ANOTHER PROOF OF THE STRONG LOWENHEIM-SKOLEM
THEOREM

ROLF SCHOCK

In ‘Logisch-kombinatorische Untersuchungen iiber die Erfiillbarkeit
oder Beweisbarkeit mathematischer Sitze nebst einem Theoreme iiber
dichte Mengen' (Skrifter utgeit av Videnskapsselskapet i Kristiana,
1920), the late T. Skolem sketched a proof of more or less the fact that,
if each member of a set of sentences is true within a well-ordered uni-
verse, then each member of that set of sentences is also true within
a countable universe, Nevertheless, the proof actually establishes a
bit more-namely, that if each member of a set of sentences s is true
with respect to a given rule i which interprets the constants occurring
in members of s and the universe of discourse of i is well-ordered,
then each member of s is also true with respect to a restriction of i
to a countable subset of the universe of discourse of i.

The proof sketched by Skolem is somewhat intricate and requires
the association of each sentence with another in Skolem normal form
(that is, consisting of universal quantifier phrases followed by exis-
tential quantifier phrases followed by a quantifier-free formula). In
the present paper, what Skolem sketched the proof of is proven with-
out the Skolem normal form and by fairly simple semantic methods
reminiscent of those used by L. Henkin in ‘The completeness of the
first order functional calculus’ (Journal of Symbolic Logic, vol. 14,
1949). Moreover, the metamathematical framework employed is one
in which arbitrary formulas of first-order quantifier logic with both
identity and descriptions are included and in which the empty set is
also a universe of discourse.

We say that
(1) s is countable just in case s is a finite or denumerably infinite set;
(2) x is an r-first member of s just in case s is a set, x isin s, ris a
relation, and, for any y in s, not yrx although either y = x or xry;
and
(3) r well-orders s just in case s is a set and, for any q, if q is a non-
empty subset of s, then there is exactly one x such that x is an r-first
member of q.

Our language contains the following symbols:
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(1) the logical constants ~ (‘not’), — (‘only if’), A (‘and’), v (‘or’),
< (‘if and only if’), A (‘for all’), V (‘for some’), 1 (‘the’), E (‘exists’),
and I (‘is identical with’); we call the first five of these sentential
connectives and all of the rest except E and I variable binders;
(2) a denumerable infinity of distinct

(a) individual variables,

(b) individual constants, and

(c) predicates of any positive number of places among which E is
the first 1-place predicate and I is the first 2-place predicate.

In the metalanguage, we use ‘(’, *)’ and ‘{’, ‘}’ to mark the boun-
daries of non-empty finite sequences and sets respectively and
‘" and ‘_y’ as standing for the operations of concatenating two finite
sequences and of removing the first term of a non-empty finite se-
quence respectively. Also, we use ‘n’ as a metalinguistic variable
ranging over all positive integers. TF, terms, and formulas will be
understood as follows:

(1) TF = the intersection of all sets k such that

(a) for any variable or individual constant t, the pair t, (tE) is in

(b) for any n,n-place predicate p,and n-term sequence of members
of the domain of k t, the pair t(1), (t(1)p) “t_1 is in k;

(c) for any variable v and for f and g in the range of k,

(i) the pair {avf), (vE) is in k and

(ii) for any h in {(~f) (f—>g) (fag) (fvg) (feg) (Avf)
(Vvf)}, the pair v, h is in k;
(2) t is a term just in case t is in the domain of TF; and
(3) fis a formula just in case f is in the range of TF.

A symbol s occurs in a set of terms or formulas x just in case s
occurs in some member of x.

In what follows, we omit sequence marks according to the usual
conventions for the omission of parentheses and presuppose a cor-
relation of the formulas with the positive integers.

Given terms t an u and a term or formula f, we understand free-
dom and PStuf (the result of properly substituting t for u in f) as fol-
lows:

(1) if u = f{, then u is free in f and PStuf = t;
(2) if u = f, then
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(a) if f is a variable or individual constant, then u is not free in f
and PStuf = f;

(b) for any n, n-place predicate p, and n-term sequence of terms
v, if £ = (v(1)p) " v_1, then u is free in f just in case u is free in
some member of the range of v and PStuf = (PStu v(1) p) ” (the n-
term sequence w such that w(k) = PStu v(k) for any k in the domain
of w)_1;

(c) for any sentential connective ¢ and formulas g and h,

(i) if f = cg, then u is free in f just in case u is free in g and
PStuf = cPStug;
(ii) if £ = gch, then u is free in f just in case u is free in either
g or h and PStuf = PStug ¢ PStuh;
d) for any variable binder b, variable v, and formula g, if f = bvg,
then
(i) u is free in f just in case u is free in g and v is not free in
u; and
(ii) PStuf = the z such that
a) if u is not free in f, then z = f;
b) if u is free in f and v is not free in t, then z = bvPStug;
and
¢) if u is free in f, v is free in t, and w = the first variable not
occurring in either f or t, then z = bwPStuPSwvg.

On the other hand, if t and u are finite sequences of terms, the

domain of t = the domain of u, and f is a term or a formula, then
(1) OPStuf = f;
(2) for any n in the domain of t, nPStuf = PS t(n) u(n)n—1PStuf; and
(3) PStuf = the z such that, for some natural number m and m-term
sequence w, the domain of w = the domain of t, w(n) = the n"™ va-
riable not occurring in the range of t " u " (f) for any n in the do-
main of w, and z = mPStw mPSwuf.

Given a term or formula t, VRt and CNt are the (non-repeating)
sequences of variables free in t and individual constants occuring in
t respectively. We say that
(1) s is a sentence just in case s is a formula and VRf is empty;

(2) s is an existential sentence just in case s in a sentence and, for
some variable v and formule f, s = Vvf; and
(3) ESn = the n" existential sentence.

If x is a set of formulas and there are infinitely many individual
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constants not occurring in x, then Cxn = the first individual con-

stant ¢ such that

(1) c does not occur in x;

(2) there is no positive integer m smaller than n such that ¢ =
Cxm; and

(3) there is no positive integer m not greater than n such that ¢ oc-
curs in ESm.

By an interpreter, we mean a function i such that
(1) the domain of i = the set of all individual constants and pre-
dicates and
(2) there is a set u such that
(a) for any individual constant c, either i(c) = the empty set or,
for some m in u, i(c) = {m};
(b) for any n-place predicate p, i(p) is a set of n+term sequences
of members of u;
(c) i(E) = the set of all s such that, for some m in u, s = (m);
and
(d) i(I) = the set of all s such that, for some m in u, s = (mm).
If i is an interpreter, then Ui (the universe of i) is the u under (2)
above.

If x is a set, then a is an assigner in x just in case a is a function
such that
(1) the domain of a = the set of variables and
(2) for any v in the domain of a,
(a) if x is empty, then a(v) = the empty set and
(b) if x is not empty, then, for some m in x, a(v) = {m}.

If a is an assigner in x, v is a variable, and y is an object of any

kind, then a('y) = a with the pair v, a(v) removed and the pair v,
y added in its place.

Given an interpreter i and assigner in Ui a, we understand Intia

(the interpretation with respect to i and a of ...) as follows:

(1) for any variable v, Intia (v) = a(v);

(2) for any individual constant c, Intia (c) = i(c);

(3) for any n, n-place predicate p, and n-term sequence of terms t,
Intia ((t(1)p)“t_s) = the z such that either there is a u in i(p)
such that u(k) is in Intia (u(k)) for any k in the domain of u
and z = 1 or not and z = O;
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(4) for any variable v and formulas f and g,

(a) Intia (~f) = 1-Intia (f);

(b) Intia (f—>g) = the smallest member of {1, (1-Intia (f)) +
Intia (g)};

(¢) Intia (f A g) = the smallest member of {Intia (f) Intia (g)};

(d) Intia (f v g) = the greatest member of {Intia (f) Intia (g)};

(e) Intia (fe>g) = (1—the greatest member of {Intia (f) Intia
(g)}) + the smallest member of {Intia (f) Intia (g)};

(f) Intia (wvf) = the z such that either there is a k in Ui such
that, for any m in Ui, Intia ("{,}) (f) = 1 just in case m =
k and z = {k} or not and z = the empty set;

(g) Intia (Avf) = the z such that either Ui is empty and z = 1
or not and z = the smallest member of the set of all r such
that, for some m in Ui, Intia ("{,}) (f) = r; and

(h) Intia (Vvf) = the z such that either Ui is empty and z =
O or not and z = the greatest member of the set of all r
such that, for some m in Ui, Intia ("{,}) (f) = r.

If f is a formula, then f is i-true just in case, for any assigner in
Ui a, Intia (f) = 1. Also, if t is a term or a formula and j is an inter-
preter, then t is absolute in i from j just in case Uj is included in Ui
and, for any assigner in Uj a, Int ia (t) = Intja (t).

If x is a set of formulas and t is an interpreter, then j is an x-res-
triction of i just in case j is an interpreter such that
(1) Uj is included in Ui;
(2) for any individual constant which occurs in x ¢, j(c) = the inter-
section of i(c) and Uj; and
(3) for any n and n-place predicate which occurs in x p, j(p) = the
intersection of i(p) and the set or all n-term sequences whose
ranges are included in Uj.
Obviously, if j is an x-restriction of i and k is an x-restriction of j,
then k is an x-restriction of i.

If i is an interpreter, r well-orders Ui, x is a set of formulas, and
there are infinitely many individual constants which do not occur in
%, then Mirx (the modification of i by r and x) = the interpreter m
such that, for any ¢ in the domain of m,

(1) if there is no n such that ¢ = Cxn, then m(c) = i(c); and
(2) for any n, if ¢ = Cxn, then m(c) = the z such that, for some
variable v and formula f, ESn = V/vf and
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(a) if ~\/vf is m-true, then m(c) = the empty set and

(b) if Vvf is m-true, then m(c) = {the r-first member of the set
of all y in Um such that, for some assigner in Um a, Intma ("{,})
® = 1}.

The properness of(a) and (b) above follows from the theory of
recursive definitions since UMirx = Ui and Int Mirx a (ESn) is fixed
independently of Cxn for any n and assigner in UMirx a.

Theorem 1, If i is an interpreter, r well-orders Ui, x is a set of for-

mulas, and there are infinitely many individual constants which do

not occur in x, then

(1) Mirx is an x-restriction of i and i is an x-restriction of Mirx; al-
so,

(2) for any term or formula t, if every individual constant which
occurs in t occurs in x, then t is absolute in i from Mirx and t
is absolute in Mirx from i.

Assume the antecedent. (1) follows immediately from the facts that
UMirx = Ui and that (Mirx) (c) = i(c) for any c in the domain of
Mirx which occurs in x and (2) from these same facts via an induction
among the members of TF.

If i, r, and x are as in the antecedent of theorem 1, then Rirx (the
reduction of i by r and x) = the interpreter s such that
(1) for any individual constant c, s(c) = (Mirx) (c); and
(2) for any n and n-place predicate p, s(p) = the intersection of

(Mirx) (p) and the set of all n-term sequences whose ranges are
included in the set of all y such that, for some individual con-
stant ¢, y is in (Mirx) (c).

Theorem 2. If i is an interpreter, r well-orders Ui, x is a set of formu-
las, and there are infinitely many individual constants which do not
occur in x, then
(1) Rirx is an x-restriction of Mirx;
(2) URirx is countable; and
(3) for any term or formula t, t is absolute in Mirx from Rirx.
Assume the antecedent. (1) and (2) obviously hold, To show (3), let
m = Mirx and s = Rirx. Obviously,
(a) if v is a variable or an individual constant, then v is absolute in
m from s.
To show that
(b) if p is an n-place predicate and t is an n-term sequence of terms
such that t(k) is absolute in m from s for any k in the domain
of t, then (t(1)p) "t_y is absolute in m from s,
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assume the antecedent, that a is an assigner in Us, and that f =
(t(1)p) " t-1. Hence, for any k in the domain of t, Intsa (t(k)) = Int
ma (t(k)). If there is a k in the domain of t such that Int sa (t(k)) is
empty, Int ma (t(k)) is empty and so Int sa (f) = O = Intma (f). As-
sume then that u is an n-term sequence and, for any k in the domain
of u, u(k) = the member of Intsa (t(k)). Obviously, u is in s(p) just
in case u is in m (p) and sco Intsa (f) = Intma (f) again. But then f
is absolute in m from s and (b) holds.

By an even simpler inductive argument of the same kind, we have

(c) if f and g are formulas which are absolute in m from s, ¢ is a

sentential connective, and fcg is a formula, then ~f and fcg are
absolute in m from s.

To show

(d) if f is a formula absolute in m from s and v is a variable, then

Avf is absolute in m from s,

assume the antecedent and that a is an assigner in Us. If Intma
(Avf) = 1, then, since Us is included in Um and Intsa ("{;}) (f) =
Intma ({y}) (f) for any y in Us by assumption, it follows that Intsa
(Avf) = 1 as well. Assume on the other hand that Intma (Avf) =
O and so that Intma (Vv ~f) = 1. Let ¢ be the finite sequence such
that the domain of ¢ = the domain of VRAVf and c(k}) = the first
individual constant d such that a((VRAv) (k)) = m(d) for any
k in the domain of c; also, let g = PSc(VRAvf)f. Obviously, Int ma
("{y}) (~g = Intma (“{;}) (~f) for any y in Um and, since
Vv ~g is a sentence, there is an n such that \Vv~g = ESn. Hence, m
(Cxn) = {the r-first member of the set of all y in Um such that Int ma
(*{y}) (~f) = 1} = s(Cxn). Hence, there is a y in Us such that Int ma
("{+}) (~f) = 1 and so, since Intsa ("{y}) (~f) = Intma (*{,}) (~f)
by assumption and (c), Intsa (Vv~f) = 1. But then Intsa (Avf) =
Intma (Avf) again and so Avf is absolute in m from s and (d)
holds.

From (c), (d), and the fact that Intia (Vvf) = Intia (~ Vv~{) for
any variable v, formula f, interpreter i, and assigner in Ui a, we have
also
(e) if f is a formula absolute in m from s and v is a variable, then
\V/vf is absolute in m from s.

Finally, to show that
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(f) it f is a formula absolute in m from s and v is a variable, then
avf is absolute in m from s,
assume the antecedent, that a is an assigner in Us, and that w is a
variable which does not occur in avf. From(a) through(e), it follows
that Intsa (VwAv (feviw)) = Intma (VwAv(feviw)) and that,
for any y in Us, Intsa (*{;}) (Av({feviw)) = Intma (*{;})
(Av{fe>viw)). Hence, if Intsa (1vf) is empty, so is Int ma (1vf); and,
for any y in Us, if Intsa (wf) = {y}, then Intma (*{,}) (Av(fe>
viw}) = 1 and so Intma (wf) = {y}. Hence, 1vf is absolute in m
from s and (f) holds.

From (a) through (f), it follows via an induction among the mem-
bers of TF that (3) holds and so that the theorem holds.

We say that

(1) if ¢ = the n" individual constant, then Kc = the 2n" individual
constant;

(2) if t is a term or a formula, k is a finite sequence, the domain of
k = the domain of CNt, and k(j) = K(CNt) (j) for any j in the
domain of k, then Kt = PSk(CNt) t;

(3) if x is a set of formulas, then Kx = the set of all g such that, for
some f in x, g = Kf;

(4) if i is an interpreter, then
(a) Ki = the interpreter j such that, for any c¢ in the domain of

j, either there is an individual constant d such that ¢ = Kd and j(c)

= i(d) or not and j{c) = i{c); and
{b) Li = the interpreter j such that, for any c in the domain of j,

either ¢ is an individual constant and j(c) = i(Kc) or not and j(c) =

i(c).

Theorem 3. If i is en interpreter, then
(1) Ui = UKi = ULj and
{(2) for any term or formula t and assigner in Ui a, Intia () = Int
Ki a (Kt) and Intia (Kt) = IntLj a (t).
For assume the antecedent. (1) obviously holds and (2) follows via
an induction among the members of TF.

Theorem 4. If i is an interpreter, r well-orders Ui, and x is a set of
formulas, then there is an x-restriction of i j such that Uj is coun-
table and, for any term or formula t, if every individual constant
which occurs in t occurs in x, then t is absolute in i from j.

Assume the antecedent. Since there are infinitely many individual
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constants which do not occur in Kx, we have by theorems 1 and 2
that R(Ki)r(Kx) is a Kx-restriction of Ki, UR(Ki)r(Kx) is countable,
and, for any term or formula t, if every individual constant which
occurs in t occurs in Kx, then t is absolute in Ki from R(Ki) r (Kx).
Also, by theorem 3, Ui = UKi, UR(Ki) r (Kx) = ULR(Ki) r (Kx), and,
for any term or formula t and assigner in ULR(Ki) r (Kx) a, Intia
() = IntKi a (Kt) and IntR (Ki) r (Kx) a (Kt) = IntLR (Ki) r (Kx) a
(t). It follows that ULR (Ki) r (Kx) is countable and, for any term or
formula t, if every individual constant which occurs in t occurs in
x, then Intia(t) = IntKia(Kt) = IntR (Ki)r (Kx)a (Kt) = Int
LR (Ki) r (Kx) a (t) for any assigner in ULR (Ki) r (Kx) a and so t is
absolute in i from LR(Ki) r (Kx). Finally, if ¢ is an individual constant
which oceurs in x and p is an n-place predicate, then (LR(Ki) r (Kx))
(©) = (R(Ki) r (Kx)) (Kc) = (Ki) (Kc) = i (c) and (LR (Ki) r (Kx)) (p) =
(R(Ki) r (Kx)) (p) = the intersection of (Ki) (p) and the set of all n-
term sequences whose ranges are included in ULR(Ki) r (Kx) = the
intersection of i(p) and the set of all n-term sequences whose ranges
are included in ULR(Ki) r (Kx). Hence, LR(Ki) r (Kx) is an x-restric-
tion of i and so the theorem holds.

It should be noted that theorem 4 is a weak analogue to theorem
2.1 of A. Tarski’s and R. Vaught's ‘Arithmetical extensions of rela-
tional systems’ (Compositio Mathematica, vol. 13, 1957).

Theorem 5 (strong Léwenheim-Skolem theorem). If i is an interpreter,
r well-orders Ui, x is a set of formulas, and, for any f in x, f is i-true,
then there is an x-restriction of i j such that Uj is countable and, for
any f in x, f is j-true.

For assume the antecedent. By theorem 4, there is an x-restriction
of i j such that Uj is countable and, for assigner in Uj a and f in %,
Intja (f) = 1. Hence, every f in X is j-true and the theorem holds.

Theorem 5 is sometimes felt to be paradoxical in the case of a set of
formulas x which implies sentences asserting the existence of sets
which are more than denumerably infinite, This feeling of paradox
should disappear when it is recalled that, for any interpreter j, any
function which correlates Uj with the set of all natural numbers is
a function of the metalanguage which, via the axiom of regularity
of the metalanguage, cannot be a member of its own domain.

Stockholm Rolf Scrock
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