AN ALTERNATIVE CHARACTERISATION
OF FIRST-DEGREE ENTAILMENT

DAVID MAKINSON

Let o and § be formulae constructed from proposition letters p,
q, 1, ... by means of the operators N, K, and A (for negation, con-
junction, and disjunction). Classically, we say that o tautologically
implies 5, and write ar @, if there is no assignment h of truth-
values to proposition letters such that h(a) = T whilst h(f) = F. As
is well known, many philosophers and logicians have felt that tau-
tological implication fails to capture certain intuitive concepts of
logical involvement or ‘entailment’ between truth-functional formu-
lae, and have offered other accounts of such concepts.

One particularly elegant and interesting kind of entailment relation
has recently been studied by A.R. Anderson and N.D. Belnap (V).
They define first-degree entailment between formulae in N, K, A, to
be the least relation — which satisfies the following conditions:

Kaf —a a—> Aof
Kaf— B f— Aaf

a—> NNa

NNo— o

KaABy — AKofiy
Ifo—f and f—> v thena—> vy
If o —> B; and o —> f; then o — Afife
If a;— @ and op—> ( then Acioe—>f
If g—>f then Nf — Na

In this note we give an alternative characterisation of first-degree
entailment, via the concept of a ‘simple formula’.

We say that a formula is simple if (*) no proposition letter occurs
more than once in it.

(*) See the references in the bibliography, especially [4] pp. 92-96 and [1].
The terminology of Anderson and Belnap is not entirely uniform: we take
the name «first-degree entailment» from [1], but in [4] the same relation is
called «basic implicationn.
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We say that a formula a simply implies a formula § if there are
simple formulae o and (, with the pair (a, B) a substitution instance
of the pair (a’, f’), such that o/ +f’".

Simple implication does not itself coincide with first-degree en-
tailment; it is a very weak relation with relatively few closure proper-
ties. It is not the case that for all formulae o, B, B2 if o simply
implies each of §; and f}; then ¢ simply implies K{,3,. For example
whilst we have:

p simply implies p
and so, to repeat ourselves,

p simply implies p,
we do not have:

p simply implies Kpp.

If however we close simple implication under transitivity, con-
sequent-conjunction, and antecedent-disjuncticn, we have an en-
tirely different picture.

Let us define structural implication to be the least relation =
between formulas in N, K, A, such that:

If o simply implies B then o =p

If o=pand =y then a =y

If « = f1 and o= f; then a = KB,
If a1 =p and oy = then Ao, =B

From the intuitive point of view, structural implication is thus the
least relation which includes simple implication and which allows
certain manipulations which are necessary for its use in any kind of
sequential deduction,

We shall show that structural implication coincides with first-de-
gree entailment.

Lemma 1
For all formulae o and f3, if ¢ — 3 then a = §

Proof

It is clear that for each direct clause in the definition of —», the
left-hand formula simply implies, and so structurally implies, the
right-hand formulae. Moreover, each closure condition in the de-
finition of —», execept the last, is also a closure condition in the
definition of =. Hence to prove the lemma it suffices to show that
for all formulae o and §, if o = then Nf = Na, for which we in-
duce on the definition of =.

(3 ie.: if and only if.
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For the basis, suppose that a simply implies f. Then there are
simple formulae o’ and f’, with (a, B) a substitution instance of (o,
@), such that o' - f’. But then Np’, and No are simple formulae, with
the pair (N, No) a substitution instance of (NP, Na’), such that
Nf’+~Na'. Hence Nf simply implies Na, and so Nf = Na.

In the induction step we have three cases to consider.

For the first case suppose that o = and f = y; we need to show
that Ny = No. By the induction hypothesis, since a = and p =y
we have N =Na and Ny = Nf. Hence by the transitivity of =,
Ny = Na.

For the second case of the induction step, suppose that o = f§; and
o = Be; we need to show that NKBf; = Na. Since o =1 and a =
B2 we have by the induction hypothesis that Nfjj = Noa and Nf; =
No. Hence by a closure condition in the definition of =, ANBNf(, =
Na. But clearly NKf1f3; simply implies ANB;N@s, and so NKBife =
ANB;N@,. Hence by the transitivity of =, NKfif2 = No.

A similar argument suffices to establish the third case of the in-
duction step.

Lemma 2

For all formulae o and f, if o = then a— .
Proof

Since all of the closure conditions used in the definition of =
already occur as closure conditions in the definition of —», it suffices
to show that if a simply implies § then a— (.

Suppose then that o simply implies §. Then there are simple formu-
lae o and B’, with (o, B) a substitution instance of (o, '), such that
o ~ B

Let m(a’) and m(@’) be the formulae obtained from o’ and B’ by
applying de Morgan transformations and double negation elimi-
nations until no occurrence of the negation operator has more than
a single proposition letter as its scope. Then by well known properties
of tautological implication, since o ~ * we have m(a) ~ m(f).
Also it is trivial to verify by induction on the number of de Morgan
transformations and double negation eliminations performed, that
since o’ and B’ are simple formulae, m(a’) and m(p’) are also simple
formulae.

Now let d(m(a')) be the formula obtained from m(a’) by distributing
K over A until we reach a formula A...Ay:...y, in disjunctive normal
form. Similarly let c¢(m(f’)) be the formula obtained from m(f’) by
distributing A over K until we reach a formula K...K3; ...5, in con-
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junctive normal form. Then each of vj, ..., v, is itself a conjunction
of letters and negations of letters, and each of d;, ... d, is a disjunction
of letters and negations of letters. Clearly since m(a’) - m(p’) we
have d(m(a’)) - c(m(f’)), and so v; - &;, for all i< x, j <.

But also it is trivial to verify by induction on the number of
distributions performed in the construction of d(m(a’)) and c(m(p’))
that since m(a') and m(f}’) are both simple, each v; and likewise each
d; is simple. Since each y; and each d; is simple, no letter occurs both
negated and unnegated in any y;, and no letter occurs both negated
and unnegated in any §;. Hence for each pair y; and §;, since
Yi + 9, there must be some letter which occurs unnegated in both of
vi and d;, or else occurs negated in both of y; and §;. But then, by a
well known property of first-degree entailment (%), we have v; — §;
for all i < x and j < y. Hence by the closure conditions of the de-
finition of first-degree entailment, A...Ayy...yx—> K...Kd;...d,. That
is, d(m(a/)) = c(m(p’)). Hence by further known properties of first-
degree entailment (*), m(a’) = m(f’), and so o’ — ', and so a—>p.
This completes the proof of the lemma.

From lemmas 1 and 2 we have immediately the desired:

Theorem

For all formulas o and f§, a —f if a =f.
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