WHAT NUMBERS ARE

R. ROUTLEY

Cardinal numbers are non-distributive properties of certain mani-
folds. This thesis, the P-C thesis, though often (in effect) proposed,
does not seem to have been fully worked out, and has in fact been
subject to repeated attacks. Recently the thesis that numbers are
properties of classes has been criticised by Professor Benacerraf ().
My main aim here is to elaborate the initially plausible P-C thesis
and to defend it against criticisms.

I

Formal details of the definition of cardinal number 2 and of natu-
ral number, as spelled out under the P-C thesis, are sketched. To
facilitate later discussion, a 3-valued significance logic is adopted as
a basic logic. An equivalence relation ‘=’ between properties of
manifolds is first defined:

(D1): f=g=p (IIw) (f(w==g (w)),

ie. f is weakly identical with g if and only if, for every possi-
ble (* w, f (w) is extensionally synonymous with g (w), where ‘=’,
reads ‘is extensionally synonymous with’, is a 3-valued connective
with matrix:

= —1 —1
1 =] e
—i | —1 1 —1
—1 | —1 —1 1
In this and succeeding matrices, ‘1’, ‘—1’' and ‘—i' symbolise re-

spectively ‘true’, ‘false’ and ‘non-significant’. With (D1), predicate

() In his stimulating article ‘What numbers could not be’, Philosophical
Review LXXIV (1945), 47-73.

(3) On the quantifiers ‘TI' and ‘=’ which stretch out over possible items,
see R. RoutLey ‘Some things do not exist’, Notre Dame Journal of Formal
Logic to appear in vol. 7, 2, April 1965. Quantifiers with even more extensive
range could be used.
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descriptions can be defined as binary quantifiers:

(D2):  (of) (g(f), h(f)) =p¢ (2f) ((TIF) (8(F') =2 .1 = f) & h(f)).

Here and below 3-valued significance analogues of classical 2-valued
connectives are used: these have matrices which coincide with usual
2-valued matrices for significant values and which have value —i
otherwise; e.g. ‘& and ‘~’ have matrices:

& 1 —i —1 ~ ‘

1 1 —1i —1 1|1
—i —i —1i —i —i | —i
—1 —1 —1i —1 —1 1

Conventions can be introduced for replacing ‘(rf) (g(f), h(f))’ by the
more familiar ‘h((if) g (f))’ when ‘h’ is not so compounded as to
produce scope ambiguities. Similarity of manifolds, symbolised ‘sm’,
is defined in the customary set-theoretic way except that ‘IT" and ‘¥’
replace usual existential-loaded quantifiers (*), Furthermore the mani-
fold and attribute theories presupposed are such that suitable para-
digmatic manifolds, having any required numbers as properties, can
be selected: the paradigm manifold which instantiates number n is
represented ‘pd(n)’. For example, given a suitable manifold logic, the
recursion scheme:

(P): pd(0) = A
pdin)=1[0,1, ..., n-1],n > 1

could serve to provide paradigm manifolds. Then the cardinal ‘2’ is
defined:

(D3): 2 =p; (of) (ITw) (w sm pd (2) == f(w)),

(®) In this way objections levelled by W. Kneale, F. Waismann & L. Witt-
genstein against definitions of natural number built on a similarity relation
sets or manifolds, because the existence of 1-1 relations required by the de-
finitions cannot be established in a suitably independent way, are avoided:
existence of the relation is not required. For the objections see W. & M. Knea-
LE, The Development of Logic, Oxford (1962), 461-464, & F. WaIsMaNN, In-
troduction to Mathematical Thinking, Ungar, New York (1951). It is important
here to distinguish ‘for some possible R, R is 1-1 and...’, i.e. (ZR)(R £ 1-1&...)’
from ‘it is possible there exists a relation R which is 1-1 and...’ ie. ‘S(HR)
(Re1-1&...)". The first implies the second, but the converse implication does
not hold.

197



ie. 2 is the property of all and only those possible manifolds
which are similar to its paradigm manifold. In general,
(D4): n = p; (af) (Iw) (w sm pd (n) == f(w)),
‘pd (2)’ can be eliminated from (D3), e.g. thus:
(D3): 2= (of) (Iw) (Bv) (wsm v & (Ix) (By) (x =y &v =
véx Uy <y)) =21 (w)).
Identity relations are discussed below.

Once a suitable recursive progression of paradigms such as (P),
on which to fix (quasi-ostensively) the similarity relations, is selected,
the successor relation ‘s’ can be defined in such a way that property
f succeeds property g iff, if g is the property of all and only those
manifolds similar with some member of the progression, then f is
the property of all and only those possible manifolds similar to its
successor in the progression. Finally the positive integers can be de-
fined as the set of property ancestors of 1 under the successor relation,
and the positive integer property ‘NN’ can be defined. Thus positive
integers are finite cardinals ordered under the successor relation.

II

Features of these definitions of cardinal numbers, which enable
objections to the P-C thesis to be overcome, should be stressed.
(1) The property used to define a given cardinal is unigue up to a
suitable identity relation on properties. For suppose on the contrary
the property used to define ‘2° were not unique. Let f and g be
properties which satisfy the requisite conditions. Then it follows
from (D3)

+ ([Iw) (wsm pd (2) = (f(w)) & (TTw) (wsmpd (2) = g(w)).

Hence - (ITw) (f(w) =2 g(w)),
ie. by (D1) +~f=g
Thus the uniqueness condition required for (D2) is met. That this
uniqueness condition can be met is a consequence of the expansion
of the range of manifold-variables to include possible sets (*). In this

(%) The identity relation of (D1) could be apparently strengthened by putting
‘[0’ across the definiens; then the argument would run as before once (D3)
were supplanted by
(D3"): 2 =p; (f) O ([w) (wsmpd(2) = f(w)).

Compare Carnar’s weak conditions for the identity of properties: Meaning
& Necessity, Enlarged edition, Chicago (1956), 18.
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way the «absolutely fatal formal defect» (*) of abstraction definitions
used in elaborating P-C related thesis, that uniqueness of the property
cannot be established, is repaired.
(2) The definitions given can be combined with further definitions,
for example definitions of numerical quantifiers. Jointly these defi-
nitions suffice for an explanation of most non-metaphorical oc-
currences of cardinal number expressions in English. This is as well.
Conditions of adequacy for any definition of ‘finite cardinal number’
include:
(I) The definition should provide a basis on which non-metaphori-
cal occurrences of number words, both as nouns and as predicative
adjectives and as attributive adjectives (or as quantifiers), can be
defined and explained.
(IT) Significance restrictions on the occurrence of number-words
should be reflected in the definitions.

To enlarge on (I). Number words do occur predicatively (*) as in
(a): The moons of Jupiter are four.
Sometimes admittedly ‘in number’ or ‘strong’ are added to predicative
uses to avoid ambiguity but this does not detract from the point.
Predicative uses of number adjectives are perhaps not so common
as they were, but this can very likely be ascribed just to current
linguistic fashion. Certainly (a) has to be distinguished from
(b): The moons of Jupiter are red,
as the property red is a distributive property of manifolds, that is a
property which belongs (distributively) to each component of the
manifold. Properties of manifolds which do not distribute onto com-
ponents of the manifold may be called non-distributive properties of
manifolds. Predicates which specify such properties are plentiful,
e.g. ‘(are) six’, ‘seventeen’, ‘numerous’, ‘few’, ‘many’, ‘vanishing’,
‘represented’. Not all predicative adjectives function in the same way.
A classification of adjectives which qualify manifold expressions like

(*) Explained at length by B. RusseLL: The Principles of Mathematics, Allen
& Unwin, London (1903), 114-116.

(%) Contra BENACERRAF, op.cif, 59-60. Many predicative occurrences of
English number words do not strike questioned native informants as peculiar
or implausible (contra 60). Some of Benacerraf’s grammatical evidence is
decidedly dubious, e.g. the suggestion that examples like (2) probably came
into English by the deletion of ‘in number’. Even if the evidence were cor-
rect it remains far from clear what it would show.
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‘the moons of Jupiter’, in the style of Goodman’s classification (") of
predicates of individual expressions, would prove valuable.

Numerals also occur as nouns and as attributive adjectives. These
uses have to be accounted for if the initial definitions are to prove
adequate. Noun occurrences of numerals are already accounted for:
these demarcate properties of manifolds as opposed to the property-
instances specified by number predicates. For instance
(c): The number of Jupiter’s moons is (=) four (%)
can be derived from (a) as follows. Let ‘w,’ symbolise the manifold
expression ‘the moons of Jupiter'. By (a), 4(w;). Also, NN(4); hence
4(wy) & NN(4). It follows,

(TIf') (F'(w1) & NN(f') =.f' = 4)

(ITf"y (f'(w1) & NN(f') = =4) 64 =4
(2f) (IIf) (F'(wy) ENN({) = =4) 64 =1)
(1) (f(w1) & NN(f)) = 4.

Moreover the usual arithmetic properties of numbers follow once
addition, multiplication, etc. of number-properties are defined; thus
in 2+ 2 =4, ‘2’ demarcates the (number-)property two, or if you
prefer, since numbers are properties, the number two. With numerals
there is no further problem, like that which arises with common
nouns such as ‘triangle’ and ‘cat’, of distinguishing the properties,
triangularity and felinity, from the individual universals, the triangle
and the cat, yet explaining their interrelations. For ‘the two’, if it
means anything when it does not refer to a paricular association or
pair as it does in ‘the (big) Two’ or ‘That’s the two’, means ‘the
number two’. Compare, on these points, number properties with
colour properties.

Numerals occur attributively in the expressions
(d): Jupiter has four moons, and
(e): Mars has two moons circling it
and as quantifiers in the slightly unidiomatic
(f): There are four moons of Jupiter, and in
(g): There exists two moons circling Mars.
(f) and (g) may be symbolised, assuming ‘there are’ carries existential

() See N. GoopMman, The Structure of Appearance, Cambridge Mass. (1951),
48-51.

() FreEGE's stock example, The Foundations of Arithmetic, translated J.L.
AvsTiN, Blackwell, Oxford (1950), 69.
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import, respectively, ‘(H4x) mj (x)’ and ‘(H2x) mm (x)’. These ex-
pressions directly connect with earlier ones through the definition:
(D5): (Enx) A (x) =p; (ZW) (n(w) & w = [x: A(x)]).
Thus for (f) it follows:
(34x) mj (x) = (Ew) (4(w) & w = [x:mj (x)] & E(w))
= (Hw) 4(w) & w = [xmj (xX)]).

Now symbolise (a) in more detail and make the usually presupposed
existential import explicit. Then 4(w,), where w; = [x:mj (x)] and
E(wy).
Thus (a) = 4(w,;) & w; = [x:m]j (x)] & E(w;)

= (Aw) (4(w) & w = [x:mj (x)])

= (f}.

Furthermore (f), and therefore (a), is at least extensionally syn-
onymous with a first-order (weak) translation of (f). For simplicity
consider a first-order rendering of (g), viz.

(h):  (Hxy) (Hxp) (mm (x) & mm(xy) & X; # X & (IIy) (mmy(y)
DYEX VY= X))

Using the relations:
1. wsm [0,1] = (2x;) (Zx:) (X1 eWEXeWEX, F X &

(Ily) (Yew D.y =X V ¥ = X)),
2. E(w) = (ITx) (xe w D E(x)) & (ZX) (xe W),
3. ((xew) & w = [ximm(x)]) = mm(x),
it soon follows that [ ((g) = (h)).
In fact ‘x;’ and ‘x,’ designate Phobos and Deimos. But because there
is a logically equivalent analysis of a statement which eliminates the
appearance of a property, an analysis which shows the property in-
stance, for example by ostensive (subscripting) devices, instead of
explicitly stating its occurrence, it does not follow that the relevant
property is eliminated or does not occur instantiated. Compare certain
vogue eliminations of properties and universals (*).

Attributive uses of numerals can be treated as grammatical trans-
formations of the predicative uses considered. Thus (e) can be sym-
bolised ‘2ms (m)’, and this transformed to ‘2 (ms “m)’, i.e. ‘2 (wa)’
where the manifold w, is that designated by ‘ms“m’, i.e. by ‘the
moons of Mars’. Alternatively, non-metaphorical attributive uses of

(°) Compare, too, RusseLL, op.cit., 112-113: «Numbers are, it will be ad-
mitted, applicable essentially to classes. It is true that, where the mumber is
finite, individuals may be enumerated to make up the given number, and
may be counted one by one without any mention of the class-concept. But all
finite collections of individuals form classes, so that what results is after all
the number of a class.»
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numerals could be introduced through talk of gquantitative predicates
and noun phrases like ‘(has) four moons’ and ‘(eats) four red apples’.
For it can be argued that quantitative predicates can be decomposed
into a pair consisting of a purely quantitative or numerical predicate
and of a manifold determining non-quantitative predicate (or referring
expression), and that the numerical predicates specify number proper-
ty-instances of the manifolds determined.

(3). Numbers are properties of manifolds. They are not properties
of sets, because sets are units compressed or condensed from mani-
folds. Thus predicates of set-expressions are singular in number.
P. Bernays’ theory of classes (*°) can be taken as a 2-valued approxi-
mation to the logic of manifolds, once ‘¥’ and ‘2’ are replaced. For
manifolds, such as those designated by ‘the moons of Jupiter’, ‘the
trees of Sherwood forest’, ‘living men’, ‘the Apostles’, are, when they
have more than one component, pluralities. It is not significant to say
that they belong as units or elements to some set or manifold. Mani-
folds are not, however, mere aggregates. They can be determined by
an ordered couple consisting of a referring expression and a dividing
predicate, e.g. (Sherwood forest, tree-wise), (the Red army, men-
wise). Since the components of a manifold are determined by a
property, Frege’s objections (') to describing numbers as properties
of certain classes or groups can be met.

With almost every manifold is associated a set into which the
manifold can be condensed. When the relation obtains, the set re-
presents the manifold with which it is associated. When ‘o represents
w’, symbolised ‘o rep w’, is defined, the representing set W of w can
be defined: W =p;rep ‘w. Every set represents some manifold. A set
is m-membered if the manifold it represents has number n. These
relations serve to explain the connexion between (a) and
(j}: The set of moons of Jupiter is four-membered (%).

In contrast the sentence ‘The set of moons of Jupiter is four’ is not

(1) P.BErNAYS & A. A. FraENkEL, Axiomatic Set Theory, North Holland,
Amsterdam (1958). For the picturesque expressions ‘compressed’ and ‘con-
densated’, used in describing the relation of classes to sets, see E. W. BeTtH,
The Foundations of Mathematics, North Holland, Amsterdam (1959), 392.

(1) G.FreGE, op.cit, 28-33. But certainly Frege’s objections to construing
numbers as properties of actual agglomerations only or as properties of mere
aggregates not uniquely differentiated into components by some property are
substantial.

(**y Thus it is a short step from ‘rep w has 17 members’ to ‘w is 17’. Com-
pare BENACERRAF, op.cit., 60.
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significant, i.e. ~S(4(W;)). Granted the sentence ‘The set of moons
of Jupiter is (not) one’ is significant, but ‘one’ occurs here in a differ-
ent sense in which it means something like ‘a unit’ or ‘a singular
integral item’.

Theories of manifolds have their problems. First, there is the minor
grammatical puzzle (**) that in expressions like ‘a manifold is...’, the
singular is used even when the manifold may be several in number.
Likewise manifolds have properties though they cannot (significantly)
belong to sets. Second, the logic of manifolds is not sufficiently ex-
plicit. For instance it has not been explained that, or why, it is not
true that every manifold has a number.

(4) Objections justifiably made to ordinal and set-of-set analyses of
number — as analyses or definitions, not as partial replacements or
mere explications — on the ground that they admit as true or false
what is not significant of numbers, e.g. that «numbers» belong to
other «numbers» and that «numbers» are identical with sets or with
‘ndividuals, cannot be lodged against the P-C analysis presented. For
the requisite property logic can be so developed that membership
relations between properties and identity relations between properties
and sets or individuals are not (well-)defined. With significance
logics, however, more positive conclusions can be reached: numbers
are not significantly or truly identified with concrete individuals or
sets (more precisely: ~S(a = n) & ~T(o = n), where Tp has value
1 when p has value 1 and value —1 otherwise), and numbers are not
truly or significantly elements of or contained in other numbers (e.g.
~T6 c8), ~S(6 c8), ~T(4e5), ~S(5¢6)). To arrive at these
results it is necessary to develop theories of identity and member-

ship. Only the identity issue is tackled here. Benacerraf’s contention
A

that ‘4 = Julius Caesar’ and A = 1’ are not significant seems to me
correct. And it follows from ~.S (= 4 Julius Caesar) that ~T (4 =
Julius Caesar). The important question is: how to define identity so
that such consequences ensue and yet so that other needed features
of identity such as intratypical transitivity () are preserved.

(%) Pointed out by RusseLL, op.cif., 69-70.

(**) That is transitivity within types or significance-ranges. Intertypical
transitivity, where expressions of different types are related and significance-
ranges are crossed, should not hold generally. The reasons for this are
similar to reasons why Behmann formulae do not hold generally: see S. HaLr-
DEN, The Logic of Nonsense, Uppsala (1949), 3.
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The definition

(@: x=y=p (extf). f(x) = f(y)

where ‘ext’ abbreviates ‘extensional’, of contingent identity is too
restrictive, since it eliminates as non-significant all heterogeneous
identifications (**). On the other hand

@B): x=y=p (lextf) (Sf(x) &Si(y) o.f(x) = £(y)),

is too liberal, since under it all identity sentences are significant.

In order to present a definition of contingent identity which appears
to have the required features further notation is needed. The signifi-
cance-range of a given monadic predicate ‘f’, i.e. the class of ex-
pressions ‘..." such that ‘f(...)’ is significant, is specified by a super-

predicate ‘rf\’, the relation between property and superproperty being
given by these superpredicate theorems:

Sf(x) = Ti(x)
= Sf(x) & Pf(x).

where Pp has value —1 when p has value —1 and value +1 other-
wise. For example the superpredicate of ‘is prime’ is ‘is a natural
number’, of ‘is red’, ‘is coloured (or colourless)’. A predicate stands to
its superpredicate in approximately the relation that a species predi-

cate stands to its genus predicate. A substantival expression ‘- - -’ has

an associated monadic predicate ‘is (a)---' and a predicate of this
N

form has an associated substantival expression ‘---'. Finally, X’ is

0
the associated substantival expression of the superpredicate ‘f’ of the
n
associated predicate ‘f’ of ‘x’; e.g. if ‘x,” is ‘prime number’ then ‘x,’
is ‘natural number’.

Now consider
(v): x =y =p (Text)f).Ti(x) o Sf(x) & (Tf(y) > Sf(y))

- f(x) = f(y),
where ‘—’ represents a 3-valued conditional with matrix:
- | 1 —i —
1 1 —i —1
—i 1 1 1
—1 1 1 1.

(%) On definitions () and (B), and on the defects of (a), see V. MAcCRAE &
R.RouTLEY, ‘On the identity of sensations and physiological occurrences’,
American Philosophical Quaterly, to appear in April 1966.
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Although some vagueness has been taken up in (y), by opting for a
cut-off point after climbing just two places in species-genus trees,
there is a wide measure of arbitrariness left in (y) owing to latitude
in superpredicate determination. But despite certain inevitable vague-
ness in application (y) seems to capture contingent identity moder-
ately well, and much better than either (o) or (f) does. First, intra-
typical transitivity follows from (y); e.g. if k, 1 and m are natural
numbers, then, if (k=1) & (1l =m), then (k =m), because Tf(;l“'l)

)
o Sf(m) =. Tf(1) o Sf(1). Secondly, given acceptable assumptions (y)
yields anticipated significance results. To illustrate: it follows, taking
the predicate ‘has (at some times) spatial locations’, that the sentence
‘Julius Caesar = the first prime number’ is not significant. For the
superpredicate of ‘is Julius Caesar’ is ‘is a person’ and the supersu-
perpredicate is ‘is a material thing’; and both ‘a material thing has
spatial locations’ and ‘Julius Caesar has spatial locations’ have value
1. But the supersuperpredicate of ‘is the first prime number’ is ‘is a
number’; and ‘a number has spatial locations’ has either value —1i or
value — 1. Thus the antecedent of the right-hand side of (y) for the
particular predicate ‘has spatial locations’ has value 1, but the conse-
quent has value —i since ‘the first prime number has spatial lo-
cations’ has value —i. Therefore the universally quantified right-
hand side has value —i; and so ‘Julius Caesar = the first prime
number’ is not significant. The argument can be further elaborated:
for non-significance claims can be established using superpredicate
theorems and approximate choices of superpredicates can be vindi-

cated. By similar arguments it can be shown (i) ‘Julius Caesar = 4’
A

is not significant and (ii) ‘1 = /\’ is not significant. For (i) take, say,
the predicate ‘is coloured’ or ‘is an observable individual’; for (ii) the
predicate ‘belongs to a set’. The superpredicate of ‘is I and ‘is 4’ (as
predicates) is ‘is a well-orderable manifold’ and the supersuperpredi-
cate roughly ‘is a manifold’.

The P-C thesis, when developed by coupling with it such con-
ditions as (y), provides an analysis of number, the P-C analysis, which
is definitely superior to all heterodox analyses such as ordinal, numer-
al or set-of-set analyses, because it does not let in as significant (or
true) what the intuitive notion of number rules out as non-significant
(or false). In contrast with these heterodox analyses, the P-C analysis
classes as non-significant most sentences which are dismissed under
the intuitive notion as nonsense, and the analysis of the intuitive
notion is our main exercise. To endorse a heterodox analysis is to
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make a mistake, a bit like committing the naturalistic fallacy. On the
other hand the P-C analysis does not admit as significant all sentences
which are recognised as significant under the intuitive notion unless
the analysis is supplemented by further definitions. For example
division of certain properties (number properties) is only well-defined
given appropriate definitions. But the same goes for heterodox analy-
ses. e.g. division of certain sets has likewise to be defined. Despite its
superiority as an analysis, the P-C analysis of course does not furnish
synonyms for numerals: D3 does not give a synonym for ‘2, for a
person can believe 2 > 1 without believing its analysis. To expect
a non-numerical synonym for ‘3’ is to expect the impossible: to re-
quest a non-numerical analysis of the number 3, that is one which
does not, like the Oxford English Dictionary definition of ‘three’ as
‘one more than two’, presuppose or appeal to other numbers and
their relations, is to exclude the giving of synonyms for ‘3’.

III

The P-C thesis and analysis also gain support from other directions.
Support from one direction derives from Benacerraf’s concluding
arguments (**), where it is stressed that «number theory is the elabo-
ration of the properties of all structures of the order type of the
numbers». I concur: because number theory is the theory of certain
properties and relations of number properties, all structures of the
order-type of the numerals exhibit these properties and their re-
lation-instances. What usual explications of number do is to represent
numbers by samples which instantiate these properties. Much as
property-instances of colours in objects and samples can and do
represent colour properties, so property-instances of numbers in
standard manifolds and of membership numbers in paradigm sets
can represent numbers. So also sets which instantiate a number
property can indirectly represent and play some of the roles of the
property (once the recursive progression to which the sets belong is
specified). There are indefinitely many such representations none of
which is uniquely singled out. It is not, however, the fact that there
is no reason for preferring one representation to another that stops
sensible equation of numbers with sets or with objects. There might

(1%) BENACERRAF, op.cit., 69-71. These arguments can readily be turned
against Benacerraf and against his earlier rejection of property theses.
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be such reasons. Russell's cardinal classes, though not uniquely
singled out, can claim advantages over certain other representations.
No, it is simply not significant to identify number properties with
their representatives; for sentences like ‘That set is the number four’
and ‘The author of Waverley is the number seven’ are not significant.
So although any recursive progression can be adjusted (") to provide
an adequate representation of finite numbers, because such an ad-
justed progression instantiates the finite numbers, still no such pro-
gression of classes or objects is itself adequate insofar as it cannot
be significantly identified with the numbers. No object can fully play
the role of 3, and not every object, e.g. an Oxford Dictionary, can
even represent 3 without some abstractions and adjustment. Indeed
it is not particular objects (or even progressions) which matter; it is
the (number) properties progressions of these objects exhibit which
are important. Not that number properties are relational properties.
The cardinal number 3, though necessarily the successor of 2 and
predecessor of 4, can be introduced independently of the cardinals
2 and 4.

For similar reasons the Benacerraf-Goddard thesis that numbers
are number-words (*®*) has to be rejected. Number-words are either
word-tokens or word-types, i.e. sets of tokens [or else property-ab-
stracts of these sets when they are extended to include possible
tokens]. Thus the identification [if not a reduced property thesis]
amounts to but a special case of the defective thesis that numbers
are certain objects or sets. Thus it is not true ( ~T) that numbers are
number-words. Benacerraf, despite his earlier arguments, has here
opted for a nominalistically favoured representation of numbers. Nor
does either Benacerraf or Goddard succeed in escaping all Frege’s
objections to formalism (**); even to avoid more familiar objections

(17) Otherwise Russell’s cardinality requirements will not be satisfied: see
Russell’s criticism of the Peano characterisation of natural numbers, Introduc-
tion to Mathematical Philosophy, London (1919), 10. See also BENACERRAF'S
criticism of Quine, op.cit., 51, 72.

(1%) BENACERRAF, op.cit, 71-3. L. Gopparp, ‘Counting’, Ausiralasian Journal
of Philosophy 39 (1961), 223-240. Strictly Goddard’s thesis (P.227) is that «a
number is a numeral which is used in controlled counting», a much more
difficult thesis to formalise. Naturally such nominalistic theses have a much
longer history.

(') FReGE against the Formalists: in P. GEacH & M.Brack (eds.), Trans-
lations from the Philosophical Writings of Gottlob Frege, Blackwell, Oxford
(1960), 182-233.
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Benacerraf has to appeal to the function, or sense, of numerals, and
Goddard to possible uses of numerals. For manifolds which are not
enumerated or counted may have numbers. But then universals are
as good as back.

To conclude: on the basis of (1)—(4) and of the further support for
the P-C thesis, I claim that there is an analysis of cardinal number,
the P-C analysis, which within limits can be established to the ex-
clusion of all other analyses.

University of New England R. ROUTLEY
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