SEMANTICS FOR DEONTIC LOGIC

WILLIAM H. HANSON

1. Introduction

In this paper I consider some deontic logics that are counterparts,
in an obvious sense, of the alethic modal logics M, the Brouwersche
system, S4, and S5. In section 2 these logics are specified and some of
their relations to other modal logics, both alethic and deontic, are
indicated. In sections 3 and 4 1 adapt the semantical techniques of
Kripke [5] for alethic modal logic to deontic logic. Specifically, section
3 contains a model-theoretic definition of validity and section 4 a
corresponding method of semantic tableaux for each deontic logic
under consideration. In section 5 each deontic logic is proved con-
sistent and complete with respect to the valid formulas of its corre-
sponding model theory, and the method of semantic tableaux is
shown to constitute a decision procedure for each. Modalities are
discussed in section 6. It is shown that each deontic logic has the
same number of nonequivalent modalities as its corresponding alethic
logic.

2. Six deontic logics

We define six logistic systems based on an enumerably infinite list
of propositional variables and primitive connectives for negation
(~), conjunction (A), and obligation (O) (). The well-formed for-
mulas (wffs) of these systems are as usual. The axiom schemes and
rules of inference for all six systems are contained in the following
list:

Al. AD (BoA)

A2. (Ao (BoQ) o ((A>B) o (ADQ)
A3. (~Bo~A) D> (ADB)

A4. O (A>B) o (DA OB)

A5. OAA

(') Familiar additional connectives are defined in terms of ~, A, and [J
in the usual ways. Le.,, A B is defined as ~(A/A ~B), AV/B as ~(~AA
~B), AA as ~[J~A, and A=B as (A5B) A (BoA).
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A6. O (OADA)
A7. O (A0 A)

A8. OA-ODA

A9. CASOCA

Ri. If ~A and ~ADB, then B.
R2. If A, then  OA.

The six deontic (%) logics to be studied here are called F, D, DM, DB,
DS4, and DS5. They are defined as follows (where R1 and R2 are
assumed for all):

Fis Al — A4
Dis Al — A5
DM is Al — A6
DB is Al — A7
DS4 is Al — A6, A8
DS5 is Al — A5, A8, A9

The names of the last four of these deontic logics derive from the
alethic modal logics M, the Brouwersche system (hereafter referred
to as “B”), S4, and S5 to which they are similar (}. In fact, if the
axiom scheme

OASA (1)
is added to DM (DB, DS4, DS5), the resulting system is identical
with M (B, S4, S5). The result of adding this scheme to F or D is also
M.

We now point out several relations between the systems just de-
fined and others that have been studied or suggested in the literature.
(a) Since none of our systems contains the axiom scheme (1), each of
them is a result of following the suggestion of Kripke [5] (p. 95) for
obtaining a deontic logic. (b) The systems DM, DS4, and DS5 are

(%) Notice that it is stretching the terminology somewhat to call F a «deontic
logic» since it does not contain A5. We shall nevertheless do so in this paper
in order to have an easy way of referring to all the systems under consider-
ation.

We use «F» as the nmame of the system based on A1-A4 since this system
is fundamental for (i.e., included in) all the deontic and alethic systems con-
sidered in this paper.

(*) M is given by von Wright in [10], p. 85. B is given by Kripke [5], p. 68.
S4 and S5 are given by Lewis in [6], p.501.
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identical, respectively, with the systems OM*, 0S4+, and OS5+ of
Smiley [8] (*). Smiley [8] has shown that these latter systems are
identical, respectively, with the purely deontic parts of the mixed
alethic-deontic systems OM, OM’, and OM” of Anderson [1]. Hence
the decision procedures given below for DM, DS4, and DS5 apply
directly to the deontic fragments of Anderson’s systems. The only
previously-known decision procedures for these fragments required
the use of procedures for M, S4 and S5 on formulas in which the
obligation connective was expressed by Anderson’s complicated defi-
nition. (c) It is easy to show, in analogy with the results given in
sections 3-5, that the doxastic logic of Hintikka [3] (chapter 3) is
equivalent to the system obtained by deleting Aé from our DS4,
assuming that the variable a of Hintikka's connective B, is held
constant (°). (d) Finally, we observe that D and D85 are identical,
respectively, with the systems called DM and DS5 by Fitch [2]. Fitch’s
tree-proof method has several features in common with our use of
semantic tableaux.

3. Models

We give modellings for the deontic systems of section 2 that closely
parallel those given by Kripke [5] for the corresponding alethic
systems (i.e., M, B, S4, S5). Specifically, we define a model structure
as an ordered triple (G, K, R), where K is a non-empty set, G K and
R is a relation defined over K. We also stipulate that G never bears
the relation R to itself. If no further restrictions are placed on R we
call the model structure an F model structure. A model structure is
called a D model structure if it has the following property: If H, e K,
then there is an Hy ¢ K such that H; R H,. We call a D model struc-
ture a DM model structure if R is reflexive over {K-G} (°), a DB
model structure if R is reflexive and symmetric over {K-G}, and a
DS4 model structure if R is reflexive over {K-G} and transitive over
K. A D model structure is called a DS5 model structure if R is transi-
tive over K and has the following property: If H,, Hy, Hy e K, H; R H,,

(*) That DS5 is identical with OS5+ follows from the fact that Aé is a
theorem of DS5. This is proved as T14 in section 5.

(°) It is also interesting to notice that Hintikka's epistemic logic ([3], chap-
ter 3) is identical with S4, assuming that the variable a of the connective X,
is held constant.

(®) By {K-G} we mean the set consisting of all member of K except G.
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and H; R Hs, then H; R Hy. It must be emphasized that DM, DB, DS4,
and DS5 model structures are all D model structures. Hence they all
have the property that each member of K bears the relation R to some
member of K.

An F (D, DM, DB, DS4, DS5) model! for a wif A of F (D, DM, DB,
DS4, DS5) is a binary function @ (P, H) associated with a given
F (D, DM, DB, DS4, DS5) model structure (G, K, R). The variable P
ranges over wellformed subformulas of A, while the variable H
ranges over members of K. The function ® takes values in the set
{T, F}.

Assume that for a given model @ associated with a model structure
(G, K, R) the value of ® (P, H) is specified for all P that are propo-
sitional variables of A, for all He K. The value of ® (P, H) for all
subformulas P of A can then be defined by induction as follows.

If ®BH =®(CH) =T, then ® (BACH) =T; otherwise
® (BACH)=F. If ®(B,H) =T, then ®(~B,H) =F; otherwise
® (~B,H) = T. Finally, if ® (B,H") = T for every H in K such that
HRH/, then ® (OB,H) = T; but if there exists an H such that
HRH and @ (B,H') = F, then ® (OB, H) =F.

We say that a wif A is frue in a model @ associated with a model
structure (G, K, R) if ® (A, G) =T; false if ® (A, G) =F. We say
that A is valid in F (D, DM, DB, DS4, DS5) if and only if it is true
in all its F (D, DM, DB, DS4, DS5) models. It will be shown in section
5 that a wif is valid in a given system if and only if it is provable in
that system.

Informally, the modellings given above can be explained as fol-
lows. We take {K-G} to be a set of «permitted worlds», and G to be
the «real world». The function ® assigns a truth-value to each
propositional variable of a wff A (and ultimately to each subformula
of A including A itself) in each world H. If Hy, Hs ¢ K, we interpret
Hi RH: as «Hp is permitted with respect to Hi», or «every state
of affairs described by a proposition that is true in Hp is permitted
in Hy». Hence, in view of the definition given above, «A is obligatory
in the world H» (i.e,, ® (OA,H) = T) is interpreted as «A is true in
every world that is permitted with respect to H». The stipulation that
G does not bear R to itself amounts to saying that some states of af-
fairs existing in the real world are not permitted.

As was pointed out in section 2, the difference between our six
deontic systems and the corresponding alethic systems (i.e., M, B, S4,
and 85) is that the former lack the axiom (1). An exactly analogous
situation obtains in the model-theoretic approach. Specifically, (1)
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is equivalent to the assumption that R is reflexive over K. For suppose
that R is reflexive over K and that (JA is true in some member of K,
call it H. Then by the definition of @ (A, H) and the reflexivity of
R, it follows that A is true in H. OJADA is therefore true in every
member of K, since H was chosen arbitrarily. Hence if R is assumed
to be reflexive over K, a deontic interpretation of the modellings
becomes untenable. We then must adopt something like Kripke's
alethic interpretations of his modellings for M, B, S4, and S5 [5] in
which K is a set of possible worlds, and «A is necessary in world H»
(ie., ® (OA,H) =T) is interpreted as «A is true in every world
(including H itself) that is possible with respect to H».

Consider now the differences among the deontic modellings them-
selves. If no restriction is placed on R then we have the simplest of
these modellings, the one for F. Strictly speaking this modelling can
hardly be given a deontic interpretation since it is possible to specify
an F model in which OAD A is false. Indeed a satisfactory intui-
tive interpretation of F is difficult to give. Since A <A is valid
in the modellings for each of the remaining systems, they may all be
properly characterized as deontic. Among them, DM, DB, DS4, and
DS5 are significantly different from D in that R is reflexive over
{K-G} in each of the former. This restriction is equivalent to A6 and
amounts to saying that every proposition true in a permitted world
is also permitted in that world, or that each permitted world is per-
mitted with respect to itself. Hence if we think of a permitted world
as a state of affairs in which everything that is actual is permitted,
then one of the systems DM, DB, DS4, DS5 is the deontic logic we
want. If, on the other hand, we feel that even permitted worlds may
have (with respect to themselves) some undesirable aspects, then our
deontic logic is D. Among the systems DM, DB, DS4 and DS5, DM is
the simplest. Additional assumptions about the relations among the
various worlds — both real and permitted — give the systems DB,
DS4, and DS5. In particular, by arguments analogous to those given
by Kripke [5] for the various alethic reduction axioms, it can be
shown that A7 is equivalent to symmetry of R over {K-G}, that A8
is equivalent to transitivity of R over K, and that A9 is equivalent
to the special condition placed on R by a DS5 model structure.
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4. Semantic tableaux

The method of semantic tableaux has been developed for modal
logic by Kripke [4], [5]. We give here an analogue, for our deontic
systemns, of what Kripke [5] calls the «S-formulation» of the method
of semantic tableaux for alethic modal logic. Familiarity with this
method is presupposed.

The tableaux rules for negation and conjunction and the rule for
obligation on the right are the same, for all our deontic systems, as
those given in [5] (7). The rules for obligation on the left are different
for each of the six systems. For F the rule is:

YL If [JA appears on the left of a tableau t;, put A on the left
of each tableau t, such that t; S t..

For D we add a stipulation to assure that each tableau will always
bear the relation S to some other tableau:

YL If OJA appears on the left of a tableau t;, put A on the
left of each tableau t, such that t; St;. If there is no such
ty, then start a new tableau t, with A on the left such that

t; St

For the remaining systems the rules distinguish between the main
tableau and the auxiliary tableaux of a set. We use «Ylm» to desig-
nate the part of the rule that applies to a main tableau and «Yla» to
designate the part of the rule that applies to auxiliary tableaux.

From Dm we have:

Ylm. Same as Yl for D.

Yla. If OA appears on the left of an auxiliary tableau t;, put
A on the left of t; and on the left of each tableau t;
such that t; Sty, if any such t, exists.

Notice that we get the effect of reflexivity over the auxiliary tableaux
by specifying in Yla that A is placed on the left of t;.

The rule Y1 for DB is:
YIm. Same as Yl for D.
Yla. If OA appears on the left of an auxiliary tableau t;, then:
(1) put A on the left of t;; and (2) put A on the left of
each tableau t; such that t; St,, if any such t, exists; and

() We assume here, of course, that our obligation connective takes over
the role of Kripke’s necessity connective.
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(3) put A on the left of the unique auxiliary tableau t3
such that t3St;, if such an auxiliary tableau exists.

Here Yla gives us the effect of both reflexivity and symmetry over
the auxiliary tableaux. It must be emphasized that clause (3) of Yla
can be applied only if the unique t; such that t;St, is also an aux-
iliary tableau. Failure to observe this restriction would give the effect
of symmetry over all tableaux, and this is certainly not what we want
in a deontic logic.

For DS4 Y1 is as follows:

Ylm. If (JA appears on the left of a main tableau t;, put A
on the left of each tableau t; such that t; S t,. If there is
no such t;, then start a new tableau t, with [(JA on the
left such that t; St,.

Yla. If OJA appears on the left of an auxiliary tableau t;, put
A on the left of t; and A on the left of each tableau
te such that t; S tg,if any such t, exists.

Notice that this version of Yl gives the effect of transitivity over all
the tableaux of a set. For if a tableau ty is introduced such that t, S ty,
subsequent applications of Y1 will put JA and hence ultimately A on
the left of t;.

Finally, we give Yl for DS5:

Ylm. Same as Ylm for DS4.

Yla. If OJA appears on the left of an auxiliary tableau t;,
then: (1) put A on the left of t;; and (2) put OJA on the
left of each tableau tz such that t; S tp if any such tp
exists; and (3) put [JA on the left of the unique tableau
ty (either main or auxiliary) such that t3 S ts.

In analogy to the previous cases, it can be verified that this version
of Y1 gives the effect, for a set of tableaux, of the conditions placed on
R by a DS5 meodel structure.

We define closure for tableaux, sets of tableaux, systems of ta-
bleaux, and constructions as in [5]. It can be shown, in analogy with
the proofs of Lemma 1 and Lemma 2 of [5], that the following result
holds (®).

(8) It should be pointed out that the stipulation that the element G of a
model structure (G, K, R) never bears the relation R to itself plays a crucial
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The F (D, DM, DB, DS4, DS5) construction for a wif A is closed
if and only if A is valid in F (D, DM, DB, DS4, DS5).
Hence we can make use of the method of semantic tableaux to de-
termine validity in the modellings of section 3.

5. Consistency and Completeness

We now use the method of semantic tableau to prove that a wif
is a theorem of one of our deontic systems if and only if it is valid
in the modelling of that system. The consistency part of this result is
immediate, since it is easy to verify that the appropriate construction
for each axiom is closed and that the rules preserve validity. It will
also be apparent to those familiar with [5] that it is sufficient to prove
Case Yl of the Lemma of section 4.2 of [5] for each of our deontic
systems in order to establish the completeness of each.

We begin by giving a number of theorems and derived rules of the
systems under consideration. Each of these theorems and rules is
stated for the simplest system in which it holds (e.g., if a theorem
holds in both DB and DS5 we will state it as a theorem of DB). Proofs
are given only where they are not well-known or obvious.

Notice that derived rules 1-3 and T1-T8 — all well-known in modal
logic — can be established in the very weak system F. Notice too that
theorems such as T9 and T11 whose proofs are trivial in alethic
modal logic have simple yet nontrivial proofs in deontic logic (in
fact, they are not provable at all in some of our deontic systems).

Derived rule 1 of F: Substitution of equivalents (subs =)
If —~A=B, and if D is the result of substituting B for one or
more occurrences of A in C, then —C=D (®.
F
Derived rule 2 of F (DR2)
If ?A:)B, then k Ao OB.

Ti1. - O (A>B) o (CADCB)

role in this proof for the system DB. Without this stipulation it is easy to

construct a DB countermodel to A7. The stipulation is apparently not needed

for the other systems, but since it is natural for deontic logic we include it.
(*) We use the notation - ,A to meamr «A is a theorem of the system a».
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Derived rule 3 of F (DR3)

Proof:

Proof:

If ~ADB, then |;<>A:><>B.

T2. ) 0 (AAB) = (OAAOB)

T3. O (AVE) = (GAVOB)

T4 - OASO (AVB)

T5. O (AAB) 2OA

T6. 0 (ASB) > [0 (B>0) >0 (A0

T7. = 0O (ASB) 5 [O(C5D) o0 ((AAC) o (BAD))]
Ts. = (OANACOE)) O (EAA)

1. Eo (~AV(EAA)) propositional ecalculus (pc)

2. OES O (~AV (EAA)) 1, DR3
3. OED (O ~AVOEAA)) 2, T3, pc
4, (OANCE) O (EAA) 3, pe, def

T9. -0O0OASDOA
DM

By A4, A6.

T10. 0 (B2C) o [ (DAAB) 5O (AAC)]

1. (OADA) o [(OAAB) o (AAB)] pe

2. O(OA>A) O [(OAAB) o (AAB)] 1, DR2
3. O [(OAAB) o (AAB)] A6, 2, R1
4. O (OAAB) 5O (AAB) T1, 3, R1
5. (B5C) o [(AAB) o (AAQ)] pc

6. 0 (B2C) O [(AAB) o (AACQ)] 5, DR2

7. O (BoC) o [G(AAB) 5O (AAC)]  TH, 6, pe
8. O (BoC) o [O(OAAB) 5O (AAQ) 4, 7, pe

Til. ~ OASOOA
DS4

By A5, A8
T12. |—S4(I:1A/\<>E) o< (EADOA)
D
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By T8, A8
Ti3. &O(DA/\B) >0OA
5

By T5, A9
Ti4. 0O (OADA)
DS5

Proof: 1. & (OAA ~A) 5 (OOAAS ~A) T5, pe
2. (©GOADOA) DO (OADA) 1, pe, def.
3. O (OA>A) A9, pc, def, 2, R1

Case Yl of Kripke’s Lemma can now be proved for each of our
deontic systems as follows:

F, Case Yl

Before: (") OAAXACENAOEA...

After: OAAXAS (E;AA) A (EsAA) A
Justified by T8, pc.

D, Case Yl
Subcase 1. Before: JANAXACEACEA...
After:  OAAXAS EAA) AO (E;AA) A
Justified by T8, pc.

Subcase 2. Before: JAAX
After: OAAXAOA
Justified by A5, pc.

DM, Case Ylm
Same as the two subcases for D.

DM, Case Yla
Before: & (OAAXACCENACEA..)
After: O (OANANAXAD EAA) A (EsAA) ALY
Let B stand for JAAXACEACEA...
Let C stand for OAAXAO (E;AA) A (EsAA) AL
Hence by D, subcase 1, we have —~B>C, and by R2, O (B> C).
D D

From this by T10 and R1 we get <> (OAAB) o< (AAC), which
DM

is the result we want.

(1% By «before» and «after» we mean the relevant part of the characteristic
formula of the alternative set of tableaux in question, before and after the
application of YL
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DB, Case Ylm
Same as the two subcases for D.

DB, Case Yla

Before: & [XAO (OAAYAOEAOEA..)]

After: OXAAAS (OAAAAYAS (E;AA) A (EsAA)
Al

Justified as follows:

1. O [CIOAAYACENAOEA..)
DO (OAANANYAD (ENA) AO (EsAA)Y AL
Case Yla of DM, R2

2. OX>X) pe, R2

3. 0 [C(OAAYAENACEA..Y oOOA] T5, R2

4. O (OOADA) A7, pe, subs =, def

5. O [COAAYAOEACEA..) DA] 3, 4, Té6, R1

6. (Before) o (After) 1, 2, 5, T7, T1, R1
DS4, Case Ylm

Subcase 1. Before: DAAXACOEACEA...
After: OAAXAO (E;AOA) AO (EeADOA) AL
Justified by T12, pe.

Subcase 2. Before: JAAX
After: OAAXACOA
Justified by T11, pc.

DS4, Case Yla

Before: O (OANAXAOENACEA..)

After: O (OAANANAXAS (E,ATOA) AS (E.ADA) ALY
Analogous to DM, Case Yla, except that T12 is used in place of T8.

DS5, Case Ylm
Same as Case Yim for DS4.

DS5, Case Yla
Before: XA (OAAYACENAOEA..)
After: XAOAAS (OANANAYAS (ELAOA)
A (B ADA) AL
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Justified by Case Yla for DS4, T13, pc. This depends on T14 (ie., on
the fact that A6 can be derived as a theorem of DS5).

All remaining steps in the completeness proof can be established
exactly as in [5]. Hence we have the following metatheorem:

A wif A is a theorem of F (D, DM, DB, DS4, DS5) if and only
if it is valid in F (D, DM, DB, DS4, DS5).

It should also be pointed out that the method of semantic tableaux
can be used to give decision procedures for each of our deontic
systems, This follows easily for F, D, DM, and DB, since each of the
tableaux rules for these systems eliminates a connective. The rules
for DS4 and DS5 do not all have this property, but constructions in
these systems can also be made to terminate by adopting a procedure
similar to that of [5] for eliminating repetitive tableaux.

The relations between our six deontic systems and the correspond-
ing alethic system are expressed by the following diagram:

S5 > 5S4

N rd

DS5 » DS4

B » DM

D
'/ \!r
B » M

Here an arrow means that the system from which it originates con-
tains all the theorems of the system to which it points, and more
besides. If it is not possible to move from one system to another by
following arrows, then the latter system contains theorems that are
not contained in the former.

6. Deontic modalities

Since each of the systems F, D, and DM is contained in M, it follows
that each has an infinite number of nonequivalent modalities. Simi-
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larly, that the number of nonequivalent modalities in DS4 (DS5) is
no smaller than fourteen (six) follows from the fact that S4 (S5)
contains DS4 (DS5). The decision procedures for DS4 and DS5 can be
used to show that all the reduction equivalences of S4 and S5 are
theorems of the corresponding deontic systems. In particular, the
converse of A8 and

O~0~0~0A=0~0A

are theorems of DS4, and the converse of A9 is a theorem of DS5.
Hence there are no more than fourteen (six) non-equivalent modal-
ities in DS4 (DS5).

Since DB is contained in B, it follows that DB has at least as many
nonequivalent modalities as B. That the number of nonequivalent

modalities in B is infinite can be shown as follows. Consider wiffs of
the form

0,A> O4A,

where [,stands for a string of n[0’s. By means of Kripke’s semantic-
tableaux decision procedure for B (given in [5]) it can be shown that,
in general, a wif of this form is not a theorem of B unless n>m. As
an example, let n = 2 and m = 3. The construction is then:

OOA>OOOA
O0A OO0OA
OA
& |
OA OOA
A
v
A OA
A

Obviously, whenever n<<m the left sides of the tableaux in the
construction will always be «behind» the right sides, so that closure
will not occur. Hence, in general, a wiff of the form
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O,A=0,A

is not a theorem of B unless n = m. From this it follows easily that
the number of nonequivalent modalities in B (and hence in DB) is
infinite.

It should be pointed out that an exactly analogous argument can
be used to show that M has infinitely many nonequivalent modalities.
This result was originally established by Sobocinski [9], using an
infinite matrix of McKinsey [7]. The argument from semantic tab-
leaux is simpler and, since it is based on an intuitively plausible
interpretation of M, more natural than the argument from McKinsey’s
matrix.
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