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1. In many well-known systems of modal logic there occur theorems
whose interpretation is a sentence in which a modal expression is
re-iterated. Some systems contain reduction theorems; that is, they
have a certain expression with a number of iterations equivalent to
another expression with a smaller number, or none. One wellknown
system, the Lewis system S5, allows iterations to be eliminated. The
problem of interperting iterated modal operators in a deontic manner
has received little attention. Some writers (') consider that a system,
to receive a proper deontic interpretation, must contain no well-
formed iterations, The problem of interpreting iterated modal expres-
sions in an alethic manner has been discussed along with the wider
problem of what precise sense to give to the alethic expressions
«necessarily» and «possibly». For instance, what precise meaning can
be attached to an interpretation of LLp as «It is necessary that it is
necessary that p» can only be decided when it has first been decided
what exact meaning can be attached to Lp interpreted as «It is ne-
cessary that p». One very common interpretation of iterated modal
operators treats LLp, for instance, as a statement about Lp. It has
been this interpretation that those writers have had in mind, I think,
who have said that there is no deontic interpretation available for
LLp. As far as I know, only one writer on modal logic has offered
a deontic interpretation for iterated modal operators. O. Becker (%)
offers the following two interpretations of LLp (and similar ones of
other formulae containing iterations). Under alethic interpretation
Lp means «p is true of every member of a certain class», and LLp

(Y) G.H.Von Wrienur, An Essay in Modal Logic, North-Holland Publishing
Co., New Amsterdam, 1951.

A.R. AnpersoN, The Formal Analysis of Normative Systems, Yale Inter-
action Laboratory, New Haven, Connecticut, 1956; in ch. 8 there is a dis-
cussion of various deontic analogues of the Lewis systems, and reduction
theorems are proved.

E. E. Dawson, personal communication, takes the same view as Von Wright
of the undesirability of iterated deontic operators.

(®) O.Becker, Untersuchungen iiber den Modalkalkiil.
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means «p is true of every member of every class of a certain class
of classesr. Under deontic interpretations these two formulae mean
«It is commanded that p» and «It is commanded that it be com-
manded that p», i.e. a higher authority commands a lower authority
to command that p. Von Wright, on whose review (*) of Becker's
work I rely, has pointed out a number of difficulties in his methods.
Here I am only concerned with his method for deontic interpreta-
tion. From this point of view the chief weakness in his system, under
interpretation, is his axiom CLpp. Becker, aware of the difficulties,
suggests thas substituents for variables be restricted to expressions
denoting legitimate acts; but as Von Wright points out this is equi-
valent to the simpler procedure of replacing CLpp by CLpNLNp, i.e.
by CLpMp. Further improvements could easily be suggested, for
Becker's system is equivalent to the Lewis system S2, one of the
less satisfactory of the well-known systems from a deontic point of
view. The strength of Becker’s work lies in his suggestion of a deontic
interpretation of iterated modal operators. I shall adopt this sugges-
tion, and hope to improve upon it by making the notation more
explicit and basing it on a stronger modal system.

2. Another writer who has contributed to the subject I am discuss-
ing is J.Los. I rely on reviews of his papers by R.Suszko and H.
Hiz (‘). His work has also been discussed, in a different context, by
Prior (°). Los presents a system which contains propositional caleu-
lus, quantifiers, individual variables with range restricted to persons
or other language-users, and the primitive symbol L. Lxp, where x
is an individual variable and p a propositional variable, is well-
formed, and so is any addition of Lx to the left of a wif. Lxp has as
intended interpretation «x asserts that p»; Prior suggests that this
should be modified to «x asserts that p, or to be consistent ought to».

In section 7 below I develop a similar system with the same in-
tended interpretation but different and I think more satisfactory
axioms and rules. I now adopt the essential feature of Los’s sym-

(®) G.H. Von WricHT, review of BECkeRr, op.cit, Mind vol. 60, 1951, pp.
557-561.

(*) R.Suszko, review of article in Polish by J.Los, Journal of Symbolic
Logic vol. 14, 1949, pp. 64-65.

A. N. Prior, Formal Logic, Clarendon Press, Oxford, 1955; Los's axioms as
reported by Suszko are given on p. 313.

(°) A.N. Prior, Time and Modality, Clarendon Press, Oxford, 1957; Los's
method is discussed on pp. 121-122,
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bolism in order to construct a system with a deontic intended inter-
pretation. I write Oxp and interpret it as «x commands that p».

In what follows the propositional variables, under interpretation,
have a range of substituents which are not, as is usual, either indi-
cative or imperative sentences, but what may be called gerundives,
or in the well-known terminology introduced by Hare (*), phrastics.
Thus, if for x in Oxp is substituted the first person pronoun «I»
we obtain, when a phastric is substituted for p, an imperative sen-
tence. If any other individual name or uniquely referring expression
(referring to a person) is substituted we obtain an indicative sen-
tence reporting a command. To avoid misuderstanding I emphasise
that the many differences between these two types are in this paper
being deliberately ignored.

3. I now define the system Ox. Under its intended interpretation I
shall refer to it as the logic of commanding.

Primitive symbols: C, N, O, 11

Variables: p, q, v, Py, 41, *1, Do, ... called propositional variables
X, ¥, 3, X, Y1, 23, X3, ... called individual variables
A, B C A, B, C, A, ... called arbitrary expressions

Constants: a, b, ¢, a;, by, ¢y, @, ... called individual constants
F, G, H, F,, G, H;, F,, ... called predicate constants

Rules of formation:
F1. OxA is a wif
F.2. If A and B are wffs, then NA, CAB, and IIxA are wiffs
F3. A is wif if and only if its being so follows from a
finite number of applications of F.1. and F.2.

Definitions:
D.1. KAB abbreviates NCANB
D.2. AAB abbreviates CNAB
D.3. EAB abbreviates KCABCBA
D.4. PxA abbreviates NOxNA
D.5. ZXZxA abbreviates NIIxNA

Rules of inference: In stating the rules of inference I write « A»
to mean «A is a theorem of Ox», and «A—B» to mean «Infer B
from A». A, is an arbitrary expression containing x as a free va-
riable. A theorem is the last line of a proof, which is a finite se-

(%) R.M. Harg, The Language of Morals, Clarendon Press, Oxford, 1952,
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quence of lines each of which either is an axiom or has been in-
ferred from one or more previous lines using one or more of the
rules of inference.

R1. - CAB and - A— B

R2. + A-B, where A contains one or more occurrences of
p, and B is the result of replacing each occurrence of
pin A by C

R3. +~ A, - + A, provided that there is no free occurrence
of x in a wf part of A of the form ITyB

R4. -CAB — CIIxAB

R5. +CAB — + CAIIxB, if there is no free occurrence of

; x in A

R.6. If A can be proved from R.1, R.2, and
CCCCCpgCNrNprq,CCq,pCpyp, then - A

R7. A - -0xA

Axioms:
(100) COxANOxNA
(200) COxCABCOxAOxB
(300) CIIxOyAOyIIxA

Readers familiar with modal logic will easily recognise Ox as a
version of the system M of Feys-Von Wright. It is weaker than M
in having (100) and R.4. in place of the usual alethic axiom CLAA.
Some remarks will now be made about the reasons for adopting
these axioms and rules.

R.6. allows all theorems of classical propositional calculus to be
proved. The method of adopting a «propositional calculus base» is
now familiar in modal logic.

R.7. is adopted because, as shown by Hintikka (7), it can be derived
in any system which is as strong as Von Wright's original system
and contains the theorem that not everything is permitted, i.e. re-
jection of PxA. I have not found a rejection-method for the system
Ox, ‘but I conjecture that PxA is not a theorem of it, as seems de-
sirable, and therefore adopt R.7. provisionally, in the hope that if
a rejection method is found it will be possible to show the non-
independence of R.7.

The other rules require no comment.

(200) is common to a well-known modal systems.

(') Von WaricHT, op.cif., pp.38-39; a proof is given in detail by Priog,
Formal Logic, pp. 222-223.
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(100) is the deontic form of the other common modal axiom.

A set of systems of increasing strength can be constructed using
these two axioms, R.1.,, R.2., and various additional rules and
axioms. Lemmon (%) gives a set of deontic systems using the same
procedure and the deontic (100), along with a rule that - CAB—
+— COAOB in place of R.7., and a special rule — COAA, if A is
fully modalised, i.e. either is OA or results from OA by substitu-
tion and prefixing of O. This rule is designed to preserve the «re-
duction theorems» which are available in the stronger systems, i.e.
to allow the number of non-equivalent modalities to be finite in
them. An alternative method of developing deontic analogues to
these modal systems is developed by Anderson (*), in which also the
reduction theorems are available. It is interesting to note that these
reduction theorems are not available in Ox strengthened with a
form of the typical S4 axiom, but are available in Ox if it is
strengthened with a form of the typical S5 axiom. These assertions
will be proved later.

(300) is a version of an axiom introduced by Mrs Barcan Mar-
cus (*°}, who was unable to prove it in a system S2 with quantifiers.
Prior (*!) later showed that in quantified S5 it is provable. It is
interesting to note that this theorem is not available in Ox strength-
ened with a form of the S5 axiom, although a theorem rather similar
to it is available. It should be understood that an expression like
OxA, is to be interpreted as either «x commands y to do A» or «x
commands that A, (be the case)». That is, we do not at present dis-
tinguish between variables whose range is the set of expressions re-
ferring to agents, commanders, in general persons and other lan-
guage-users and those whose range is the set of expressions referring
to occasions, situations, etc. It will be possible to do so, using a two-
sorted functional calculus. This development will not be studied
in this paper.

Theorems: The following diagrams summarise a number of theo-
rems which can easily be proved. An arrow between two expres-

(% E.J.Lemmon, «New Foundations for Lewis Modal systems», Journal
of Symbolic Logic, vol.22, 1957, 176-186; deontic systems discussed on pp.
184-186.

(*) A.R. ANDERSON, op.cit., ch. 8.

(1) R.Barcan (now Marcus), «A functional calculus of first order based
on strict implication», Journal of Symbolic Logic vol.11, 1946, pp. 1-16.

(1) A.N.Prior, «Modality and Quantification in S5», Journal of Symbolic
Logic, vol. 21, 1956, pp. 60-62.
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sions A and B, thus A—B, shows that CAB is a theorem. The sign
= between two expressions, thus A=B, shows that EAB is a theo-
rem. The first diagram is for reference purposes, and shows familiar
relations between doubly quantified expressions. The second shows
that Ox behaves like ITx to a large extent; the third shows that it is
not entirely analogous.

I1
IIxIIyA,, = IIyIIxA,, ITxOyA, = OylIIxA,
4 ¥ | 4
2xIIyA, , ZyllxA, , Zx0yA, PyIlxA,
A 2 ! d
ITyZxA,, IIxZyA, , OyZxA, IIxPyA,
1 | ¢ |
ZyZxA,, = ZxZyA,, PyZxA, = 3xPyA,
111
IIxOxA — OxllxA OxSxA  IIxPxA
1 1 l 1
2x0OxA PxITxA PxZxA — ZxPxA

It is now possible to consider a number of special axioms which
might be added to Ox, which will give it a distinctive character. The
possibilities are listed here.

(400) COxOyAOxA
(401) COxOyAOyA
(402) COxAOxOyA
(403) COxAOyOxA
(500) CNOxAOxNOyA
(501) CNOxAOyNOxA

It can be seen that (402) and (403) are versions of the special S4
axiom CLpLLp, while (500) and (501) are versions of the special S5
axiom CNLpLNLp. Some formal consequences of adding various com-
binations of these will be investigated; then the question of which
are logical truths under interpretation will be considered.

In alethic systems as strong as or stronger than M, CLLpLp, of
which (400) and (401) are versions, is provable. These axioms are
not provable in Ox, however.
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If (400) is added to Ox, then the following theorem is provable:
(400.1) COx,0x;...0x,A0x,0x,...0x, _,A, for n>m=>=1.

The usual proof that M has infinitely many non-equivalent modal-
ities can then be carried through. This proof will now be sketched.

Consider the matrix whose values are infinite sequences of the
digits 1 and 0 in any order, a non-denumerably infinite number of
non-identical sequences each containing a denumerably infinite se-
quence of digits. The designated sequence or value is (1). The finite
matrix for propositional calculus is adapted thus: if x, y, ... are
digits in a sequence, then Nf{x,y,...) = (Nx,Ny,...); C(x,vy,...) (%1,
Y1 ...) = (Cxxy, Cyy,); and so on for other connectives. Let a be a
sequence having an initial part consisting of n I's; then Oxa is the
sequence consisting of n—1 I's followed by O but otherwise identical
with a. It is easy to prove that this matrix is satisfied by Ox; in
fact it does not distinguish Ox from M. Now consider two separate
modalities, Ox...0x, and Ox,...Ox,, for m=>n=1. Let the value of
A be the sequence consisting of m I's followed by O. Then the value
of OxA is the sequence consisting of m—1 I's followed by O; hence
the value of Ox,...Ox,A is the sequence O. Now the value of
10x;...0x,A is the sequence consisting of m—n I's followed by O.
Hence, since m>>n, the value of Ox,...Ox,A must contain | at its
initial place at least. Hence the value of COx;...Ox,AOx,...0x,A
has C10 in its initial place at least and therefore is undesignated.
Hence Ox,...0x, and Ozx,...Ox,, are not equivalent.

A similar proof can be given if (401) is added to Ox in place of
(400). It is interesting to note that the proof fails if either (402) is
added as well as (400), or (403) is added as well as (401); in these
cases the two modalities considered in the proof are equivalent.

In these two systems, Ox with (400) and (402) or with (401) and
(403), the normal reduction theorems cannot be proved in the usual
way, although I have not found any proof that they cannot be proved
at all. Two different types of what I may call quasi-reduction theo-
rems can however be proved: I now proceed to these proofs.

If we restrict the added axioms by using only one individual
variable, then the system is equivalent to S4 with deontic modifi-
cation. In it the reduction theorems are once more available in the
usual way. Anderson (**) gives a proof of this fact, and it can also be
proved in the present system without using his special definitions
of operators. Thus

(**) A.R. ANDERSON, op.cit., ch. 8.
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(400.2) EOxPxOxPxAOxPxA and
(400.3) EPxOxPxOxAPxOxA

are theorems of Ox with (400) and (402), since the restricted axiom
follow by substitution from (400) and (402). Similarly, if instead of
(500) we take a restricted version of it with only a single individual

variable, then the S5 reduction theorems can be proved; i.e. (400.2),
(400.3) and

(500.1) EPxOxAOxA and
(500.2) EOxPxOxAPxOxA

are all theorems of Ox with (500). So incidentally is
(500.3) EOxOxAOxA .

A more general type of reduction theorem can be proved in Ox
with (400) and (402). If we try to carry through Parry’s proofs (**)
of the S4 reduction theorems we find that proof of each conditional

can be:obtained, but the two converses turn out not to yield the
biconditional. We have

(400.4) COxPyAOxP20x,PyA

Proof 1. COzPyAOzPyA (R.6)
2. CO3A020x,A ((402))
3. COzPyAOzOx,PyA (2.)
4. COzPyAPzOx,PyA ((100), R.6.)
5. COxOzPyAOxPz0x,PyA ((200))
6. COxPyAOxPzOxPyA ((400), (402), R.6.)

To prove our version of the converse we need the following derived
rule:

RDI + CAB — - CPxAPxB
It is easy to prove this rule from R.7.; proof will be omitted.

(400.5) COxPyOzPx;AOxPyA

Proof. 1. CO2A020x;A ((402)
2. CPzPx;APzA (1., Df.P, R.6.)
3. COzPx,APzPx,A ((100), df.P)
4. COzPx APzA (2., 3., R1)
5. CPyOsPx;APyPzA (4., RD.1)
6. CPyOzPx;APyA ((400), (402), 5.)
7. COxPyOzPx;AOxPyA (6., (200))

(*) W.T.Parry, «Modalities in the Survey system of strict implication,
Journal of Symbolic Logic, vol.4, 1939, pp.137-154.
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Conjunction of these theorems does not give the equivalence which
would be analogous to the 84 reduction theorem. Thus (400.4) and
(400.5) are quasi-reduction theorems in this system. The correspond-
ing theorems available in Ox with (401) and (403) are:

(401.1) COxPyAOx,PzOxPyA and
(401.2) COxPx;0zPyAOxPyA

I have not been able to prove the S4 reduction theorems in Ox with
(400 )and (402), and I leave open the question of whether they are
provable or not.

If we add (500) alone to Ox reduction theorems are not (at least,
not likely to be) provable, because a version of CLpp is now lacking.
Curiously enough, if we add (500) and (401) to Ox all S5 reduction
theorems are provable, but if we substitute (400) for (401) here they
do not seem to be; at least, the usual proof fails.

(500.4) EOxOyAO=xA

Proof. 1. COxAOxOyA ((401))
2. CPxPyAPxA (1., NA/A, di.P., R6.)
3. COxPyAPxA ((100), Py/A, 2., R.6)
4. CPxAOxPyA ((500))
5. EOxPyAPxA 3., 4., R6.)
6. EOxNOyANOxA (5., df.P)
7. ENOxNOyANNOxA (6., R.6.)
8. EPxOyAOxA (df.P., R.6.)
9. EOxPyOzAPxOzA (5., OzA/A)
10. EOxOyAPxOzA (8., 9.)
11. EOxOyAOxA (8., 10.)

Lines 8. and 9. of this proof are the S5 reduction theorems.
(500.4) itself is the S4 reduction axiom.

Taken together these results suggest that, if reduction theorems
are desirable, the best special axioms to add to Ox will be (401)
and (500). However, under interpretation these axioms are un-
desirable for other reasons. The question of plausibility under inter-
pretation of various axioms and theorems is discussed later.

One further technical result will be of interest. Prior (**) has shown
that Mrs Barcan Marcus’s axiom, of which (300) is a version in Ox,
is provable in S5 with quantifiers added. The proof cannot be re-
produced in Ox with, say, (400) and (500), again because of the ab-
sence of any 'version of CLpp; but again a related result can be

(*4) Prior, op.cit, in note 11.
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proved. Curiously, the proof of this result can only be proved if we
add (401) and (500), since theorem (500.4) is necessary; at least, I
have been unable to prove it otherwise.

(500.5) CPxIIz0yA,OxI1zA,
Proof. 1. COxCABCPxAPxB (line 10. of Prior’s proof;

proof in Ox similar)

2. CPxAPxPyA (from (500.4))

3. CPxOyAOxA ((500), R.6., df.P)

4. COxPyA,0OxSzPyA, (R.6., R4., R5., R.7., (200))

5. CZzPxA,OxZzPyA, ((500), df.P, R.4-6.)

6. CPx;ZzPxA Px,0xZ2zPyA, (5., R7, 1.)

7. CPx3zPxA,OxZzPyA, (3., 6., R6.)

8. COx,3zPyA,0x,0%,5zPyA,  ((500.4), R.2.)

9. CPx;22PxA,Ox,0x,32zPyA, (7., 8., R.6)

10. CPx,3zA,Px,S2PxPyA, (2., R4-5., R7, 1., R2, R.1)

11. CPx;3zA.0x,0x,22PyA, 9., 10, R.1)

12. CPxZzA,0x,Z3PyA, ((500.4), R.6.)

13. CPxI1z0yA,OxIIzA, (R.3., df.E, df.P., R.6)

The question of plausibility under interpretation will now be
discussed.

4. Choice of special axioms. Before we can decide which of the
special axioms to adopt, an objection must be answered which
applies to them all, namely the charge that none of them is true
under interpretation. I shall answer this charge by showing that
there is a legitimate sense in which (400) is a logical truth. I shall
then discuss whether any of the others can also be accepted as
logically true in the same sense.

The objection just mentioned might be specifically directed against
(400) as follows. There are many occasions, it might be said, on
which it is not true at all. For instance, suppose @ wants p (to be the
case), but for some reason does not want to give the command that
p (be the case) himself — perhaps because he is embarrassed or
afraid. Then he might well both command & to do so and refuse
to do so himself. Here is a counter-example to (400), which therefore
cannot be a logical truth. Although a strain of some kind arises in
such situations, it is not the extreme strain of logical falsehood. a's
position would be weak, but not logically weak.

I think this charge can be rebutted. Consider a case in which we
normally would say that a was contradicting himself, saying
something logically false. For instance, suppose he asserts that g
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follows from p, but refuses to admit that the denial of p follows from
the denial of ¢g. Then a parallel objection could be raised to calling
his position logically inconsistent, as follows. Clearly there is strain
in what he says, it might be said, for his position could no doubt
be shown, by means of logical truths he does accept, to lead to
contradiction; but though this might cause him some embarrass-
ment, the strain here is not the extreme strain of logical falsehood.
This objection, we feel, is easily answered: if this, we reply, is not
the extreme strain of logical falsehood, what would count as an
example ? Why then is this reply not available to the objection to
(400) ? It may said, because in that case the strain is extra-logical.
When this is said it is surely clear that what is at issue is what is
to count as logical and what to be excluded as extra-logical. This
question is not so easy to answer as it is often thought to be.

Strawson (**), for example, attempts an informal explanation of
logical truth in terms of contradiction. His proposal, without his
qualifications (most of which I think are important) seems to be
that someone asserts what is logically false if and only if he either
explicitly contradicts himself, or commits himself to doing so. But
this proposal is inadequate, since in order to understand what it is
to be committed to self-contradiction I must already know what
logical commitment is (it being logical commitment that is intended),
and without this notion of commitment it will not be possible to
specify a necessary condition of asserting a logical falsehood. And
there are obviously other kinds of commitment besides logical
commitment. So the explanation is so informal as to be, if we insist
on any kind of formalities at all, circular.

A similar objection can be raised to Popper’s method (**) of ex-
plaining the nature of logical truth. His primitive notion is that of
one statement following from another. A statement is logically true if
it follows from the null set of statements. Again, we have first to
understand the distinction between what follows logically and what
follows extra-logically. That a man decides to do some crucial deed,
for example, may follow (inevitably) from his character’s being what
it is. It is often thought that if one statement follows from another

(*%) P.F.StrawsoN, Introduction to Logical Theory, Methuen, London, 1952;
chs 1 and 2.

(*%) K.R.Porper, «New Foundations for Logice, Mind vol.56, 1947, pp.
193-235.

K. R. PoreEr, «Logic without assumptions», Proceedings of the Aristotelian
Society, 1946-47.
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it must do so logically; but this is far from true. Thus Popper's
account of logical truth, though not without merit, does not answer
our question.

What do we have to understand in order to understand that
something does follow ? In the case where we understand that the
deed followed (inevitably) from the man’s character, what is neces-
sary is knowledge of a certain kind — crudely speaking, psycho-
logical or spiritual knowledge. To know that it follows we have to
know what the man is. In the case where we understand that one
statement follows logically from another, what is necessary again
a certain kind of knowledge — but of what kind ? It is useless to say:
logical knowledge.

The popular, and obviously right, answer is: knowledge of the
meanings of certain words, namely what are commonly called the
logical words (the logical constants, as they used to be called). This
account need not be circular; for we can simply make a list of these
words, label the list «logical words», and decide later what the words
have in common. Then logical following, logical truth, and the other
logical notions can be defined in terms of the meanings of words
on this list. For instance, a statement is logically true if someone
can understand that it is true whether he knows the meanings of
the non-logical words used to make it or not, provided only that he
does know the meanings of the logical words used to make it.

If this is accepted as being roughly right — I do not claim
accuracy — I go on to ask: what words are on the list ? How is it
decided whether a given word shall be on the list or not ? It should
not be thought that no-one has ever disputed this. The quarrel
between those who do and those who do not insist on a strictly:
extensional logic (excluding for instance modal logic in toto) is a
quarrel about just this question. Is the word «necessarily» to go on
the list, or not ? Similarly, it has been asserted, and denied, that
the statement that @ ought to do a certain thing logically implies
(entails) that it is in @’s power both to do and not tol do that thing.
And it seems clear to me that, since the notionl of the list of logical
words is fundamental, all other logical notions being defined in terms
of it, what is to be admitted to the list is, o a large extent, a matter
for decision. There must be, I suppose, certain tests; but what they
are I find it very difficult to say. There must of course be some
possiblility of system: a disjointed collection of entailments, each
discovered by a flash of insight, will not be admitted to be logical
unless some order can be introduced. This is a vague stipulation,
and besides, we shall never get as far as the insights unless we
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allow the logician freedom to investigate any words he chooses. For
this reason I doubt if much good will come of trying to decide in
advance what words or notions may be considered as potential or
actual logical words or notions. It seems better to say: logic is con-
cerned with what logicians are concerned with — and leave the
consequences of this to logicians.

These considerations show, I hope, that (400) has at least some claim
to the title of logical truth. Its claim stands or falls with that of the
the notion of commanding, the word «commands», to being admitted
to the list of logical words or notions. And I hope to have shown,
developing a suitable formal system, that this word has at least as
good a right to a place there as the ordinary modal words.

A second objection could be raised to (400). Whether it is logically
or extra-logically false, it might be said, the fact remains that it
is false, as the previous counter-example shows. To answer this
objection it will be necessary to consider the example in more
detail. Let us consider three persons a, b, and ¢. The command,
issued to ¢, to do some act of type F I write «Fc». Now suppose a
says to b, «Tell ¢ to do F», and ¢ says to a «Do you tell me to do F ?»
(not «Did you tell me...?» — ¢ is asking @ what command he is pre-
pared to give him, not about what command he gave when speaking
to b); and @ then says «No, I do not». Then according to (400) a
has said two inconsistent things. Suppose further that @, b and c are
face to face, and that @ cannot give any special reasons for refusing
to give the command to ¢ directly. Has a contradicted himself ?
Plainly he has not said anything of the form KpNp; but in a slightly
extended and quite obvious sense what he has said is inconsistent.
He has said something, and then said something else the effect of
which is to cancel or retract what he first said. Surely this is con-
tradiction in a clear sense.

Suppose that a gives his indirect command to b in ¢’s absence,
and his reply to ¢ in b’s absence; does this make any difference ?
If (400) is true it makes no difference. Consider a parallel case, in
which statements are made. Suppose @ says to b «S is P», and then,
when ¢ asks him «Do you say that S is P ?» he replies «No, I do
not». Suppose further that a can give no special reasons, such as
change of facts or of mind, for what he has said. If all three are
face to face throughout the conversation then a has patently con-
tradicted himself; but if he speaks to 4 and c separately the contra-
diction will be apparent only to him. Yet we do not hesitate to say
that @ has contradicted himself in either case.

A vague justification of this view is the thesis, which lies behind
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the formal logic of propositions, that the truth of a proposition is
independent of the person to whom it is uttered. We are prepared
to abstract propositions from their context to at least that extent.
Some roughly similar thesis lies behind (400). It may be specified
in this way: what would count as a command’s being obeyed can
be specified independently of the person to whom it is uttered. This
is not entirely true of course; for most commands are obeyed by
some action of the person to whom they are addressed, while only
a small number of propositions mention the person to whom they
are addressed. But the cases are similar enough for it to be possible,
and I think desirable, to abstract from the context of commands
also, at least from the identity of the addressee. To put this briefly:
my assumption is simply that a command «x, do F» is obeyed if and
only if the statement that x does F is true.

The objection to (400) might also take this form. In the case of
propositions our objection is to logical inconsistency; but in the case
of inconsistent commands, or an inconsistent refusal to command,
our objection is to moral rather than logical inconsistency. When a
refuses to give the command to ¢ directly, his refusal is like that of
man who commits himself to a course of action, and then refuses
to do it — rather than that of a man who (logically) commits
himself to a certain statement, and then refuses to make it; he is
like a man who breaks a promise. My reply to this objection is that
the laws of propositional logic also can be thought of as rules telling
us what we must, may, and must not say — rules designed to prevent
people from saying things which it is desirable to prevent, namely
self-defeating utterances. The trouble with both logical and moral
inconsistencies is that they defeat our purposes. The similarities be-
tween them are far-reaching. Of course, for most purposes it is de-
sirable to distinguish between logical and moral rules. In proposing
that (400) is a logical truth I am drawing the distinction in a slightly
different place from that in which it is usual to draw it.

I assume, then, that (400) is acceptable, and go on to ask: are any
of the other special axioms also plausible ? Let us first consider (401),
perhaps the most interesting from a formal point of view. Under in-
terpretation it asserts that if someone commands someone else to
command that something be done, then that second person com-
mands that it be done (or should, to avoid inconsistency). Thus all
disobedience of indirect commands is inconsistent. The consequences
of accepting this as a logical truth would indeed be alarming; (401)
must certainly be rejected. The same is true of (403), which under
interpretation asserts that if one person commands that something
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be done, then someone else commands that he command that it be
done (or should, to avoid inconsistency). Thus all commands issued
by subordinates are confirmed in advance — another alarming con-
sequence, and (403) must be rejected. (500) is rather more difficult
to decide about. A consideration which seems to me decisive, how-
ever, is this. (500) is equivalent to CPxOyAOxA, and this, with (402),
yields by syllogism CPxOyAOxOyA; while (500) with (400) yields
the converse, COxOyAPxOyA. Hence EPxOyAOxOyA: there is no
difference in logical commitment between commanding that a com-
mand be given and permitting that it be given. Since (402), as I shall
show, is acceptable, (500) must therefore be rejected. (402) under
interpretation asserts that if someone gives a command he must com-
mand another person to give it (to avoid inconsistency): I admit to
a little discomfort in proposing this as a logical truth. The weaker
COxAPxOyA may be more plausible. But I think (402) can be ac-
cepted. With (400) it yields EOxOyAOxA, which may be taken to
mean that anyone at the head of a chain of command must be as-
sumed to be directly responsible for the commands given on his in-
structions. Finally, can the quasi-reduction-theorems (400.4) and
(400.5) be accepted ? These under interpretation assert that (400.4)
if x orders y to permit that something be done, then he must order
z to permit x; to order y to permit that it be done; and (400.5) if
x orders y to permit z to order x; to permit that something be done,
then he orders y to permit that it be done. These principles are clearly
much more complicated than any in ordinary use. However, I think
it is possible to imagine a situationm in which they, or some similar
rules, would be needed. I mean a situation in which chains of com-
mands and permissions commonly occur. Here (400.4) would allow
an increase of indirectness; (400.5) would allow a decrease. In such
circumstances I see no reasons why they should not be accepted.

There is a stronger axiom, containing a quantifier, from which
(400) can be derived, namely

(600) COxZyOyAOxA;
and a corresponding stronger axiom from which (402) can be derived:
(602) COxAOxZyOyA.
Various other simple quantified axioms might be chosen on formal
grounds, but none seem to have any plausibility, unless they are

provable from these two.
Finally, we can combine these two axioms by conjunction:

(603) EOxZyOyAOxA.
My final suggestion, then, for the logic of commanding is Ox with
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(603); this is a weakened form of deontic S4 with quantifiers.
5. The logic of asserting. The axioms of the system given by Los !
are: (1) LxCCABCCBCCAC

(2) LxCCNAAA

(3) LxCACNAB

(4) ELxNANLxA

(5) CLxCABCLxALxB

(6) CIIxLxAA

(7) ELxLxALxA
The rules are the same as R.1.-5. of Ox, with L for O. R.6. is a
derived rule in Los’s system. (5) is the same as (200) in Ox, with L
for O. I now discuss axioms (1)-(4), (6) and (7). (4) is equivalent to
ELxANLxNA, and I think has just the same lack of plausibility as
the corresponding version in Ox, which would assert the equivalence
of commanding A and permitting it. The correct axiom here is
surely the corresponding version of (100): CLxNANLxA.

(6), under interpretation, asserts that if everyone asserts that some-
thing is the case, then it is the case. This remarkable suggestion
seems to have been adopted so that the theorems of propositional
calculus can be proved in the system — as they can be from (1)-(3),
quantifier rules and (6). But surely the weaker and altogether less
incredible procedure is to adopt a version of R.6, and drop (1)-(3)
and (6). (1)-(3) will then be provable as theorems, and (6), I con-
jecture, will not.

(7) is a weakened version of (603) of Ox. It asserts under
interpretation that x asserts that he asserts something if and only
if he does asserts it. This I think is plausible. But if we generalise
(7) to the corresponding version of (603) in Ox, it loses all plausibil-
ity: for x can surely assert that y asserts something without being
in the least committed to asserting it himself. This is, I think, one
at least of the essential differences between asserting and command-
ing.

If my suggestions are adopted, the system appropriate to an inter-
pretation as a logic of asserting is deontic S4. Once again, reduction
theorems are not available in the general sense; but here, unlike
in Ox, the quasi-reduction-theorems are not available, as there
seems to be no plausible special axiom. The system does, however,
provide an alternative, and I think in some ways more comprehen-
sible, method of interpreting iterated alethic modalities.
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(*") See references in note 4.
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