SOME THEOREMS ON THE RELATIVE STRENGTHS
OF MANY-VALUED LOGICS

ROLF SCHOCK

In what follows, we adopt the definitions given in the author’s
papers ‘On finitely many-valued logics’ (Logique et Analyse, n° 25-26
1964) and ‘On denumerably many-valued logics’ (Ibid.). Also, ‘m’,
‘n’, and ‘p’ are used as metalinguistic variables; the first two are to
range over all positive integers greater than 1 and ‘p’ over these
integers and also .

If k is a positive integer, then the k™ sentential constant = (the
2k™ individual constant the 2k™ 1-place predicate). A formula f is
p-satisfiable just in case there are a p-interpreter i and assigner in Ui
a such that Intia (f) # O. Similarly, f is sententially p-satisfiable
just in case there is a v in VTp such that v(f) = O. Obviously, f is
p-satisfiable just in case ~f is not p-valid and sententially p-satis-
fiable just in case ~f is not a p-tautology.

If s1, ..., sn are formulas, then s;<lss = ~ {se—>»s1) and s;<<...
<8n = (...{(s1Ts2) A ...) A (5,-1<<s,)). Obviously,

Theorem 1. If s4, ..., s, are distinct sentential constants, then s1<<...
<Tsp is (sententially) (') p-satisfiable just in case n is not greater than
P-

Hence,

Theovem 2. If n is smaller than p, si, ..., sp+1 are distinct sentential
constants, and t = ~(s; <<...<{ $5.1), then
(1) t is n-valid and not p-valid;
(2) tis an n-tautology and not a p-tautology;
(3) for any d and e, if d is an n-valued logic and e is a p-valued logic,
then t is a provable and not e-provable; and
(4) t is n-provable, but not p-provable.

For assume the antecedent. (1) and (2) follow immediately from
theorem 1 and (3) follows from (1). (4) follows from (2) and (1) via

(1) We enclose a word in parentheses in a theorem to indicate that the
theorem holds whether or not the word is present. Thus, every such theorem
is really two theorems.
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the facts that every formula which is an n-tautology is n-provable and
that every p-provable formula is p-valid.

In other words, as we increase the number of truth values, we
lose provable formulas.

We say that a positive integer i divides a positive integer j just in
case there is a positive integer k such that k multiplied by i = j.

Theorem 3. If m—1 divides n—1, then, for any formula f,

(1) f is n-valid only if f is m-valid;

(2) f is an n-tautology only if f is an m-tautology (%);

(3) for any d and e, if d is an m-valued logic and e is an n-valued
logic, then f is e-provable only if f is d-provable; and

(4) f is n-provable only if f is m-provable,

For assume the antecedent. Hence, for some positive integer k, k
multiplied by (m—1) = n—1. Assume now that i is an m-interpreter
and that v is VIm. For any positive integer k and predicate q, let
Sq = the k-term sequence s such that the range of s = {i(q)}. Let
j = the n-interpreter such that j(¢) = i(c) for any individual constant
cand j(q) = (Sq) (1) " ... ® (Sq) (k) for any predicate q. Finally, let
w = the w in VTn such that, for any sententially atomic formula a,
w(a) = (k multiplied by (the b such that v(a) = b divided by
(m—1))) divided by (k multiplied by (m—1)). By an induction among
the members of TF, it can be shown that, for any term or formula t,
formula g, and assigner in Uj = Ui a, Intja (t) = Intia (t) and w(g)
= v(g). Hence, if f is n-valid, then f is i-true; and, if f is an n-tau-
tology, then v(f) = 1. But then (1) and (2) hold. (3) and (4) follow
immediately from (1) and (2) respectively.

Combining theorems 2 and 3 with the facts that a formula is n-valid
if w-valid, an n-tautology if an w-tautology, and n-provable if w-pro-
vable, we have

Theorem 4. If m is smaller than p and either m—1 divides p—1 or
P = o, then

(1) the set of all p-valid formulas is a proper subset of the set of all
m-valid formulas;

(2) the set of all formulas which are p-tautologies is a proper subset
of the set of all formulas which are m-tautologies;

(*) This is a generalization of the third part of theorem 17 of J. Luxasie-
wicz’s and A. Tamrskr's ‘Investigations into the sentential calculus’ (in Tamsx1’s
book Logic, Semantics, Metamathematics, Oxford, 1956).
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(3) for any d and e, if d is an m-valued logic and e is a p-valued
logic, then the set of all e-provable formulas is a proper subset of the
set of all d-provable formulas; and

(4) the set of all p-provable formulas is a proper subset of the set
of all m-provable formulas.

The question now arises if there are other conditions for the con-
sequences of theorem 4 than that m—1 divides p—1 when p is finite.
We shall see that the answer is no,

If f and g are formulas, then f+g = ~f—g and f+g = {~
(f+g) A (f+g) Vv (- (feo~g) A(f+e) v (~r (fe>~g) A —(f+g)
A ~(ftg)).

Notice that, for any v in VTp, v(f+g) = v(f-i-g) = v(f) + v(g)
when this sum is not greater than 1. On the other hand, when v(f) +
v(g) is greater than 1, v(f+g) = 1 while v(f-i-g) = 0. A corres-
ponding situation holds with respect to p-interpreters.

If f is a formula, k is a positive integer, s is a k-term sequence, and
the range of s = {f}, then k-f = (...(s(1) + s(2)) + ...) + s(k). Notice
that, for any v in VTp, v(k-f) = k multiplied by v(f) if this product
is not greater than 1 and 0 otherwise. A corresponding situation holds
with respect to p-interpreters. Now,

Theorem 5. If s is a sentential constant, then |- (m—1) ‘s is (sentential-
ly) n-satisfiable just in case m—1 divides n—1.

For assume the antecedent. If v is in VIn, v(i(m—1) - s) =+ 0,
and k = the natural number k such that v(s) = k divided by (n—1),
then (m—1) multiplied by (k divided by (n—1)) = 1; that is, k
multiplied by (m—1) = n—1. Hence, k * 0 and so m—1 divides
n—1. Similarly, if k is a positive integer and k multiplied by (m—1)
= n—1, then (m—1) multiplied by (k divided by (n—1)) = 1. But
there is a v in VTn such that v(s) = k divided by (n—1) and so
v({m—1) 's = 1. Hence,  (m—1) * s is sententially n-satisfiable
just in case m—1 divides n—1. The proof with respect to n-satisfiabi-
lity is analogous.

Hence,

Theorem 6. If m is smaller than n, m—1 does not divide n—1, s is
a sentential constant, and t = ~ - (m—1) - s, then

(1) t is n-valid and not m-valid;

(2) t is an n-tautology and not an m-tautology;

(3) for any d and e, if d is an m-valued logic and e is an n-valued
logic, then t is e-provable and not d-provable; and
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(4) t is n-provable, but not m-provable.

For assume, the antecedent. (1) and (2) follow from theorem 5 and
the fact that m—1 divides m—1 and (3) follows from (1). (4) follows
from (2) and (1) via the facts that every formula which is an n-tau-
tology is n-provable and that every m-provable formula is m-valid.

Combining theorems 4 and 6, we obtain

Theorem 7. If m is smaller than n, then the following conditions are
equivalent:

(1) m—1 divides n—1;

(2) the set of all n-valid formulas is a (proper) subset of the set of
all m-valid formulas;

(3) the set of all formulas which are n-tautologies is a (proper) subset
of the set of all formulas which are m-tautologies (*);

(4) for any d and e, if d is an m-valued logic and e is an n-valued
logic, then the set of all e-provable formulas is a (proper) subset of
the set of all d-provable formulas; and

(5) the set of all n-provable formulas is a (proper) subset of the set
of all m-provable formulas.

Stockholm Rolf Scaock

(*) The statement of the equivalence of (1) and (3) without the parenthe-
sized word is a generalization of theorem 19 (due to J. Lukasiewicz and A.
Lindenbaum) of the paper cited in note 2.
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