SOME OBSERVATIONS RELATED TO FREGE'S WAY OUT *

MICHAEL D. RESNIK

In this note I shall make some observations concerning both the
original and repaired systems presented by Frege in his Grundgesetze
der Arithmetik. These in turn lead to general considerations con-
cerning related axiom systems and contemporary comparative set
theory. I hope that my remarks will be useful to others — as they
were to me — for obtaining some insight into Frege's and current
systems.

1. A generalization of Frege’s derivation of the Russell contradiction.

Out of historical interest let us derive the Russell paradox — much
like Frege did — in a second order functional calculus. (*) Following
him we take as our class axiom

V. XF(x) = $G(y) .=. (x) [F)=Gx)];

but instead of considering the concept class not falling under its own
concept, we make the following generalization: Let 1y be a one-one
function, that is, assume

A (x) () [pE)=y(y) D x=y]

Then, of course, ¢ has an inverse, Let us call the values of 1 for
classes as arguments 1-classes. Then consider the concept 1-class
not falling under the concept of its inverse — abbreviated ‘R’ and
symbolized by ‘(EP) [x = ¢(¥P(y})). ~P(x)]’. The y-class of its ex-
tension, (Z), is a generalization of the Russell class, so it should
not surprise us that we can use it to derive a contradiction,

1.1 y(Z) is a y-class not falling under the concept of its inverse.
For if it is not, then it does not fall under the concept of Z. But then it
is a 2p-class not falling under the concept of its inverse.

Formally:

* I am grateful to John Vickers for his perceptive comments on earlier
drafts of this paper.

() G.FreGe, Grundgesetze der Arithmetik II, p.256-257.
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L (Ply@)=y(FP(y) > POZ)] >. Y(Z)=v¢(Z) o. R(Y(Z)).
2. ~R(Y(Z)) o R(y(Z)). (1) by def. and identity theory
3. R(y(Z)). (2)

[The antecedent clause of (1) is a quantificational transform of
‘~R(Y(Z))'; the consequent is the result of instantiating ‘P’ by ‘R’
and abbreviating.]

1.2 4(Z) is not a vj-class not falling under the concept of its inverse.
For by 1.1, it is a 1-class not falling under the concept of its inverse;
thus it falls under the concept of Z, i.e.,, the concept of its inverse.
Thus 1(Z) is not a 1-class not falling under the concept of its inverse.
Formally: .

L Y@)=y(FG(y)) > Z = §G(y) (A)

2. Z=7G(y) o (x) [Rx)=G(x)] (V)

3. y(@)=vFG(y) o.R(Y(Z)) > G(Z)) (1), (2)

4. Y@ =y(FG(y)) > G(y(2)) (), 1. 1. 3)

5. ~R(p(Z)) (4) by generalization,

quantificational transformation,
and abbreviation.

Obviously Frege’s system is inconsistent since we can take 1 as the
identity function and we get Russell’s contradiction. Also note that
we only need to use our class axiom in 1.2. (%

The derivations just given can also be easily modified (by
replacing Y’ by ‘f’ to prove in Frege's system:

1.1.a. (DHR(f(Zy)).
12a. HIE)MEE =1(y) D x=y] > ~R(f(Z))]. ()

2. First order systems.

Although this contradiction has been derived in a second order
system in which both classes and functions are assumed explicitly, it
holds for the first order correlate of Frege’s system too. Let us assume
first order quantification theory with identity and take, as the class
axiom, the axiom of comprehension

B. "(Ea)(B)[B &€ @ = ®]," where @ does not contain a free.

(*) The derivations just given are minor modifications of Frege's.
(®) Re(x)’ is *(EP) [x = f(yG(y)). ~F(x)]’, where ‘f’ is a free function vari-
able.
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It is plausible to reguard instances of (B) such as

(Ey)(x)[xey =~(xea)], (Ey)(x)[xey=x=a]

as introducing functions deined on classes — in this case the com-
plement of a, 3, and the unit class of a, 1 a, respectively. We shall
say that any instance of (B), where @ contains only f§ and some other
variable (different from «, of course) free, introduces a class function
in the restricted sense. These functions need not be functions in a
more general sense. E.g.,, as we shall see Quine develops functions
in the general sense as classes or ordered pairs; class functions intro-
duced by his axiom of comprehension do not all have classes of
ordered pairs answering to them: the values of every function in the
general sense in Quine’s system are elements; x is an element if and
only if x is.

In the present system any functions in the restricted sense which

can be proved to be one-one may be used to define a paradoxical
class.

E.G.

1. IX=1y D X=Y. (B)
2. (Ey)(x)[x e y=(Ez)[x=\12.~ (X £ Z)]] (B)

3. (Eyhyey=(Ez)iy=1z.~ (xe2z)]] (2)
4.  (Ey)lwey=~(yey)] (1)(3)

3. Frege’'s way out.

Frege avoided the Russell contradiction by replacing (V) by
V. %F(x)=9G(y) .=. (2)[z#RF(x) D.zF§G(y) 2.F(z2)=G(2)]. (*

Thus his repaired system is trivially consistent, since (V') has a model
in any domain with exactly one individual. Moreover, step (2) of 1.2
is now blocked.

Nonetheless, it is known that if very simple axioms such as
'(Ex)(Ey)[x=*y]" are added to Frege’s new system, new contradictions
may be derived. (%)

(%) FreGE, op.cit., p.262-263.

(%) See: Somocinski, «L'analyse de l'antinomie Russelliene par Lesniewski»,
Methodes, 1-2, 1949-1950. QuINE, «On Frege's way out», Mind, 64, 1955. GEACH,
«On Frege's way out», Mind, 65, 1956.
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In the repaired system (B) no longer holds, and is replaced (in the
first order correlate) by

B. "(Ea)(B)[a*p D.Bea = ], ! where is as before. Then we
can prove ‘x¥1X.1Xx=1y. D Xx=y'; however, without first deriving a
contradiction first (using additional assumptions) and using (p. ~p.
> q’, I have not been able to drop the condition ‘x+*.x.’ This seems
to be true generally of functions in the restricted sense which were
one-one in the system containing (B). Nonetheless, according to Sobo-
cinski and Geach, Lesniewski succeeded in using one of these former
one-one functions — x — to derive a contradiction from (B’) and
‘(Ex)(Ey) (Ez) [x#YV.xFz. y¥z]" (")

4. A new contradiction.

By making a stronger assumption than those previously made,
namely, by assuming the existence of one-one functions without
fixed points, we can easily modify the derivations of 1.1 and 1.2 to
obtain a new inconsistency in the repaired system. For ‘(f)R;(f(Z;))’
can be proved just as before, and by the obvious changes in 1.2. we
obtain

O ([ =1(y) Dx=y] 2. ®[f(x)#=x] D ~R(f(Z)].

Then if we take

C. (ED[(x)(y)[f(x)=f(y) D x=y].(x)[f(x) *x]]

as an axiom the contradiction in the system containing it and (V’) is
immediate.

One could rightly object that (C) is an overly strong assumption
to make. Yet even if we give it up, we have shown Frege’s repaired
system to lack standard models in any domain with at least two
individuals. For (C) is true in such models. This result is far weaker

() J.M. Bartlett has remarked that any one-one function gives rise to a
paradoxical class in Frege's system and that only the most simple of these
are avoided in the repaired system. Since he does not supply the details,
I do not know whether he had anticipated the observations just made or
whether he also knew those to be made in the next section. My discoveries
were made independently of his — until I had made them I failed to com-
prehend the remark in question. See J. M. BARTLETT, Funktion und Gegen-
stand, p.65-67 (Dissertation, Munich., 1961).
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than that already obtained by Quine (") — the restriction to standard
models may be dropped — but the technique used to obtain it admits
of interesting generalizations.

5. Generalizations and limitations.

Suppose that we again consider class axioms formulated in a sec-
ond order functional calculus, but instead of Frege’s axiom let us
take one of the form XF(x)=¥G(y).=.(x)[x*a D.F(x)=G(x)],
where ‘a’ is some constant, e.g., ‘A.” Clearly this system has no stan-
dard models in infinite domains. For however ‘a’ may be interpreted,
one- one functions may be found on such domains which do not map
anything into the object to which ‘a’ refers under its interpretation.
Is is easily verified that in this system we can also prove

(R (£(Zy))
I @ EE) =1(y) D x=y] D. ®[f(x)*a] D ~Re(f(Z))].

Thus the system has no models under any interpretation which
makes true:

(EN) [(x) (v) [{(x) =1(y) D x=y]. (x)[f(x)*a]].
Although the same argument also works if xa’ is replaced by
‘x#a,. ...x#+a,’, the technique involved no longer applies when
‘x#+a’ is replaced by an arbitrary condition ‘P(x).” We no longer

possess enough information to conclude anything about its various
interpretations.

6. A ‘fallacious’ argument.
We do know, however, that if both

- D RF(x)=§G(y) .=. (x)[P(x) D.F(x)=G(x)] and
E. (Ef)[(x) () [f(x)=1(y) D x=y].(x)P(f(x))], where ‘P" is a class

theoretic. predicate, are provable in a given system then it is in-
consistent. Thus it might be profitable to see if any basic or elemen-

(") QuINE, op.cit. |
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tary ‘facts’ can be used to prove to (E). If some of these could not be
used together with (D), we might want to discount formulas of its
form.

Neither ‘(x)P(x)’ nor ‘(x) ~P(x)’ should be theorems of a system
containing (D) as an axiom; the first clearly reinstates the Russell
contradiction; the second renders part of (D) useless. Thus we should
wish to have both ‘(Ex)P(x), and ‘(Ex) ~P(x)’' as theorems in an ad-
equate system and to be able to formalize the following argument:
Let X be the class of non-P. It is neither empty nor universal. Thus
there is a superclass Y of X such that Y+ X, whose cardinality is the
first aleph greater than that of X. But then there is a one-one function
® defined on Y,mapping Y into Y, which takes no member of Y into
a member of X. Define @’ by:

if x is in Y, then @’ (x)=®(x)
if x is not in Y, then ®’(x)=x

@’ is one-one and (x)P(®’(x)). Thus (E) is proved and our system,
since it contains (D), is inconsistent.

In spite of the intuitive soundness of this argument, it would cer-
tainly be fallacious to offer it as a consideration against (D). For even
if we translate it into first order terms, it does not appear that we
shall succeed in formalizing it in any of the currently competing set
theories. E.g., we have permitted ourselves to build arbitrarily large
classes; we have not distinguished between classes and sets or el-
ements; we have defined functions on the whole universe of dis-
course. In each case we have violated the principles of some set the-
ory; thus it is likely that our argument will break down once we try
to formalize it in a set theory not known to be inconsistent.

Indeed — to take a concrete case — we can be certain of this with
respect to Quine's Mathematical Logic (relative to our confidence in
that system), because otherwise it would be demonstrably inconsist-
ent, For if we replace ‘P’ by ‘x¢ V' and translate (D) into first order
terms, we obtain

F. [(Ea) B) (BeV D .fea=®)], where ® is as above, which is
implied by Quine’s *202; (%) thus if we would prove in Quine’s system
that there is a one-one function 1 (in either the general or restricted
sense) such that

() [y(x) € V],

the system would be inconsistent.

(*) QuiNe, Mathematical Logic. Revised edition, 1958, p. 162.
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Nonetheless, the obvious ways to formalize the proof given above
have to break down. For according to Quine’s development of func-
tions in the general sense, each function has the null class a value
for any non-element as an argument; even the identity function
developed thus is not one-one. (°) It is interesting then that ‘(x)
[f’x ¢ V]’ is a theorem. (**) On the other hand, attempts to use func-
tions in the restricted sense appear to be blocked too. For symmetry
let us consider the complement function, x. We have the theorem
“(x)(y)[x=¥ D x=y]’; but since the complement of a non-element is
a non-element, our other demand will not be met. () Attempts to
use other functions such as the unit class function appear to be
obstructed also.

7. Conclusion.

The moral of our story must be a very well known one: set theory
is now comparative; we can no longer assume that 1) even elemen-
tary arguments from Cantor’s theory will go through in current sys-
tems intact, or, 2) the arguments acceptable in one system will be
acceptable in another. Indeed, our ‘fallacious’ argument will be seen
as fallacious for reasons which in turn depend on one’s set theory —
Quine would attack it for failing to distinguish classes from elements,
Zermelo would not object to this but would protest against our failing
to limit the size of our classes. Yet possibly both would admit the
merits of the other’s position. When faced with a situation like this
one can sympathize with, if not accept, Lesniewski’s remark: «An
unintuitive mathematics contains no effective remedy for the trou-
bles of intuition». (%)
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(" Ibid., p.223, p.229.

(1) Ibid., p.234.

(1) Ibid., p.181-183.

(**) Lesniewskl, «Grundziige eines neuen Systems der Grundlagen der
Mathematik», Fundamenta Mathematicae XIX, 1929, p.7.
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