurs in the left column and the last formula in
the right column is Z, just as after an application of (vii#)P.

Proof that the axiom schema (V)[W - U(v)] = [W - (V)U(V)]
reduces applications of (vi*)P to applications of R2.

Let Wk be the conjunction of all the formulas in K. Then a
closed deductive tableau where (vi*)P, (i)?, (ii*,’)?, and no other
tableau-rules have been used may be enriched as follows for
each application of (vi*)? (with the formulas that are predeced by
an asterisk):
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P C
K |
*WIWx >UW)]>[Wx ~(W)U(W)] WMU()  triv
1 2 1 2
(ii®)D: *Wx -(V)UV) mp *(V)[Wxk->U()] R2
2.1 2.2 2.1 2.2
(ii®)P, (i)D: *(v)U(v) mp *W ktriv |
* Wk —->U(p) thesis (deduction
U(p) theorem)

When this tableau is re-written as if it were a natural deduction
from K andthis axiom, generalization is applied only to the thesis
Wx — U(p). Wk does not contain p, for p is the same new con-
stant which originally was introduced under (vi®)P; therefore gene-
ralization of this formula with respect to p yields (V)[Wx — U(V)].

Note that the axiom-schemas which we have used to replace (vi?)P
and (vii*)D are descriptions of those slightly more complicated
versions of the D-rules which implythe introduction and withdra-
wal of a hypothesis, namely :

P C P C
K L' K’ L
WU) EWUW)|  Z
[ - K"
@iHY: Wx | Up) | —
(vii®)®’': U(p) Z

— in both cases for an “arbitrary” p, i.e., the deduction of Z must
be possible for every p. This condition is expressed by the universal
quantifier in the antecedent of each axiom. If we use the “hypothe-
tical” versions of (vi#)P and (vii®)P, we are led to these axiom-
schemas :

[U(p) - Z] - [MU() - Z]

[W ~>U(p)] > [W - (Ev)UV)]

where again there are no clauses on the choice of constants p.
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The same sort of considerations can be made about D-rules and
axiom-schemas for the sentential calculus. But whether we use the
simpler or the more complicated, hypothetical version of a D-rule,
both the simple and the hypothetical version of the corresponding
axiom-schema can be used to eliminate it. So whichever version we
choose, we can now prove the following.

Theorem ('*). A closed deductive tableau for the sequent K/Z,
with[out] applications of (v¢)P, can always be converted into a clas-
sically [intuitionistically] valid axiomatic deduction of Z from K

which may [not] contain applications of the axiom-schema
(T -1U) -U.

Proof. Construct a new deductive tableau for the sequent K+/Z
which one obtains by adding to K the axioms corresponding to each
application in the first tableau of the rules (iii®-P)P — (viia.b)D
including (v¢)P, but excepting (vi?)P. Each axiom should be “treat-
ed” (with the rules (ii?)P, (ii*)?, and (i)p) at the same level in the
tableau on which the corresponding tableau-rule originally was
applied. In this new tableau only the rules (i)®, (ii*?)P, and (vi®)P
are used. Enrich this second tableau with the appropriate axioms
MWk - UW)] - [Wk - (v)U(v)] and other formulas as ex-
plained above, for each application of (vi®)?. Add the last-mentioned
axioms to K+, the result will be called K++. Now write this enriched
second tableau on the vertical form, as if it were a natural deduction
of Z from K+*+ (the repetitions resulting from applications of (i)P
can of course be omitted, but only these). In this deduction no other
rules than R1, R2, and the conditionalization principle are used.
Finally eliminate the applications of the latter, by using appropriate
applications of the axiom-schemas listed under the number (ii*)?,
in the usual manner.

— Since every closed semantic tableau can be converted into a
closed deductive tableau for the same sequent, it follows that we can
always transform a closed semantic tableau into an axiomatic
deduction, in such a way that if the semantic tableau shows no
“supplantment” of any formula Z, under “False” by a later for-

(12) See Formal Methods pp. 50-52, Theorems 17-18,
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mula Znx, then the axiomatic deduction makes no use of non-
intuitionistic axioms.
(A formula Z, is supplanted by Znsx, from the inferential point

of view, if the former is treated afterthe latter in the semantic
tableau.)

Therefore, this axiomatization is better suited to show “the
fundamental unity of the three methods’ (**) — the semantic, the
axiomatic and the method of natural deductions.

University of Amsterdam E. M. BARTH

(13) Op. cit., Preface, p. XIIL.
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