PROPOSITIONAL ARITHMETIC

M.]J. CRESSWELL

One important development of symbolic logic is the extent to
which the concepts and theorems of mathematics are expressible
in purely logical form. The following is a system natural number
arithmetic in a calculus of functions of propositions. The functorial
calculus (abbreviated FC) contains,

a.) propositional variables p, q, 1, ... etc.
b.) functorial variables f, g, h, ... etc.

These last take propositional arguments. Examples of functors over
which the type b. variables range are,

‘It is not the case that p’,

‘It is logically true that p’,

‘x believes that p’,

‘the ancients considered it to be more beneficial that
p than that q’.

In axiomatizing FC we attach it to the propositional calculus and
introduce quantification over the variables exactly as it is introduced
over individual and predicate variables in the predicate calculus.
Substitution for fp (p is a propositional argument place) may be
made of any wif except a propositional variable where the argument
p of fp replaces uniformly a distinct propositional variable. Because
of the structural similarity, the theorems of the predicate calculus
will in general (though not always) have FC analogues.

Identity of propositions is defined as follows,
Def = p=q:=df: (f (fp o fq).

This is analogous to Russell’s definition of x = y, and states that
two propositions may be said to be identical iff any function of
the one is a function of the other. This is stronger than strict or
provable equivalence. We cannot in FC prove that p = ~ ~p,
though we can prove p = ~ ~ p. There are many functors within
whose scope we might wish to deny the inter-substitutability of
proved equivalents. One thinks e.g. of operators like ‘x believes that
p’, since x might quite conceivably believe that p without believing
that [{(Hp)p = (qVv ~q)} . (r) (s) [frs > (gq D frs)] . p]; yet this
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is demonstrably equivalent to p in FC. With this definition of iden-
tity it is possible to assume an infinity of distinct propositions.
Following a suggestion of Professor Prior’s (*) that no proposition
tan be a logical complication of itself, we add to FC the following
axiom,

AxInf p + fp.

We call the system FC + AxInf, FC! and prove the consistencey of
FCi as follows. >

In the domain of natural numbers the even numbers are to be
considered ‘true’ and the odd numbers ‘false’. We give an inter-
pretation under which fp > p is always true.

The constant functors have the following assignment,

~p = (p + 1) (Clearly ~p > p and the truth conditions for ~
hold).

(pva =1[(p X q +2] (Clearly (pvq >p,(pVvq >qand
since (p X q) is only odd when p and q are both odd the truth con-
ditions are fulfilled).

By the substitution rules, p is not a legitimate substitute for f,
and so the axiom is true for all the constant truth functors. Since
(a)A(4) is never a legitimate substitution for f in B(f), the only case
in which a quantified expression can be substituted will be cases
built up from substitutions having the form (a) A(ap)/fp. Sup-
pose A contains no quantifiers and for every a, A (app) > p. Then
let (a) A (ap) be evaluated as follows:

If every A(a,p) is even, then let (a)A(ap) = A(a;p),
If some A(anp) is odd, then, if a; is even, let (a) A(ap) =
A(aip)+1; if a; is odd, let (a) A(ap) = A(ap) = A(aip).

By the normal interpretation of the universal quantifier, this will be
seen to fulfill the truth conditions, and since (a) A (a,p) > p ex
hypothesi, then every expression constructed by means of quantifi-
‘cation can be shown to satisfy the axiom.

Since this interpretation uses the symbols = and >, we must as-
sign interpretations. If p = q, then (p = q) = (p + 2), otherwise if p is
the larger and is even, (p = q) = (p + 1) and, if odd, = (p + 2),

(!} A.N. Prior, Is the Concept of Referential Opacity Really Necessary ?,
Acta Philosophica Fennica, fasc. 16 (1963), pp.189-198, v. esp. p.192.
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similarly with q if it is the larger. For (p >> q), if p = q and p is odd,
then (p>q)=p+ 1, if p is even, (p>q) = p+2, if (p <q),
then, if q is odd, (p>q) = q+ 2, if q is even, (p>q) = q+ 1.
These satisfy the axiom and the truth conditions.

Now the following is a theorem;

[(p) (fp=>p) . (p) (8P =>P)] D (p) (fgp > p).

Thus any combination of the constant functors will satisfy the axiom.
We restrict the range of variable functors to combinations of the
constant functors.

In FC! we set up the following series N:

(Hp)p, ~HEp)p, ~~(Hp)p, ~ ~ ~(HPIP, ceeeiriiiiiiiiii ete.

Clearly this will be an infinite series of distinct propositions for,
given any p later in the series than q, p = fq and hence p # q by
AxInf. Letting pq = at.p = ~q, we define f analogously with
Russell’s R, . (cf PM*90)

Def* £*'pq = ar : (g) [{&q. (r) (s) (gr.fsr) > gp].
We have the following definitions;

DefO Q= g (3p) p,
Def Seq: Seq (pq) = ar [H(qO).Hpq],
DefN: N(p) = at Seq,(pO).

With these definitions we may prove the Peano axioms;

P1 N(O) (from f_ pp)
P21 [N(p) - Seq (qp)] D N(q) (from (f ,pq . frp) o f rq)
P22 [Seq(pq) . Seq(rq)] o (p=1)
(from[(p = ~q) . (r= ~qg)] D (p = 1))

P23 N(p) o (Hq) Seq (qp) (from N(p) o Seq (~pp))
P3 [Seq(pq) . Seq (pr)] o (@ = 1)

(this follows from Seq_(pq) . (~p = ~q) D (p = q))
P4 ~Seq(Op)

(from H_ pq o (Hf) (p = fq) and hence

(H,pq.Hgp) o (df) (p = f~q) (since Hpg=.p = ~ q)

and so by Def Seq.)
P5 [{fO . (p) (@) ((fq . Seq (pq)) > fp)} o {N(r) > fr}]

(from Def* and Def N).

These results are not surprising (and therefore have not been proved
in detail), since any suitable progression can be shown to satisfy
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the Peano axioms. We may hence define the usual arithmetical
operations,

But if this system (ArithFC) can appropriately be called a logical
analysis of arithmetic, we must show how it can be used to express
the ‘meaning’ of arithmetical constants. In place of defining a pre-
dicate’s being true of n individuals or a set’s having n members, we
define a functor’s being true of n propositions.

Null(f) becomes ~ (dp)fp.
(An example of a null functor is p. ~p.)

Unit(f) becomes (3p) [fp . (q) {fg > (p = q)}]
(An example of a unit functor is p = (dp)p.)

The concept of a 1-1 functor is analogous to that of a 1-1 relation,
(cf. PM *71.172).

Def 1-1 hel-1. = a (p) (9) (r) [{(hpr.hqr) > (p=q)}. {(hpq.
hpr) o (@=1)}] .

Similarity of functors is defined (cf PM*73),

Def Siml: Siml (fg) = & (dh) [(hel-1).(p) (q) (fp O (gq.hpq))
.(q) (dp) (gp o (fp . hpq))l.

This of course is the concept of a 1-1 correspondence between the
propositions of which f is true and those of which g is true.

In PM a number is the class of classes equivalent to a given class.
{The FC analogue to this would mean the introduction of functors
which take functorial arguments. This would require a type hier-
archy. Instead we associate similar functors with a proposition.
In particular each n-membered functor is associated with the n’'th
proposition in the series N characterized above, i.e.

Def Ne: Ne(pf) = 4 [Seq , (pO) . Siml(f{Seq , (Q0) . ~(Seq, (ap)}]

Ne(pf) can be read ‘p is the cardinal number of f'.

'The following theorems hold in virtue of Def Nec:
T1 (Ne(pf) . Ne(af)) o (p=0q).

T2 N(p) o (3f)Nc(pf)
(Since N(p) o Ne(p{Seq, (90). ~ Seq, (ap))}).

T3 (dp) [Nc(pf). Ne(pg)] o> Siml(fg)
(by (dh) [Siml(fh). Siml(gh)] > Siml(fg),

188



T4 Nc(O, p . ~P),

T5 Ne (1, = (dp)p),
T6 Ne@2, p=(dp)p.v.p = ~(dp)p), etc.
T7 [Ne(pf) . Ne(qg) . ~ (Hr) (fr.gr)] o Ne((p+q) (f;.v.g:)),

and so on for the other operations.

Since by AxInf there are an infinite number of propositions and
hence, a functor such as pv ~ p holding of an infinite number of
propositions, there will be some functors which have no cardinal in
the series N. Further, although AxInf is satisfiable in a denumerable
domain, it is compatible with a non-denumerable infinity of pro-
positions. The formula (Hp) Nc (pf) v Siml (f, pv ~ P) is not a
theorem. The system ArithFC developed above is sufficient for the
finite arithmetic of natural numbers, Transfinite arithmetic and real
number theory will be partly a matter of legislating in favour of
certain new definitions and axioms.

Since there is nothing intrinsically arithmetical about the series N,
we might very well have chosen another series satisfying the Peano
axioms. The only reason for taking N is that it is definable in terms
of the primitive logical symbols of FC. A series of e.g. individuals
would require the predicate calculus augmented by individual and
predicate constants. And since all logics have propositions and propo-
sition-forming operators on propositions (though not always varia-
bles for them), FC may be regarded as the most economical system
in this respect having variables of this type only.

ArithFC may be extended to predicate and set arithmetic by the
definitions, Nc(pe) and Ne(pa), and in general, where § is an operator
of which numerical statements are appropriate, we can define Nc(p§).
Thus an adequate natural number arithmetic can be defined in a
logical system without type theory.
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