A MATHEMATICAL MODEL FOR A THEORY OF ACTS

ARNOLD ], INSEL

In this paper we are concerned with the study of acts. Our
approach is through the use of set theory. We describe a class of
mathematical systems and attempt to approximate a characterization
of the act in terms of the structure of this class. We use the structure
of these systems to define certain operations and relations on acts.
What we obtain is a body of mathematical theory. It is hoped that
this theory will contribute to the understanding of the notion of the
act and its formal description.

Our program is to treat an abstract mathematical system and to
utilize its structure in order to define a few formal notions which
approximate certain of the formal aspects of corresponding notions
used in natural language. We define a class of mathematical objects
we call acts. We are interested in studying these ‘acts’ to determine
whether their formal properties in some measure satisfy our intuition
with regard to the act.

It is in the author's opinion unfortunate that with the relatively
recent development of deontic logics there have been no correspond-
ing formal studies of acts. Deontic logics deal with the notions of
permission and obligation, and these notions are directly dependent
upon the notion of the act. The act in deontic logic is ususally treated
as a proposition, and the formal treatment of acts reduces to the
formal treatment of propositions. Thus for example the operation of
the negative of an act is formally identical to the operation of nega-
tion in the propositional logic. The negative of an act in this paper
is defined in terms of the structure of a mathematical system. It is
discovered that our negative operation while sharing certain of the
formal properties of logical negation does not usually share all of
these properties. It is shown that, whenever our negative operation
does share one crucial property with logical negation, it then re-
duces to an operation with strongly undesirable characteristics.

In addition to the definition of act negation we characterize permis-
sion and obligation and define a causal relation on the family of acts.

We begin with a heuristic description of certain of the features
of our systems.

Each system we study will consist of a set U and a collection of
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certain distinguished subsets. We shall refer to U as a universe of ac-
tions. Each element of U will be called an action. Any subset of U
will be called an act. If A is an act then any element of A (any ac-
tion in A) will be called an instance of A.

We now relate these definitions to natural language. We view the
act of walking as a collection of all instances of walking. An instance
of the act of walking is a particular action involving walking. If Mr.
Jones takes a walk around the block on June 30, 1960 at 6 in the
evening then we would like to say that this action of Mr. Jones is an
instance of the general act of walking. We view this instance as an
element of the set of all instances of walking. If while walking
around the block Mr. Jones is also whistling a tune we may say that
the action of Mr. Jones is also an instance of the general act of
whistling. Thus if x represents the action of Mr. Jones and if A is the
act of walking and B the act of whistling we may claim that x is an
element of A nB, the act of walking while whistling. We may also
claim that the act of walking while whistling is a subact of the act
of walking, that is (A NB)cA. It is seen that we may interpret the
algebra of subsets of U with the usual set operations of union, inter-
section, and set theoretical complement as an algebra of acts. These
operations enable us to combine acts in some formal manner,

We now consider a feature common to our system which enables
us to speak of the performance of any act or action. Associated with
the universe of actions U is a certain collection ® of subsets of U
called the performance universe of U. We shall impose the condition
that each member of U is contained in at least one member of @.
Any member of ® will be called a performance set. If x is an element
of U and if v is any performance set which contains x we shall say
that v is a performance neighborhood or more briefly ap—nbhdof x.
If 4y is a p—nbhd of x we shall say that x is performed with respect
to 1. If A is an act and if 1 is a performance set then if A and W
have a non null intersection, that is if (A Ny)# O where O is the
empty set, then we shall say that A is performed with respect to 1.

When making statements in the subjunctive mood it might be said
that one is talking-about a hypothetical universe and a hypothetical
set of events each member of which occurs in this universe. Each
performance set y in ® serves as such a universe.

We now illustrate the use of ® in making counterfactual stat‘ements
about acts. Suppose the following is asserted: ‘If I had studied for
my math exam the instructor would certainly have passed me’. We
wish to reformulate this statement in terms of our mathematical
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model, in particular making use of the family ®. If we think of A as
the act of my studying for my exam and B the act of the instructor
passing me then we wish to assert that whenever A is performed, B
is performed. Applying ® we assert that for each vy in ®, whenever
A is performed with respect to v then so is B. Thus we have that for
each v in @, whenever (A N1y)+* O, (B Ny)+* O.

We now examine briefly one final feature of our system, a feature
we use in order to introduce the notion of moral permission and
obligation. Associated with the universe of actions U is a certain non
empty subset 1. We shall call & the collection of all permissable in-
stances. We shall say that an act A is permitted if it intersects n that
is if (A Nx)== O.

I. Activity Domains.

Having outlined the essential features of the type of system we
shall study we now consider a formal development.

1.1 Definition. Let U be a set, =t a subset of U and ® a collection of
subsets of U such that
L.L.a+0
and 2. U{ye®} =U
Then the triplet M = (U, ®, n) will be called an activity domain.

1.2 Definition. Let M = (U, ®, ) be an activity domain. An act A in
U is permitted if (ANx) + O.

1.3 Definition. For any actunty domain M an act A is forbtdden if
A is not permitted.

In the following sequence of propositions A and B are acts in a
fixed activity domain. We state the propositions without proof.

1.4 Theorem. The act A U B is permitted if and only if A is perrmtted
or B is permitted.

1.5 Theorem The act A UB is forbidden if and only if both A a.nd B
are forbidden.

1.6 Theorem. If the act A NB is permitted then both A and B are
permitted.

1.7 Theorem. If A is forbidden or if B is forbidden then ANB is
forbidden.
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II. Negative Acts.

We wish to formulate a definition of the negative of an act in
terms of activity domains. We shall consider it as a set operator on
the family of subsets of U where U is the universe of actions of any
activity domain. Although the negative operator we shall define
enjoys some of the properties of the set theoretical complement, it
does not usually coincide with the complement operator. In the fol-
lowing argument we trace one of the consequences of defining the
negative of an act as its set theoretical complement.

In accordance with the usual definition of obligation in terms of
permission we shall say that an act is obligatory if its negative is not
permitted. If we define the negative of an act as its complement in
U then it would follow that an act' A is obligatory if and only if
(—A Nx) = O, where —A denotes the complement of A in U. Hence
it would follow that A is obligatory if and only if xc A. Thus each
obligatory act would contain the collection of all permissable in-
stances. As a consequence for example, if x is a permissable instance
of walking and if A is the obligatory act of paying taxes then x is
an instance of A. This is needless to say quite an undesirable state
of affairs.

We now proceed to define an operation on the collection of acts
which we call the negative operation. We wish to describe the neg-
ative of an act A as the largest act such that whenever it is performed,
A is not performed.

In the following development we consider an arbitrary actnnty
domain M, and allow upper case letters to denote arbitrary acts of M.

2.1 Definition. Let A be an act. Then we defme the negatwe of A,
A" as:
A" = {x: for each ¢ in ® if x e then (ANy) = O}

2.2 Theorem. For any act A, A"c—A.

Proof: .Let x ¢ A", Choose a p—nbhd ¢ of x, 'l."hls can be done

by 1.1-2. Then (A Nv) = O since x& A". Hence xe pc—A. :
As an aid in deriving certain properties of the operator n we in-

troduce the following definition.

2.3 Definition. Let N(A) designate the union of all performance sets
which intersect A or,
N(A) = U{ye®: (Any) * O}.
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2.4 Theorem. For any act A, A" = —N(A).

Proof: x¢ A" if and only if p—nbhd of x intersects A.

No p—nbhd of x intersects A if and only if x ¢ N(A), that is, if and
only if x ¢ —N(A).

2.5 Corollary. For any acts A and B, if AcB, then B°"cA".
Proof: It is easily seen that if AcB, then N(A) cN(B), and hence
—N(B) ¢ —N(A). Thus the corollary follows from 2.4,

2.6 Theorem. For any act A, AcA™.

Proof: Suppose xe A. Then every p—nbhd of x intersects A. Hence
no p—nbhd of x can intersect A". Hence by definition x must lie in
the negative of A" that is, A™.

2.7 Theorem. For any act A, A" = A™,

Proof: By 2.6, A"c (A")™ = A™. Also by 2.6, Ac A™ and hence by
2.5, (Am:)n =

A™ c A" Thus we obtain the equality.

2.8 Theorem. 1. (A"UB")c(ANB)".

2. (AUB)” = (A" NBY).
Proof of 1: (A NB)c A and hence by 2.5, A°c(ANB)". Similarly
B"c(ANB)" Thus (A"UB")c (A NB)".
Proof of 2: Ac(AUB). Thus (AUB)"cA". Similarly (AUB)"cB".
Hence (AUB)"c (A" NB"). Now suppose that x& (A" NB"). Let 1 be a
p—nbhd of x Then since x lies in both A" and B*, (A Nvy) = O and
(Bn ¥) = O. Therefore (AUB) n ¥ = O. We conclude that x ¢
(AUB)», Thus (A" nB") = (AUB)" and we establish the equality.

2.9- Theorem. 1. U" = O.

2.0"=1U.
Proof of 1. Let x e U. Let ¢ be any p—nbhd of U. Then (y NU) + O.
Hence x ¢ U". We conclude that U" = O.
Proof of 2: From 1 it follows that O" = U™, By 2.6, UcU™. We
conclude that O» = U.

It is to be observed that theorems 2.5 - 2.9 describe properties of
of the operator n which are weaker or at most as strong as the cor-
responding properties of the set theoretical complement. It will be
shown in the appendix that the crucial property which distinguishes
the negative operator from the operator of set theoretical complement
is the fact that the negative of the negative of an act is not always
the original act. : '

We now investigate the notions of permission and obligation apply-
ing our definition of the negative operator.
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2.10 Definition. An act A is obligatory if A" is not permitted.

2.11 Theorem. For any act A if—A is forbidden then A is obligatory.
The proof is a simple application of 2.2.

2.12 Theorem. For any acts A and B if A NB is obligatory then both
A and B are obligatory.

Proof: If ANB is obligatory then ((AnB)"Na) = O. Hence by 2.8 we
have that ((A"UB")Nx) = O. Hence (A"nn) =0 and (B"Nn) =
We conclude that both A and B are obligatory.

Contrary to the results of most deontic logics, the converse of 2.12
is not a theorem. This, in the author’s opinion, is as it should be. If
A and B are both obligatory this does not necessarily imply that an
act must be performed each instance of which is an instance of both
A and B. For example, if both sleeping and attending classes are
obligatory acts one would not wish to say that the act of sleeping
while attending class is obligatory.

In setting up an axiomatic system for a deontic logic one is always
certain to ensure that all obligatory acts are permitted. Unfortunately
this is not a theorem in the general theory of activity domains. The
problem arises therefore to obtain some additional structure for activ-
ity domains to correct this situation.

2.13 Definition. Let M be an activity domain. We shall say that M
satisfies axiom M; if there exists an action x in x such that each p
neighborhood of x lies in n.

2.14 Lemma. An activity domain satisfies axiom M, if and only if
(—m" + 0.

Proof: Let M be any activity domam Then x ¢ (—n)" if and only if
every p—nbhd of x lies in n. Hence M satisfied axiom M, if and only
if there exists an element x in U such that x ¢ (—n)".

2.15 Theorem. Let M be an activity domain. A necessary and suffi-
cient condition that all obligatory acts are permitted is that M sat-
isfies axiom M;.
Proof: Suppose that M satisfies axiom M,. Let A be any forbidden
act. We show that A is not obligatory. Since A is forbidden, Ac—an.
Hence by 25, (—a)"cA”. By 22 (—m*c—(—na) = n. By 2.14
(—m)" & O. Hence there exists an element x in (—m)" such that
x ¢ A". Also x ¢ . Therefore A" is permitted. Hence A is not obligatory.
We now suppose that all obligatory acts are permitted. Then the
act —x is not permitted and hence is not obligatory. Thus
((—n)2nx) #+= O. We conclude that (—=x)" == O.
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2.16 Corollary. Let M be an activity domain. A necessary and suffi-
cient condition for M to satisfy axiom M, is that for any act A either
A is permitted or its negative is permitted.

In all deontic logics if an act is forbidden its negative is ob\hgatory
This follows from the definition of obligation and the fact that the
negative of the negative of an act is the original act. Again this is
not a theorem in the general theory of activity domains. As before we
obtain certain additional conditions under which this property can
be established.

2.17 Definition. Let M be an activity domain. We shall say that M
satisfies axiom M, if for each element x in x there exists a p—nbhd
1y of x and an element y in 1 such that for any p—nbhd v of y.
) .

2.18 Lemma. Let M be an activity domain. Then M satisfies axiom M,
if and only if (—n)™ = —m.
Proof: Suppose that M satisfies axiom M,. Let x be any instance of x.
Then there exists a p—nbhd 1 of x and an element y in 1 satisfying
the conditions of 2.17. Thus for any p—nbhd ¢’ of v, (Y N—n) =
We conclude that y ¢ (—=xt)". Therefore a p—nbhd of x, v, intersects
{(—mn)". We conclude that x is not a member of (—n)™. But x was
chosen as an arbitrary member of x. Thus (—x)™c—n. Applying
2.6 we obtain the equality. :
Conversely suppose that (—n)™ = —na. Let xen. Then x is not a
‘member of (—x)™. Hence there exists a p—nbhd 1 of x such that
(¢ n(—mn)") * O. Choose an element y in this intersection. Then it
is clear that every p—nbhd of y is contained in m. Hence M. satisfies
axiom M,.

2.19 Theorem. Let M be an activity domain. A necessary and suffi-
cient condition that for each act A if A is forbidden then the negative
of A is obligatory is that M satisfies axiom M. _
Proof: Suppose that M satisfies axiom M-. Let A be any forbidden act.
Then Ac—a. Hence A™c(—n)™ = —a. Hen_ce A™ is forbidden an_d
we conclude that A" is obligatory.

. Now suppose that if any act is forbidden its negative is obhgatory
In particular —gx is forbidden and hence (—n)" is obligatory. Hence
{(—m)™ c—n. Thus we obtain the equality, (—m)" = —ax. By 2.18 we
conclude that M satisfies axiom M.

2.20 Theorem. Every actlwty domain which satisfies axiom M, also
satisfies axiom M;.
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Proof: Let M be any activity domain which satisfies axiom M;. Then
(—mn)™ = —an. Since n + O, —n *+ U. Hence (—n)™ # U. Therefore
by 2.9 (—n)" & O. Hence by lemma 2.14 M satisfies axiom M.

2.21 Corollary. Let M be an activity domain. If for each forbidden act
A, the negative of A is obligatory, then all obligatory acts are permit-
ted.

iII. A Causal Relation

In section II we used the performance universe ® of an activity
domain M to define the negative of an act and to establish theorems
about negative acts. In this section we use @ to define a causal rela-
tion between acts.

3.1 Definition. Let M be an activity domain. We shall say that an
act A in M causes an act B in M if whenever A is performed B is
performed, i.e. for each performance set ¢ in @ if (ANy) # O then
(BNy) #+ O. For the sake of convenience we shall write ‘AcB’ in
place of the statement ‘A causes B’. '

In the following discussion we shall consider an arbitrary activity
domain M and shall allow the upper case letters A and B to denote
arbitrary acts of M.

3.2 Definition. Let A be any act. We define the cause of A denoted
by A" as the set

= {x: for each vy in ® if xe then (Any L 0}

3.3 Theorem. Let A and B be acts. Then AcB if and only if ACB".
Proof. Suppose A causes B. Let xt A. Let 1 be any p—mbhd of x.
Then (ANy) #+ O. Hence (Bny) += O. We conclude that xaB‘
Hence AcB".

Now suppose that AcB*. Let 1 be any performance set. Suppose
(ANy) + O. Then we can choose an action x in A .  Since
xg AcB® it follows that (BN1p) = O. We conclude that A causes B.

3.4 Theorem. 1. AcA.
2. AcA

3.5 Theorem. For any acts A, B, and C, if AcB and BcC then AcC.
Proof: Suppose that AcB and BcC. Let Ye®. Then if (A Np) #* 0O,
(Bny) #+ O. Also if (Bny) # O, (Chy) *+ O. Hence if (Any) *+ O,
(Cny) #= O. Hence AcC.

3.6 Theorem. For any acts A and B, if AcB, A°cB".
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3.7 Theorem. For any act A, A°C A™.

Proof: Suppose that there exists an action x in A° such that x¢ A™.
Then there exists a p—nbhd 1 of x such that (A"Ny) # O, and
(ANy) == O. Choose an element y in A" N1. Then although ye A"
and v is a p—nbhd of y, (ANy) #+ O, a contradiction.

3.8 Theorem. For any act A, A™ = A".
Proof: By 3.4, A*C A™. Let xe A”. Consider any p—nbhd y of x.
Then (A° Ny) + O. Hence there exists an action y in A® such that
is a p—nbhd of y. Since y & A®, (A Ny) #= O. We conclude that each
p—nbhd of x intersects A. Hence x ¢ A". Thus A“cC A"

The question might arise as to the number of distinct sets which
can be obtained by the use of the operators n and c¢. The following
theorem answers this question.

3.9 Theorem. For any act A, A" = A" =",
Proof: By 3.4 and 3.7 we have that AcA°c A™ Hence by 2.5 and
27, A"= A" c A" c A" Hence A" = A™.

Again by 3.4 and 3.7 we have that A"c (A")" = A™cC (A")™ = A"
Thus A™ = A",

3.10 Theorem. For any acts A and B if AcB then B"cA".
Proof: If AcB then AcB® by 3.3. Hence by 3.5 and 3.9, B2 = Ber —
A" = A™. Hence by 3.3, B"cA".

3.11 Theorem. For any acts A and B, (AnB)'c (A" B")C(A°UB") C
(AUB)". '

Proof: (AnB)cA and hence (AnB)'cA’. Similarly (A [B)°cB".
Proof: (AnB)>A and hence (AnB)°c A’ Similarly (A[B)° cB’.

Thus (A nB)"c(Aan‘). By a similar argumenf we can establish that
(A°UB®) c (AUB)".

We now deduce some theorems relating to the relation of cause
and to the notions of obligation and permission.

3.12 Theorem For any act A, the following are equivalent:
1. A is obligatory.
2. A™ is obligatory.
3 A’ is obligatory.
Proof A is obligatory if and only if (A”nn) =0. Smce A" = A“”
we have that A is obligatory if and only if (A" ) = O, and thls is
true if and only if A™ is obligatory. Hence 1 and 2 are equivalent.
By a similar argument and the fact that A™ = A" it follows that
1 and 3 are equivalent.
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3.13 Theorem. For any acts A and B, if AcB and A is obligatory, then
B is obligatory.
Proof: Suppose AcB. Then by 3.3 AcB". Hence 2.5 and 3.9, B* = B C
A" If A is obligatory then (A’nn) = O. Hence (B"'nn) = 0. We
conclude that B is obligatory.

If an act A causes an act B and if A is permitted it does not nec-
essarily follow that B is permitted. We study the conditions required
for this to be valid.

3.14 Definition. Let M be an activity domain. Then we shall say that
M satisfies axiom M; if for each xex, x has a p—nbhd 1 such that
Y.

3.15 Lemma, M satisfies axiom Ms if and only if (—x)* = —m.
Proof: Suppose M satisfies axiom M; Let xe(—mn)". Then each
p—nbhd of x intersects —m. Hence by the statement of My X e—m.
We conclude that (—n)'c—n. By 34, —nc(—n)°, and hence we
obtain the equality.

Now -suppose that —nx = (—n)". Let xen. Then x¢—n. Hence
x ¢(—n)°. Hence there exists a p—nbhd 4 of x such that y does not
intersect —mx i.e. such that ycn. Hence M satisfies axiom M.

3.16 Theorem. A necessary and sufficient condition for an activity
domain M to satisfy axiom Mj is that for any two acts A and B of
M if AcB and if A is permitted then B is permitted.

Proof: Suppose that M satisfies axiom Mj. Let A and B any two acts
such that AcB. We suppose that B is forbidden and prove that A is
forbidden. If B is forbidden then Bc—n. Hence B'c(—mn)’ = —mn.
By 3.3, AcB". Therefore Ac—n. Hence A is forbidden.

Now suppose that the condition holds. We wish to prove that
{(—n)® = —n. Let xe(—mn)°. It is sufficient to show that x ¢ —m. Since
xe(—mn)°, {x}c(—mn)° and hence by 3.3 we have that {x}c(—n).
Therefore since —x is not permitted we conclude by hypothesis that
{x} is not permitted. Hence {x}c—nx or x&¢—m.

3.17 Theorem. Let M be an activity domain which satisfies axiom Ma.
Then M also satisfies axiom M.

Proof: If M satisfies axiom M; then (—m)™ = —n. But —ac(—n)'c
(—n)™ = —n. We conclude that (—n)" = —x. Hence M satisfies
axiom M;s.

3.18 Corollary. Let M be an activity domain such that for each for-
bidden act A the negative of A is obligatory. Then for any two acts
A and B, if A is permitted and A causes B then B is permitted.
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IV. Appendix.

A. Negative operators of order two.

In this section we show that if a set operator enjoys certain of the
reasonable properties of the negative operator and also the additional
property that the operator is of order two then the operator nec-
essarily coincides with the operation of set theoretical complement.
Actually we prove the following:

Theorem. Let S be any set. Let * be a set operator on the family of
subsets of S such that * satisfies the following:

1. For any subsets A and B of S, if AcB then B*c A*.
2. For any subset A of S, A*c—A.

3. For any subset A of S, A*" = A.

Then for any subset A of S, A* = —A,

It is to be noted that the operation n satisfies the first two of the
above conditions. The third condition asserts that the operator * is
of order two.

We prove the above theorem as a corollary to the following se-
quence of lemmas.

4.1 Lemma. O* = S.
Proof: OcS*. Hence S = $**cO*. Thus S = O*.

4.2 Lemma. For any AcCS, (—A)* CA.
Proof: A*c—A and hence (—A)*cA** = A,

4.3 Lemma. For any element x in S, {x} = (—{x})".

Proof: By 4.2, (—{x})*c{x}. Also (—{x})* # O, for otherwise we
would have that —{x} = (—{x})** = O* =S, a contradiction. The
only non empty subset of {Lx} is {Lx} itself. Hence (—dxd))* = dxd.

4.4 Lemma. For any AcS, Ac(—A)*, and therefore A = (—A)*.
Proof: Let x¢ A. Then —Ac—{x}. Hence (—{x})*c(—A)*. Thus
we have that xe{x} = (—{x})*c(—A)*. We conclude that Ac
(—A)*. By 4.2 we obtain the equality.

4.5 Corollary. For any subset A of S, —A = A*.
Proof: By 4.4, (—A)* = A. Hence (—A)** = —A = A*,

It is interesting to note that we can omit hypothesis 1 from the
theorem (AcB implies that B* c A*) provided that S is finite.
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B. The operation of complement and the performance universe.

We now proceed to characterize those activity domains for which

the negative operator coincides with the operation of the set theoret-
ical complement. We prove the following:
4.6 Theorem. For any activity domain M = (U, ®, x), the operator n
coincides with the set complement if and only if ® = {{x} : x ¢ U}.
Proof: Suppose that ® = {{x}:x ¢ U}. Let AcU. Choose any element
x in —A. Then x has only one p—nbhd, namely {x}. Also {x} N
A =0. We conclude that xeA". Hence —AcCA" But A"c—A.
Therefore A" = —A.

Now suppose that n coincides with the set theoretical complement.
Let x ¢ U. Choose any element y in U distinct from x. Let y be any
p—nbhd of x. Then we have that xe—{y} = {y}". Hence vy n
{y} = O. We conclude that y ¢ . Thus if v is any p—nbhd of x and
if y#x, y¢¢. We conclude that v = {x}. Each element in U posses-
ses at least one p—nbhd and hence for each x in U, x possesses one
and only one p—nbhd, {x}. Hence ® = {{x}:x¢eU}.
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