THEORY OF MULTIPLICITIES

F.G. ASENJO

1. Purpose

Cantor introduces sets as «collections of definite and separate objects
into wholes» in one paper [5] and as «multiplicities taken as units»
in another [6] (Cf. also [7]). These are not definitions but informal
characterizations; however, presumably sets comply with them. In-
deed, elements of a set are meant to be separated objects, but we are
never told how such separation should be understood: a few from all
the others, or each one from any other, Since multiplicities exist in
which separation cannot be perfected (see final section), while at the
same time the theory of (cardinal) sets actually assumes the existence
of multiplicities of completely separable elements, it would seem that
sets develop from a rather special kind of multiplicity.

In pragmatic terms, before composing elements we must produce
them through a process of division. Bearing in mind a given property,
we separate entities from one another and from the continuum of
things. But in order to obtain a multiplicity with which to form a
unit, a rather advanced stage of preliminary analysis must already
be underway, an analysis that turns amorphous bundles of objects
into clear-cut multiplicities of elements. Although one may legiti-
mately take this analysis for granted, we believe it is useful to syste-
matizé the formal features of such a process of division.

Or to put it still another way. We are told to distinguish the element
e from the set {e}, the reason for this distinction being well known.
But how should we distinguish between a, b and the set {a, b} when
a is different from b? This paper will answer this question by
showing how to get to what remains of the set after removing the
brackets. The study will demonstrate that multiplicities are abstracts
entities which precede any theory of sets — «precede» being used
here in the same sense we mean when we say that non-associative
systems precede the theory of semi-groups.

2. Conglomerates and Divisions

We shall refer to the following symbols. a) Terms: 0, =1, £2, ...
b) Functions: 0, =1, £2, ... ¢) Equality: =. d) Parentheses and edges.
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Some strings of symbols will be called «conglomerates» in accordance
with the formation rules that follow. c1) A term is a conglomerate.
c2) If x and y are conglomerates and w is a function, then xwy is a
conglomerate. Other expressions will be called «divisions.» d1) A
function is a division. d2) A directed tree of degree two (not neces-
sarily finite), in which the vertices are terms and the two edges is-
suing from each vertex are ordered, is a division. We now establish
a one-to-one correspondence between divisions formed according
to d1 and divisions formed according to d2. This correspondence in
effect labels some trees with a function symbol. A collection of trees
and their labels (under a given correspondence) will be called a
usystem S of conglomerates and divisions». Given a system S, the
expression «division tree w» names a well-determined tree for each
value of w. Each division tree is the product graph of elementary
trees of the form x . With specific values for x, y, z, w, if x oc-
FER PER
y z y z
curs in the division tree w then, by definition, the predicate formula
x = ywz will be said to be «satisfied» in S by the given values of
X, ¥, z, and w. In such a case we shall call y and z the «w-compo-
nents» of x. Since X may occur in different division trees, then
¥ %
y z

X = ywz may be satisfied by several values of w while x, y, and z
retain the same values. However, x = ywz does not necessarily imply
x = zwy. When it is possible to determine whether or not x = ywz
is satisfied in S for any given values of x, y, z, and w, we shall say
that the system S is «well defined».

A term x will be called «w-divisible» in S if and only if x occurs
in the division tree w without being a terminal vertex. If x is w-divi-
sible in S and x = ywz is satisfied in S by particular values of x, y,
z, and w, then we shall say that y is «w-distinguishable» from z in
S. If in addition z is w-distinguishable from y in S, then y and z will
be called «separable» in S. If x is not w-divisible for every value of
w in S, then x will be called «indivisible» in S.

A conglomerate will be called a «section» of a division tree w in S
if and only if (i) it is of the form ywz where y and z are terms and
X = ywz is satisfied in S by the particular values of x, y, z, w, or (ii)
it is of the form uwv where u and v are sections.
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3. PRODUCT GRAPH OF DIVISION TREES,
DIVISION SKELETONS, MULTIPLICITIES

Let us now consider a sequence of division trees w, u, Vv, ... from
S and form with them the product graph P. Next let us examine the
following subgraphs of P. [f x occurs in w and y  ocecurs

P ¥ N
y Zz t s
in u, then both will combine in P as the single subgraph P,:
X
N
y z
4"}
t s

{Although the subgraph Py is written in tree form, it may be cyclic
and hence not necessarily a tree.) With specific values of x, y, z, t, s,
whenever Py is a subgraph of P we shall say that the predicate formu-
la x = (tus)wz is satisfied in P by the values of x, t, s, z, u, w.
Combining elementary trees from eventually different division trees
into a single subgraph can be extended by connecting new elementary
trees of S to the terminal vertices of Px. Then new and larger graphs
in tree form are obtained. Between all these graphs and the collection
of predicate formulas x = mwn, with m and n conglomerates, there
is a correspondence that is many-many. The correspondence between
Px and x = (tus)wz mentioned earlier makes obvious all the changes
that can be made in either Px or x = (tus)wz without affecting the
correspondence. Each expression of the form x = mwn, with m and
n conglomerates, will be said to be satisfied in P by particular terms
and functions if and only if one of the graphs that corresponds to x
= mwn is a subgraph to P.

Given a conglomerate mwn, we now disregard all terms and retain
functions and parentheses. We then obtain a «division skeleton.» A
division skeleton may be represented by a graph in tree form where
vertices are functions. Division skeletons can be considered as opera-
tors which, when applied to different terms of P, produce different
subgraphs in tree form of P.

If we extend in the obvious way the definition of section of a di-
vision tree to «section of a subgraph of P in tree form», then «multi-
tiplicities» may be defined as any section of a subgraph of P obtained
by a division skeleton applied to a vertex of P. Multiplicities may be
written as conglomerates: for example, ((x1y1x2) YeXs) Ys(x4y4xs), with
the x; representing terms and the y;, representing functions (or more
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briefly, if divisions are unimportant: ((Xi1, Xp), X3), (X4, X5)). If this
example represents a multiplicity in P, then x = ((Xi1yiX2)yexs)ys
(x4y4xs5) is satisfied in P by the particular terms and functions re-
presented. In both of the ways that a multiplicity can be written the
parentheses indicate direction and degree of separability of terms. In
the example just given, x; is yi-distinguishable from xz; but if each
variable represented a different term, this multiplicity would not pro-
vide information as to whether or not x; and x» were separable. To
get this information another multiplicity that contains (x2, x1) must
be obtainable in P. If we define a «sequence of elements» as a se-
quence of perfectly separable terms, that is, a sequence of terms in
which each term is separable from any other term (in the sense of
section 2), then it is clear that, to obtain n elements, at least (2n-2) !
/ (n-1) ! different multiplicities of n terms must be produced in P,
multiplicities which should provide for each x; and x; both (x;, x;) and
(x;, xi). If all these multiplicities can be obtained in P, then we may
drop the parentheses and write simply xi, X2 ..., xo». We may consider
that Cantor’s theory of cardinal sets starts at his point, the point at
which sequences of perfectly separable terms are obtained within a
given system of conglomerates and divisions.

4. Multiplicilies Redefined

Theories stated in terms of graph concepts have the advantage of
being intuitive but the disadvantage of lacking the methods of proof
necessary to build a general theory. For this reason a redefinition of
multiplicities in less intuitive and more workable terms is desirable.
The definition that follows reveals the algebraic nature of multi-
plicities.

Consider a non-empty set of terms S and a sequence of single-
valued binary operations on S. These operations need not be defined
for all the ordered pairs of elements of S. In this way, we obtain a
family of halfgroupoids Fi = {S; : i¢ S} in which the index set S is
the given set of terms. This family is not necessarily compatible (ab =
cin §; and ab = d in §;, with i # j, does not necessarily imply
¢ = d), nor is it necessarily disjoint (aeS; and a¢S; does not imply
i=j).

Next, let us form the families of Cartesian products:

Fs = {Si X Si:iES} = {S XiS:iES},
Fs = {(S Xi8)X; SUS Xy (§X,8) : 14, j, k. 1e S},
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Fo= {SXi(SX;(5Xk8) U..U(S X,:8) X, %,: 140k ..., 1,
s, teS}, and in general

Fo = {SXiTUU X; VUW X, S : Tand W are any members of
F,-;,Uand V are members of F, and F, respectively, with x + y =
n and i, j, k ¢ S}. An element of a member of Fs is indicated by aib,
and we will call it of order two; an element of a member of F; is
indicated by either (aib)jc or ak(bic), and we will call it of order three
(the order of an element of a member of F, being in general n, its
number of terms). An element of a member of F, is of the form
xyz, with the order of x plus the order of z being n (with an appro-
priate parenthesis structure). We now call a «component of an element
of a member of Fy» any expression of the form abc that occurs in xyz
with the order of a plus the order of ¢ being k with 2 < k < n.

Finally, let us form the union of all families defined above:

F = UyFyn. Then a «multiplicity» can be defined as any element of a
member of F such that every component abc of the element has the
property that a.c is defined in S;, This definition is algebraically
equivalent to the one given in section 3. Interesting problems re-
garding the algebra of multiplicities arise from imposing special al-
gebraic conditions on the family of halfgroupoids Fi.

5. Final remarks

We invite the reader to compare the theory presented here with
Leonard and Goodman’s theory of individuals [8], noting that the
discreteness symbol employed by Leonard and Goodman is a pre-
dicate symbol, while 0, £1, *2, ... are function symbols. Also, it is
useful to interpret conglomerates and multiplicities as term-relation
numbers [1], [2]. It is clear that divisions can be interpreted as in-
ternal relations.

The theory of multiplicities, instead of proceeding from the simple
to the complex, starts by dividing complex conglomerates into simpler
ones, in accordance with the principle that division is prior to com-
position. In physics, for example, we know that at times several
particles exist in a given volume, although it is impossible to dis-
tinguish more than one particle from the others. Nevertheless, we
accept the idea that each particle is a «definite and separate» element:
a convenient simplification, since we do not know any better way
of considering the matter. Also, in the midst of a horizontal train of
waves, some barriers work only in one direction and not in the other,
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permitting us to distinguish left from right, for instance, but not vice
versa. The idea of multiplicity introduced here calls attention to the
physical character of these facts, a character that is violated by
superimposing the idea of element, which in turn is tantamount to
the introduction of the physical hypothesis of complete separation —
a hypothesis we have no grounds for transferring to the microscopic
world from our macroscopic observations.

University of Pitisburgh F. G. Asenjo
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