QUANTIFIERS IN MANY-VALUED LOGIC

NICHOLAS RESCHER

In the context of orthodox two-valued logic, A. Mostowski has in-
troduced a very powerful generalization of the machinery of quan-
tification typified in the familiar existential and universal quanti-
fiers (). On Mostowski’s conception, a quantifier is, in effect, a
relation (propositional function of two variables) of two numbers
which are determined as follows: Given a one-place predicate
(propositional function) P defined with respect to the individuals
of a domain of discourse D, we are to conceive of a quantifier Q
in such a way that

«(Qx) Px» amounts to: Q(a, )
where:

a = the cardinal number of the set of individuals x in D for which
«Px» is true.
f = the cardinal number of the set of individuals x in D for
which «Px» is false.
Thus, for example, to obtain the existential quantifier (H-quantifier)
by this scheme we simply take Q(a, B) as:

a + 0,

Again, to obtain the universal quantifier (V-quantifier) we take
Q(o, B) as:

B =0
One further example: to obtain the «plurality-quantifier» (M-quanti-
fier) which I have discussed elsewhere (*) we take Q(o, B) as:

a=>f.

This brief outline should suffice to exhibit the fundamental idea
of Mostowski’s approach.

The purpose of the present note is to present a genmeralization of
quantifiers (in the sense of Mostowski) for many-valued logics. We
suppose then that in place of the usual two truth-values T (for truth)
and F (for falsity) we have a series of # truth values: Ty, T, ..., Tn.

() Fundamenta Mathematica, vol.44 (1957), pp.12-36.
(®) Journal of Symbolic Logic, vol.27 (1962), pp.373-374.
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It seems natural to extend Mostowski’s generalization of quan-
tifiers as follows: Given a predicate P defined with respect to the
individuals of a domain of discourse D, we are to conceive of a

quantifier Q as a propositional function of n cardinal numbers (nu-
merical parameters) in such a way that

«(Qx) Px» amounts to: Q(ai, ag, ..., On)
where

ai is the cardinal number of the set of individuals x in D for which
«Px» assumes the truth-value Ti.

Thus, for example, consider a three-valued logic with the truth-
values T (true), F (false), and N (neutral). We could now corres-
pondingly obtain, for any predicate P, the three cardinal numbers:

a; (P) = the cardinal number of the set of all x in D for which
«Px» takes the truth-value T;

az (P) = the cardinal number of the set of all x in D for which
«Px» takes the truth-value N;

as (P) = the cardinal number of the set of all x in D for which

«Px» takes the truth-value F;
and introduce such quantifiers as, for instance, the quantifier
(Nx) Px

to mean that gz #* 0, i.e, that for some element x of the domain D,
Px is neutral (neither true nor false).

Or again, we could introduce the three-valued «mostly-quantifier,»
«(Zx) Px» amounting to: a1 > o3,

so that «Px» is more often true than false for elements x of the
domain D. The three-valued version of the two-valued plurality

quantifier «(Mx) Px» mentioned above would answer (most closely)
to the relationship

oy > Op + Og.

It is clear that this extension of quantifiers affords highly flexible
machinery for treating quantificational concepts in many-valued
logics. The application of these ideas in special cases warrants
further investigation. Interesting questions can be raised by its
means — for example that of the minimum number of independent
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(non-interdefinable) quantifiers that can be specified by -certain
given means in various systems of many-valued logic.

For example, in a three-valued logic whose matrix (truth-table)
for negation is given by

P | ~P
T | F
N | N
F| T

there will be exactly six distinct definition-independent «sum-ine-
quality quantifiers,» ie., quantifiers specifiable in terms of ine-
qualities (< or <) among sums of the a;. This is so because the
defining relationship for such a quantifier, (Qx) Px, must have one
of the six forms (where a, b, ¢ stand for distinct a;):
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We can immediately cut the number of possibilities in half, since
any type-(2) quantifier (say the quantifier (Qx) Px corresponding to
a; < ap) can be defined in terms of the negation of a type-(1) quan-
tifier (in this case ~(Q*'x) Px, where (Q"x) Px corresponds to

O < (].1).

We are left with 12 possibilities, as follows: (i) for a <<b, there
are 3 choices for @ and 2 for b, for a total of 6 possibilities, (ii) for
a < b + c there are three possibilities, fixed by the three choices
of a, and (iii) the case of @ + b <T ¢ is exactly like the preceding.

But these twelve possibilities can again be cut in half because
any quantifier in the group (say (Qx) Px corresponding to oy << ap)
gives rise to another quantifier of the group when we shift to
(Qx) ~Px (and thus a1 > ag). For this shift — in virtue of the ne-
gation-matrix — effects the substitutions

a; 10 ag
Oz to og
oag to oy

and thus gives rise to a second, different inequality within the same
family. In the three-valued logic at issue, there are thus exactly six
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distinct «sum-inequality» quantifiers on the basis of which all of
the others can be introduced by definition. This finding illustrates
one kind of result that can be arrived at by the machinery here

proposed for introducing quantifiers (of the Mostowski type) into
many-valued logic.

University of Pittsburgh Nicholas REsCHER
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