ON DENUMERABLY MANY-VALUED LOGICS

ROLF SCHOCK

In the paper F = ‘On finitely many-valued logics’ (Logique et
Analyse, vol 21, 1964 (*), the author was not sure about how to deal
with w-valued (*) semantics. In the present paper, one such semantic
theory is developed and used to characterize w-valued logics.

1. w-VALUED SEMANTICS IN EMPTY AND NON-EMPTY UNI-
VERSES.

By an o-interpreter, we mean a function i such that
(1) the domain of i = the set of all individual constants and predi-
cates and
(2) there is a set u such that

(a) for any individual constant c, either i(c) = the empty set or,
for some m in u, i(c) = {m};

(b) for any positive integer m and m-place predicate p, i(p) is a
non-empty finite sequence of sets of m-term sequences of members of
u; and

(c) for any k in the domain of i(I), (i(I))(k) = the set of all t such
that, for some m in u, t = (mm).

Given an w-interpreter i, Ui is the u under (2) above. Obviously,
Theorem 1. If i is an n-interpreter, then i is an w-interpreter.
Notice that the converse need not hold.

Given an w-interpreter i and assigner in Ui a, Int ia is understood
as it was for n-interpreters in F; however, in the case of atomic
formulas, the division is by the greatest member of the domain of
the sequence which is the i-value of the predicate concerned rather
than by n—1 (although this objet turns out to be n—1 if i is also an
n-interpreter). The clauses for formulas beginning with A and V
remain proper since, for any variable v and formula f, the set of all
r such that, for some m in Ui, Intia (*{m}) f = r is finite.

(') We here adopt all the definitions and conventions of F. In particular,
«n» is a metalinguistic variable ranging over all positive integers greater
than 1.

(®) As usual, © = the (denumerable) set of all finite ordinal numbers.
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Given an w-interpreter i, Ti and i-truth are also understood as
they were for n-interpreters in F; similarly, Tw and w-validity are
understood as they were in F, but this time with respect to w-inter-
preters. It can be shown that

Theorem 2. Twy = the set of all r such that, for some positive integer
m and natural number not greater than mk, r = k divided by m (*).
Also,

Theorem 3. There is an w-interpreter i such that Ti = Tw.

Let p = the set of all 1-place predicates. By a well-known
theorem of set theory, there is a denumerable set of mutually dis-
joint denumerable sets q such that p = the union of q. Hence, let
s be a function which correlates the positive integers with q. Also,
let t be a function which assigns to any positive integer m a function
which correlates the natural numbers with s(m). Finally, let x be
an object and i be the w-interpreter such that
(1) Ui = {x};

(2) for any individual constant ¢, i(c) = {x};

(3) for any 1-place predicate p, positive integer m, and natural
number not greater than m k, if p = (t(m)) (k), then i(p) = the m-
term sequence u such that, for any 1 in the domain of u, either
k #+ O, | is not greater than k, and u(l) = {(x)} or not and u(l) =
the empty set;

(4) i(I) is a 1-term sequence; and

(5) for any n-place predicate p, if p = I, then i(p) = (the empty set).

Hence, for any individual constant ¢, 1-place predicate p, assigner
in Ui a, positive integer m, and natural number not greater than m
k, if p = (t(m)) (k), then Int ia (cp) = the number of members of
the set of all 1 in the domain of i(p) such that (x) is in (i(p)) (1) di-
vided by the greatest member of the domain of i(p) = k divided by
m. Hence, by theorem 2 and the definition of Tw, Ti = Tw and the
theorem holds.

Theorems 2 and 3 justify the present treatment of -valued
semantics.

Theorem 4. If f is a formula and f is w-valid, then f is valid.

(*) Thus, our @ truth values are just those given in J. Lukasiewicz's and
A, Tarski's «Investigations into the sentential calculus» (in Tarski's book
Logic, Semantics, Metamathematics, Oxford, 1956).
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This follows from theorem 1.

Theorem 5. The set of all w-valid formulas is a proper subset of the
set of all 2-valid formulas,
This follows from theorem 4 and theorem 2 of F.

Theorem 6. There is a nonzero formula which is not w-valid.

This follows from theorem 4 and theorem 4 of F. Also,

Theorem 7. If i is an w-interpreter and t is a term or a formula, then
there are an n and n-interpreter j such that Uj = Ui and, for any
assigner in Uj a, Int ja (t) = Int ia (t).

Assume the antecedent, Obviously, there is a non-repeating finite
sequence s such that the range of s = the set of all predicates oc-
curring in t. Let d be a function such that the domain of d = the
domain of s and, for any k in the domain of d, d(k) = the greatest
member of the domain of i(s(k)). Also, let p = the p such that either
d is empty and p = 1 or not and p = d(1) multiplied by ... multiplied
by d (the greatest member of the domain of d) and let e be a func-
tion such that domain of e = the domain of d and, or any k in the
domain of e, e(k) = p divided by d(k). Finally, let j = the p+1 -
interpreter j such that
(1) for any individual constant ¢, j(c) = i(c);

(2) i(I) is a p-term sequence and the range of j(I) = the range of i(I);
(3) for any predicate q,

(a) if q does not occur in t and q = I, then every member of the

range of j(q) is empty and

(b) if q oceurs in t, then, for some k and r, q = s(k), r is an e(k)-

term sequence, the range of r = {i(s(k))}, and j(@) = r(1) " ... ©
r(e(k)).

- Obviously, Uj = Ui. Also, for any positive integer m, m-place
predicate which occurs in t q, m-term sequence of terms which occur
in tu, assigner in Uj a, natural number 1, and positive integer k, if
Intia ({u(l)) ® (q)) " u_y) = 1 divided by the greatest member of the
domain of i(q), s(k) = q, and Intja (u(h)) = Intia (u((h)) + the
empty set for any h in the domain of u, then Intja ({u(l)} " {q))
“"u_1) = (e(k) multiplied by 1) divided by p = ((p divided by d(k))
multiplied by I) divided by p = 1 divided by d(k) = 1 divided by the
greatest member of the domain of i(q). Hence, by an induction among
the members of TF, the theorem holds.

But then

Theorem 8. The set of all w-valid formulas = the set of all valid
formulas.
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For assume that f is a formula and valid and that i is an w-in-
terpreter. By theorem 7, there are an n and n-interpreter j such that
f is j-true just in case f is i-true. Since f is valid, f is n-valid and so
j-true. Hence, f is w-valid and so the theorem holds by theorem 4.

Theorem 9. If f is a formula, then f is 2-valid just in case Af is -
valid.

This follows from theorem 8 and theorem 6 of F.

If t is a set of real numbers not smaller than O and not greater than
1, then Vt = the set of all functions v such that the domain of v =
the set of all formulas, the range of v is included in t, and, for any
formulas f and g,

(1) v(IIfy = the z such that either v(f) is in {01} and z = 1 or not
and z = O;

(2) v(=f) = the z such that either v(f) = 1 and z = 1 or not and
z = 0O;

(3) v(~1f) = 1—v(f);

(4) v(f-g) = the smallest member of {1, (1—v(f))+v(g)};

(5) v(ftAg) = the smallest member of {v(f) v(g)};

(6) v(fVg) = the greatest member of {v(f) v(g)}; and

(7) v(fe») = (1—the greatest member of {v(f) v(g)}) + the smallest
member of {v(f) v(g)}.
Obviously,

Theorem 10. If f is a formula, then f is an n-tautology just in case
v(f) = 1 for any v in VIn.

Theorem 11. VTn is a proper subset of VTw.

We say that a formula f is an w-tautology just in case v(f) = 1 for
any v in VI and that f is sententially atomic just in case there are
no sentential connective ¢ and formulas g and h such that either
f = cgorf = gch.

Theorem 12. If f is a formula and f is an w-tautology, then f is ®-
valid and so valid.
The proof is similar to that of theorem 11 of F and via theorem 4.

Theorem 13. If f is a formula and f is an w-tautology, then f is a

tautology.
This follows from theorems 10 and 11. Also,
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Theorem 14. If v is in VT and f is a formula, then there are an n
and a w in VTn such that w(f) = v(f).

Assume the antecedent. Obviously, there is a non-repeating and
non-empty finite sequence s such that the range of s = the set of
all sententially atomic formulas occurring in f. Let d be a function
such that the domain of d = the domain of s and, for any k in the
domain of d, d(k) = the smallest b such that, for some a, v(s(k)) =
a divided by b. Also, let p = d(1) multiplied by ... multiplied by
d (the greatest member of the domain of d) and let e be a function
such that the domain of e = the domain of d and, for any k in the
domain of e, e(k) = p divided by d(k). Finally, let w = the w in
VTp+1 such that, for any sententially atomic formula g,

(1) if g goes not occur in f, then w(g) = O divided by p and

(2) if g occurs in {, then, for some k in the domain of s, g = s(k) and
w(g) = (e(k) divided by p) multiplied by (the a such that v(g) =
a divided by d(k)).

Hence, for any sententially atomic formula which occurs in f g
and k in the domain of s, if g = s(k), then w(g) = (e(k) divided by
p) multiplied by (the a such that v(g) = a divided by d(k)) = (1 di-
vided by d(k)) multiplied by (the a such that v(g) = a divided by
d(k)) = v(g).

Now let UG = the set of all pairs t, g in TF such that, if g is a
formula which occurs in f, then w(g) = v(g). If the pairs t, g and
u, h are in UG and c is a sentential connective, then w(cg) = v(cg)
if cg is a formula occurring in f and w(gch) = v(gch) if gch is a
formula occuring in f. Hence, TF is included in UG and so, since f
occurs in f, the theorem holds. It follows that

Theorem 15. The set of all formulas which are o-tautologies = the
set of all formulas which are tautologies 4.

For assume that f is a formula which is a tautology and that v
is in VTw. By theorem 14, there are an n and a w in Tn such that
w(f) = v(f). Since f is an n-tautology, w(f) = 1 and so f is an
o-tautology. Hence, by theorem 13, the theorem holds.

2. »-VALUED LOGICS

By an w-valued logic, we mean a deductive system d such that the
set of all d-provable formulas = the set of all p-valid formulas,

* This is a generalization of the fourth part of theorem 17 of the pape:
cited in note 3.
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Theorem 16. If d is an @-valued logic and f is a formula, then f is
d-provable just in case f is e-provable for any n-valued logic e.
This follows from theorem 8.

Lw and w-provability are understood as they were in F, but this
time with respect to w-tautologies. By theorem 13,

Theorem 17. If f is a formula and f is w-provable, then f is provable.
Also, by theorems 12 and 8 and theorems 7 through 11, 15, 16,
and 18 through 24 of F, it follows that

Theorem 18. If f is a formula, then f is w-provable only if f is
w-valid,

Because of theorems 18 and 8 and theorems 25 and 32 through
40 of F, it seems likely that Lo is an w-valued logic; nevertheless, the
proof cannot be given in quite the usual way for the reason given
for the case of the systems Ln with n greater than 2 in F.

The w-valued logics are more adequate than the finitely many-
valued ones in that they contain the finitely many-valued ones
in the sense of theorem 16. Nevertheless, except with respect to the
problem of the number of truth values to be employed, the w-valued
logics are less adequate than the 2-valued ones in all the ways in
which the higher-valued logics are.

Stockholm
Rolf Scrock

ERRATA FOR «ON FINITELY MANY-VALUED LOGICS»
of the same author, printed in the 25-26 n., April 1964

p. 54, line 4, replace the first «(» by «(».

p. 55, line 10, replace the first «v» by «n».

p. 56, line 9 from bottom, replace the phrase: «, then x is n-consistent
just in case x does not n-imply ~f» by the phrase: «, Hence,
x does not n-imply g.»

p. 57, bottom line: replace «vol 4, 1963» by «vol. 5, 1964».
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