LANGUAGE, INFORMATION, AND ENTROPY

FRANK A. TILLMAN AND B.R. RUSSELL

Communication theorists and physicists frequently claim that the
relation between information and entropy is one of reducibility or
equivalence. The striking difficulty facing anyone who wishes to as-
sess these claims is the lack of terminological agreement in infor-
mation theory. The purpose of this paper is to survey some of the
principle interpretations of information and entropy and, without
presuming to set terminology, to show that information is not re-
ducible to statistical mechanical considerations.

I. Introduction

From its inception the term «information» as employed in commu-
nication engineering has been fraught with a most persistent ambi-
guity. So powerful are its multiple associations that even those who
have had a hand in framing a precise definition of the term have been
let to make mistakes (). A careful examination of some of its misuses
has already been carried out by Bar-Hillel. The most notorious
misapplications have arisen from its presumed connection with
meaning, even though most theorists have been anxious to avoid this
association and have repeatedly warned against extending to this
new concept any semantical connotations. (10, 19).

Even after the term has been precisely defined and freed from any
reference to semantics (except by explicit reformulation (7),) there is
another line of association which has had a direct bearing on the
issues involved in the suggested relation of information to entropy.

As early as 1894, the term ‘information’ was used by Boltzman to
suggest that entropy is related to «missing information» (3). Here in-
formation is used in reference to some aspect of a physical system.
In a similar context, Szilard, in 1929 (21), proposed, in connection with
a study of Maxwell’'s «demon», that information is transformed into
negative entropy. In an entirely different context and for different

(!) The very choice of the term «information» may itself have been en-
gendered by Hartley's confusing the selection of symbols with the selection
of words which refer to things (2:93).
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reasons Hartley, in 1928 (13), presented a logarithmic measure which
he called ‘information’, i.e., the number of binary decisions that must
be made to reconstruct a symbol sequence of some message.

In the hands of Shannon (19 : 19-20) this information measure was
to bear a striking formal similarity to Boltzman’s statistical function
for entropy. Shannon uses the terms ‘entropy’ and ‘information’ as
interchangeable equivalents (19 : 20). His decision to equate them is
no doubt based on the fact that there is a formal similarity between
the entropy and information measure. Brillouin, in a series of brilliant
papers (3, 4, 5, 6) on entropy and information has indentified informa-
tion with the negative of entropy. While superficially this involves
only a change in sign there are indications that information has been
interpreted in a way radically different from Shannon’s concept. On
the other hand Gabor has warned that limits set up by thermody-
namics are of only very remote interest to the electrical engineers
employing the information measure (10). Elsewhere (9) he has as-
serted that the properties of information follow from mathematical
form rather than from any intrinsic relation between information and
entropy. Other claims are that communication theory is a branch of
physics with the implication, at least, that the former is reducible to
the latter (8 :652).

It is recognized that extension of usage of certain concepts like
information is normal procedure in the empirical sciences and that
such a practice has a high heuristic value in suggesting lineg of fruit-
ful research. But after such extended usage is effected and in-
formation is interpreted as measuring the microscopic aspect of a
physical system (as recent research seems to suggest), we wonder
whether, in such contexts, the distinctive features which make the
information measure eminently successful in dealing with certain
communication problems, are not being lost in the rapid expansion
of this field of research. Moreover, unless the distinction is clarified
and the terminology is examined carefully in context there is no hope
that further claims of reducibility will lead to anything but confusion.
It is certain that unless the task of clarification is performed, the
highly suggestive claims about the relation between or identity of in-
formation and entropy will be opaque and unenligthening.

Our plan is to survey briefly the mathematical apparatus involved
in the relevant concepts of information theory and statistical mecha-
nics. We will then review the principal interpretations of this
formalism in defining information and entropy. An examination
will then be made of the typical claims concerning the relations and
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differences between these concepts and our purpose will be to de-
termine whether these claims are correct or not.

Il. Formal Apparatus and Concepts

A. Formalism

The concepts of information and entropy result from interpreting
certain functions of the calculus of probability and analysis, ie.,
providing coordinating definitions. The requisite formal techniques
have been set forth in a number or recent publications (12, 14, 22,
25). Since the purpose of this section is to indicate that the concepts
of information and entropy are parts of different branches of applied
mathematics which employ similar formal techniques, we will be con-
cerned only with functions relevant to making this point.

Suppose a set of probabilities p = pj, pz... pn satisfies the condition:

n

Tpo= 1

i=1
There will be many functions which may be used to measure various
properties of the distribution of these probabilities. One of special
interest to physicists and communication engineers satisfies three con-
ditions thought to be convenient:
1. when all the probabilities are zero except for one, the function
must have the value of zero; 2. when all the probabilities are equal,
the function yields a maximum; 3. it must be a function which in-
creases monotonically with n.
A logarithmic function satisfying these conditions is:
n
— 3 pi Log pi .
i=1

It does not make sense to call this an information (or entropic)
measure until it is appropriately interpreted. It is misleading to speak
of a calculus of information (at least at this stage of reasearch) for it
my lead one to assume that there is some intrinsic relation between
the above function and concepts contained in the statistical theory of
information (%). There are those who maintain that the theory of in-
formation does not depend exclusively on the choice of this function

(*) Bar-Hillel (2) seems to make this mistake in referring to a «calculus
of information». There is nothing wrong with this terminology except that
it may be misleading when the same function is employed for other purposes.
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(18 : 19). It is also possible to construct alternative entropy functions
which appear to be quite different in form from the one to which
information is usually compared. (15 : 283)

B. Information

A communication system depends on the fact that certain distin-
guishable things; e.g., letters like ‘a’, ‘b’, ‘¢’ etc. are held in common
by a transmitter and receiver, human, electronic or otherwise. Fol-
lowing Hartley’s suggestion (13) that the communication process is
essentially one of a selection of letters out of a set of letters, a certain
numerical measure can be given for the number of decisions required
to specify a particular letter. For example, if we consider that for
each selection we must make a series of «yes» or «no» decisions to
specify which letters has been selected, then, if we possess a 32-letter
alphabet, a minimum of five decisions is required to identify the
letter selected. Thus generally a selection of one among N letters will
require Hy decisions:

(i) Hy = [LogeN] decisions (binary decisions or bits) for selecting

one letter (sign).
where ‘[]’ indicate that the next integral value above any fraction
should be taken. This measure is due to Hartley and is the number
of decisions required to identify one letter from other possible letters.

If we consider the case in which the letters (or signs) occur with
different probabilities then, we obtain a measure of the expected
number of decisions that must be made provided that we know these
various probabilities. Suppose there are N possible letters that may
be transmitted and to each of which can be assigned a probability of
occurrence, then as a measure of the expected number of decisions
required per sign (or letter) we have

n n
(if) H= —X=p; log p; bits/sign, Zpi=1,

i=1 i=1
where p; is the relative frequency with which the i*" symbol turns up
on the average in an ordered series. This measure is due to Shannon,
who called it the «entropy of the source» and in other places
«amount of information.» (19 : 18)

It is an unsettled issue as to which of the above are to be taken as

measures of information, Each has very different uses and implica-
tions. According to (i) it makes good sense to talk about the number
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of bits in a limerick or a printed book for we merely multiply
Hx by n, the number of letters contained in these samples. But ac-
cording to (ii) it would be ludicrous to say ‘that a limerick contains
so many bits, since the probabilities are calculated on the basis of
taking very long samples. No little confusion is involved in calling
them both «information» even though (ii) reduces to (i) in the special
case in which the pi's need not be calculated; for example, when we
have a set of letters in a row such as «a, b, ¢, d, e, f, g, h» and we are
required by the conditions of the problem to calculate the minimum
number of decisions required for finding one of the letters that some
one has previously selected. In this case the prohability in terms of
the relative frequency of each letters is irrelevant.

In accordance with most frequent technical usage and because
much fruitful research has resulted from its use, we take, as a measure
of information, formula (ii) interpreted appropriately. Information,
then, is the expected minimum number of binary decisions per sign
that must be made to reconstruct a given message. It is clear that
information in this sense has nothing to do with the meaning of any
possible message or, indeed, with semantic information as such.

This particular function is only one of a growing number that are
available (12, 18). Moreover recent work has shown that the problem
of reception is a special problem of statistical inference, game theory,
and system design (16, 24), In addition other measures relevant to
communication problems have been introduced and may be expected
to exhibit different properties than those discussed in connection with
(ii) above. Nevertheless, the choice of (ii) may be readily justified as
a suitable measure useful for measuring the information capacity of
a communication channel ).

For a given language, e.g., French or English, the distribution of
probabilities p; is regulated by informal rules of syntax and word
formation of the particular language. These rules are relatively fixed in
natural languages since they undergo, at most, a slow evolution; i.e.
while new words are introduced the rules pertaining to the way
sentences are made and the conditions under which one word sequen-
ce or letter sequence follows another are relatively stable. However, H
varies from one natural language to another (1) and would be expected

(® a. «It is a fair measure of what a customer pays for if he buys in-
formation capacity». Gabor (10).

b. Certain parameters «...such as time, bandwidth, number of relays, etc.,
tend to vary linearly with the logarithm of the number of possibilities», Shan-
non (19:4).
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to vary also between the so-called «artificial» languages: esperanto, the
algebras, etc. As to whether there are regular changes in H for one
language, there are at present no known laws which state that there
is a relation between H and the general direction which the course
of a language will take. From this it appears that at present the sta-
tistical measure has no theoretical import for the study of language
change, though it has import in the theory of communication with
far reaching implications for designers of communication channels.

C. Entropy

The term ‘entropy’ was introduced originally by Clausius about a
century ago in the empirical science of thermodynamics. It designates
a quantity of great importance because of its relation to the celebrated
second law of thermodynamics. Indeed, it was because of its close
relation to the second law that this physical quantity was investigated
and given a separate name. In terms of the more familiar quantities,
heat and temperature, the variation of entropy dS may be defined as
the ratio of the variation of heat energy added to the system dQ and
the absolute temperature T thus:

ds = dQ/T
Using this term one can state the second law quite simply as a ten-
dency for the entropy of closed systems to increase (‘). No exceptions
to this law have been demonstrated so far, and it is repeatedly re-
ferred to in all the physical sciences. (14, 22)

In statistical mechanics the properties of idealized physical systems
are described by means of various mathematical functions and cor-
relations between average values of these functions and ordinary
thermodynamic variables have been investigated. The function

S=klogP

has been shown to have all the properties of the entropy, P being the
number of possible equivalent states of the system all having equal
a priori probability and K a universal constant (Boltzman’s constant).
When the a priori probabilities are not equal, then the appropriate
calculus indicates that the proper average is obtained by weighting
the logarithm of the probability for any one state p; according to the
probability of occurrence thus:

(*) It is to be understood in this definition that the change in heat energy

is computed for a reversible process and that the initial and final states of
the system are equilibrium states.
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n
S = —k ¥ p; log pi.

it
The negative sign is necessary on the assumption that the p; are
normalized probabilities having the range 0 < p; < 1. This statistical
function may be shown to possess all the properties which the entropy
of empirical thermodynamics displays; in particular, its value can be
shown to increase with the time as required by the second law.

Thus the term ‘entropy’, in its original sense, refers to a well de-

fined physical quantity. Its variation in any physical system of prac-
tical interest can be measured with precision, and, in idealized
systems to which the methods of statistical mechanics apply, its value
can be computed. With the aid of the second law of thermodynamics
one can predict with confidence the variation of this quantity to be
expected in the future.

III. Information and Entropy

Immediately evident is the fact that the information function H
differs from the entropy function S in statistical mechanics by a con-
stant factor only. This obvious formal similarity, together perhaps
with previous uses of the term ‘information’ in connection with en-
tropy (°), have suggested to many that the concepts are related in
various ways. We shall examine three alternative formulations: 1. the
case in which ‘entropy’ and ‘information’ are used interchangeably,
2. the case where information and entropy are thought to be deri-
vable from statistical mechanics, 3. the case in which information is
equivalent to the negative entropy. While these alternative formu-
lations are not exhaustive, they are at least typical of recent studies
in this rapidly growing field.

1. An example of the first is Shannon’s suggestive substitutions of
‘entropy’ for ‘information’. After presenting a theorem which contains
his H function he notes (19:19) that «the form of H will be recognized
as that of entropy as defined in certain formulations of statistical
mechanics where p; is the probability of a system being in cell i of
its phase space. H is then, for example, the H in Boltzman’s famous
H theorems. He shall call H = p; log pi «the entropy of the set of
probabilities pj, ..., pn.» He then proceeds to interpret the p;’s in ac-
cordance with the requirements of a communication system handling

(%) See introduction.
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symbols, i.e. letters or other units. The only connection which ap-
pears to be implied is that Boltzman’s function and Shannon’s in-
formation are formally identical except for an arbitrary constant
which amounts to a convenient unit of measure. Thus there is implied
no necessary connection between the concepts of information and
entropy. Moreover, as we have seen, the Shannon function is not
even necessary to communication engineering, but is justified solely
on the grounds of its convenience and plausibility. We conclude, then
that Shannon’s choice of the term «entropy» to replace «information»
is based on a formal analogy and the relation is no more than a
formal one, although it is suggestive.

2. The suggestion that the concepts of information and entropy are
both derivable from statistical mechanical considerations is a more
serious one because it suggests that the relation between the terms is
perhaps more than formal; i.e. that there is a comprehensive theory
which embraces both the concept of entropy and information, Those
who have suggested the view (8 : 652) have usually maintained that
communication theory is a branch of physics. This suggestion may
be interpreted in at least two ways.

Admittedly, the field of communication engineering is a large one
covering the special theory of information as well as techniques and
concepts based on the laws of physics. There are certain concepts such
as information or inter-symbol influences which are not merely in-
stances of applied physics. If these are considered to be important to
the field of communication, as we believe they are, then the existence
of these concepts places a burden on the upholders of the reductionist
view of showing that these are derivable from statistical physics. It
is not presumed that all expressions associated with communication
theory need be defined with the help of expressions in statistical me-
chanics, but perhaps it is not unwarranted to suppose that if the re-
duction is to be more than partial then such concepts as information
or inter-symbol influence must enter into such a reduction. Yet there
are no known physical laws by which the variation of information
can be predicted and there is no indication that such a variation
would be related to the law of entropy or any other physical coneept.
Thus the existence of these hitherto irreducible concepts would, in
any case, stringently limit the reduction of communication theory to
physics (%).

(®) There is the possibility, to be considered later, of demonstrating a

correlation between an extended concept of information and the physical
law of entropy.
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On the other hand it is possible that the suggestion that communi-
cation theory is a branch of statistical physics was intended only to
indicate that certain uninterperted functions of one field are reduci-
ble to another by the usual logical and mathematical methods. If this
is the intended meaning of reduction then we must agree that the
statement asserting that such a reduction is possible is trivially true
(and so are a great number of assertions of reducibility in this sense).
It should be recognized that such a reduction is not what is usually
intended when two empirical sciences are said to be reduced one to
the other (17).

Thus the claim concerning the relation of information to entropy
does not reveal that they are related or that they are mutually de-
ducible from a more comprehensive theory,

3. Another formulation of the relation of entropy and information
has been developed by Brillouin in a recent set of related papers (3,
4, 5, 6).

Brillouin’s approach is far more ambitious than the last one con-
sidered in that he actually presents a reconstruction of the concept
of information. Using the same functions he interprets the p;s in
terms of the coordinates of a physical system in such a way that the
new interpretation results in a simple relation between his concept
of information and entropy. Without raising the question as to
whether Shannon’s function or Brillouin’s reconstruction deserves the
name «information», we shall call Shannon’s interpretation ‘infor-
mation’s, and Brillouin’s ‘information’s;. According to Brillouin's
definition there is a strict proportionality between information and a
negative portion of the entropy of the physical system employed, and
further, informationg, is correlated with this informationg, in certain
situations, e.g. where informationg, is recorded in a physical system
such as a magnetic tape. The question we shall try to answer is just
how the two are correlated. We will then be in a position to deter-
mine whether on this new formulation there is any relation between
informationg, and entropy or its negative value.

That there is a significant difference between informationg, and
informationp, may be seen in the uses to which Brillouin puts the
latter.

a. Brillouin speaks of information as if it is «about» the structure
of a system (3), a use that has semantical overtones which are irre-
levant to Shannon’s concept.

b. For Brillouin, information of a printed book is supposed to in-
crease in direct ratio to the number of copies printed. According to
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Shannon, information is not increased by such a factor, for if we
can talk at all about the information of a book, the amount of in-
formation would remain the same no matter how many copies were
made.

c. Brillouin sets up a proportionality between information (in his
sense) and the negative of the entropy. Shannon, as we have seen,
substitutes information for positive entropy.

The apparent contradictions or disparities between the two uses
warrant the distinction we have made in terms of informationg, and
informationg,.

The mixing of terms is all too easy; in one place Brillouin mentions
that a scientist in performing an observation «transforms negative
entropy into information», (3 : 337) thus apparently referring to in-
formationg;, although for the most part he is primarily concerned with
informationg,.

Let us turn to Brillouin’s formulation. The difference between his
formulation and Shannon’s may be expressed very concisely in terms
of the interpretation made of the probability distribution functions.
A physical system may be viewed from many standpoints. From the
communication standpoint, Shannon (following Hartley) intended that
the probability of occurrence of the i event p; be interpreted in ac-
cordance with some convenient sign system. The conditions for com-
munication are, of course, that there is an agreed language system
common to source and receiver and that the sign events be distin-
guishable. From this standpoint only the symbol aspect of the system
is considered even though a physical medium is involved; e.g. magne-
tic tape, channel, etc. It is just the physical medium to which Bril-
louin’s formulation is relevant. He interprets the probabilities as the
probability of the occurrence of distinguishable states of the physical
medium involved (). An example will illustrate the difference
between his and Shannon’s procedures.

Suppose a long message is recorded on a magnetic tape, From Shan-
non'’s standpoint we are concerned with the statistical properties of
the message; i.e. the sample probabilities. The tape might be consi-
dered as a source and information the expected number of binary
decisions per sign that must be made to reconstruct the source. On the
other hand, Brillouin’s analysis indicates that the recording of a mes-
sage on magnetic tape produces a calculable change in the physical
entropy of the tape. The average change in the entropy per impressed

("} This is obviously closer to the interpretation made by Boltzman and
Szilard (see introduction to this paper).
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symbol may be calculated using the same function which Shannon
uses but obviously the interpretation is different. When a proportio~
nality constant is used the change in entropy and informationg, can
be shown to have the same numerical value in fact. Thus infor-
mationg, is identical in numerical value, in this special case, to the
entropy change per symbol of the physical system (after the negen-
tropy has been adjusted by appropriate units). Brillouin calls the lat-
ter ‘information’; i.e. what we have called ‘information’s, (%).

Since the physical system involves many other aspects than symbols,
the total entropy of the whole system is quite different from the
change due to the presence of signs, and in fact the impression of
signs generally involves restriction on its possible states and therefore
leads to a reduction of entropy of the part of the system bearing the
signs. This is why informationg, is correlated with the negative of
the entropy. From the microscopic point of view even the simplest
systems of communication involve an enormous number of compo-
nents all of which can have different states; the physical aspects of
the employed symbols themselves generally affect only a small
number of possible distributions of these states among the com-
ponents. With complete knowledge of all the constituents of the
system one can calculate the probability of occurence of any given
distribution of the states and hence determine the entropy. The in-
troduction of macroscopically observable changes associated with re-
cording or transmission produces alterations of the possible micros-
copic distributions, thereby changing the probabilities, and the entro-
py. Thus a structural message recorded in or transmitted by a phy-
sical system results in a change in its entropy which may be com-
puted and correlated with informationg;,. The total negentropy of a
physical system would include all the orderedness of the system and
therefore include as a part that which Brillouin correlates with, but
which is not the same as or, in general, reducible to informationg;.
Thus the negentropy, which Brillouin calls ‘information’ (informa-
tiong,) includes that negentropy pertaining to distinguishable signs.
Informationg, becomes a calculable and in some cases a directly
measurable physical quantity: negentropy/sign. New ways of using
this concept have accordingly seemed natural and the apparent con-
tradictions or disparities, noted earlier, arise because information has
been redefined.

(®) In his latest book Brillouin has named these concepts «free informa-

tion» and «bound information» respectively. Science and Information Theory
(New York, 1956), 152,
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a. Having defined the proportionality between negentropy and in-
formationg,, Brillouin uses ‘negeniropy’ and ‘information’ interchan-
geably, and since the negative entropy is directly traceable to the
elements of the structure of a system which limits its freedom, in-
formationp, may be regarded as information about the system. This
makes sense because knowledge of the negative entropy enables one
to construct models having certain structural relations analogous to
those of the system oberved and it is, therefore, natural to speak of
information received as revealing something of the structure of the
system. Thus there is no inconsistency here even though it is unheard
of to talk about informationg, as being about a system. Shannon’s
H applied to the output of a source yields a statistical expectation
value, but for Brillouin informationg, may be regarded as yielding
knowledge about the source’s structure.

b. The statement that an increase in the number of books printed
constitutes on increase in information, simply means that the infor-
mationg, or total negentropy has increased by bringing more order
into a part of the total system, including the printing press, the blank
paper, ete. It is to be noted that information is used here in still a
different sense, meaning total number of bits rather than the number
of bits per sign.

¢. The difference in sign of the entropy correlation given by Bril-
louin follows as a direct consequence of the restriction of informa-
tiong, to apply to physical systems. The usage of Shannon, identifying
positive entropy with informationg, is formally correct but misleading
with regard to physical implications. A brief explanation of the origin
of this difference may be seen in the special case in which the proba-
bilities are found to be equal. According to Shannon, one would
compute the entropy of information or informationg, as logs B bits/
sign when there are N different signs employed with equal frequen-
cy. This quantity cannot be associated with a positive entropy of the
physical medium utilized in recording or transmission because the
N different signs are necessarily distinct and are directly correlated
with states of the physical systems which are macroscopically dis-
tinct and distinguishable. The entropy of a system reduces to this sim-
ple form only when the N different states are distinguishable micros-
copically but completely equivalent and indistinguishable macros-
copically. Thus, in computing informationg, one is concerned exclu-
sively with the distinguishable states of the source, the transducer or
the receiver, but in computing the entropy one is concerned with
number of indistinguishable states as well,
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To summarize and conclude this section of our paper, we may say
that the difference between informationg; and informationg, is to be
found in the interpretation of two different though related events
which occur with probability pi. Shannon is concerned with the pro-
bability of signs, their order, and their relative frequency of oc-
curence in very long samples. Brillouin considers only the case of
events of distinguishable states in a physical system. In computing the
entropy of a physical system by the method of statistical mechanics,
one must consider not only the distinguishable states, but also the mi-
croscopically indistinguishable states as well; loosely, one may say the
greater the number of indistinguishable states the greater the entropy
of the system and vice versa. Thus for a physical source that succes-
sively adopts a large number of different distinguishable states asso-
ciated with signs (letiers etc.) there are many restrictions upon the
possible states, therefore the entropy is less than the maximum. This
reduction is what Brillouin has called ‘information’ and which we
have referred to as ‘information’y, to distinguish it from Shannon’s
concept. Thus informationg, increases with an increase in the number
of distinguishable states. It is also true that informationg, increases
with an increase in the number of distinguishable signs and there is a
negative relation between informationg, and entropy.

IV. Conclusion

In the case of information one is dealing with a statistical distri-
bution measure applied to signs and their relative occurrence or non-
occurrence in large samples. It is true that a similar statistical measure
may be used to define a function analogous to the entropy of a given
physical system. In the case of entropy there are interactions within
the system and with its environment which are capable of producing
large changes in the distribution function in accordance with the laws
of thermodynamics. The informationg, measureis applied, on the other
hand, to distributions of signs in messages. The assumption that suc-
cessive changes of these distributions are governed by physical laws
would be a completely unwarranted extrapolation from our present
knowledge. We can say of an isolated system that its entropy will, on
the average, increase with time, but who would be so bold as to at-
tempt to predict how the information of literary English may be ex-
pected to change with the next hundred years. The laws that do apply
to this case are either vague or simply unknown and in any case the
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relations of distribution of language probabilities to laws of thermo-
dynamics has not yet been established in any comprehensive theory.
Thus the concept of information is not reducible to the concept of
entropy.

Vassar College Frank A. TiLLMAN
College of Wooster and B.R. RusseLL
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