DECISION ALGORITHMS FOR SOME FUNCTIONAL
CALCULI WITH MODALITY

M. J. POLIFERNO

1. Inmtroduction. 1.1. The decision algorithms described in this
paper (1) constitute adaptations of methods due to Quine ([6]) (%)
and Anderson ([1]) to systems including both quantification and
modality. In particular, a monadic, first order functional calculus
MQ based on von Wright’s calculus M (von Wright [9], p.85) is
formulated and a decision algorithm constructed for it. With the
help of the decision algorithm, MQ is shown to be consistent and
non-trivial (in various senses; see 5.3 and 5.4) and an interpretation
of MQ is discussed in section 6. In section 5 it is shown that suitable
modifications of the algorithm for MQ yield algorithms for S4Q
(defined in 5.6) and S5Q (defined in 5.12) and for a subclass of the
well formed formulas of the Barcan system S4Q' (defined in 5.10).

1.2. The decision algorithms described in Anderson [1] and Quine
[6] are special cases of the ones presented here. Although the tech-
niques developed in Anderson [1] are used here, the results in that
paper are not presupposed. On the other hand, results in Quine [6]
are presupposed, though the techniques developed there are not used
(directly).

2. The calculus MQ. 2.1. The alphabet of MQ consists of ¥,
propositional variables, ®, functional variables, ¥, individual va-
riables, four operators, and two parentheses. p, q, I, Py, Q1s 1, P2s «--
are metavariables ranging over propositional variables; f, g, h, f;,
g;, hy, fs, ... are metavariables ranging over functional variables; and
X, V, Z, X1, Vi» Z;» X, ... are metavariables ranging over individual
variables. ~, ., <, and E are metaconstants denoting the four oper-
ators; and ( and ) are metaconstants denoting the parentheses.

2.2. A formula of MQ is any finite sequence of members of the
alphabet. The symbols A, B, C, A;, B;, C;, A;, ... are metavariables
ranging over formulas.

() This paper is a condensation of a dissertation presented for the degree
of Doctor of Philosophy at Yale University, I am indebted to Professor Alan
Ross Anderson for helpful criticisms and suggestions.

(3) Numbers in brackets refer to the bibliography.
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2.3. The class of well formed formulas (wifs) of MQ is recursively
characterized in the usual way.

24. Bound and free occurrences of individual variables in wifs
are defined in the usual way, as are V, o, =, O, and ().

2.5. Axioms of MQ. If A, B, and C are wffs, then each of the
following is an axiom of MQ.

Al. ADA LA

A2, A .BoA

A3, (ADB)o(~(B.C)o ~(C.A))

A4, Ao A

A5, C(AVB)D AV OB

A6. ~<C ~(ADB)D (®AD ¢B)

A7. B o (Ex) A, where B results from the substitution
of y for all free occurrences of x in A, provided no
free occurrence of x in A is in a wf'd part of A of
the form (Ey)C.

A8. (Ex) AD A, where x is not free in A,

A9.  ~ (Ex) ~ (A D B) o ((Ex) A O (Ex) B)

A10. (Ex) ~<CAD ~ < (Ex)A

2.6. Rules of inference of MQ. (Write «A e MQ» for «A is a theo-
rem of MQ.»)
RO. If A is an axiom of MQ, then A e MQ.
R1. (Modus ponens) If AeMQ and A > BeMQ, then
B e MQ.
R2. (Necessitation) If AeMQ, then ~ ¢ ~ AeMQ.
R3. (Generalization) If AeMQ, then ~ (Ex) ~ AeMQ.

27. Al, A2, and A3 are Rosser’s axioms for the propositional cal-
culus ([8], pp. 55-56). It is clear that the propositional calculus P and
the monadic, first order functional calculus PQ are subsystems of
MQ. Note also that MQ is an extension of von Wright's calculus M
to include quantification. (See Anderson’s formulation of M ([1],
p. 212).)

2.8. The rule of intersubstitutability of material equivalents holds
for MQ. (The proof given in Church [3], pp. 189-190, can easily be
extended to apply to MQ because of R2 and Aé.)

29. The following are theorems of MQ, and the proofs are
straightforward:
(2) CEx)A=(Ex)CA
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(3) (Ex) ~< A=~ (Ex)CA

(4) (Ex)OA= ~ (Ex) ~ CA

(5) (Ex) ~ CA.(Ex)B = (Ex) (~ ¢ A.B)
(6) (Ex) © A. (Ex) B = (Ex) (¢ A.B)

2.10. Definitions. Open and closed wifs, and the closure A of a
wif A are defined in the usual way. A wif of the form (Ex) A is
called a gquantification, and a wif of the form <A is called an atom.

3. The calculus MQ. 3.1. The decision algorithm for MQ will
be obtained via a system MQ which is like MQ except that all its
theorems are closed.

The alphabet of MQ is that of MQ, and the wffs are those of MQ.
The axioms of MQ are the closures of the axioms of MQ (label them
Al-A10) and All: (Ex) ¢ A D < (Ex) A. The rules of inference are
modus ponens (R1), necessitation (R2), and RO. MQ is called the
closure of MQ.

3.2. Metatheorem.
(a) If AeMQ, then AeMQ.
(b) If CeMQ, then CeMQ.

3.3. The proof is straightforward. (The contrapositive of A1l
is used in the proof of (a), in showing that if A is a consequence of
B (e MQ) by necessitation, where B e MQ, then AeMQ.)

3.4. It is a corollary of 3.2 that any decision algorithm for MQ
yields automatically an algorithm for MQ, since A e MQ iff AeMQ.

3.5. Definition.
(a) If A is a functional variable, then Ax is completely
open.
(b) If A and B are completely open, so are ~A, <A,
and A.B.

3.6. Definitions. Let A be a wif. A is uniform iff at most one in-
dividual variable occurs in A, null uniform iff no individual variable
occurs in A, and uniform in x iff A is uniform and x occurs in A.
A is a basic quantification iff it consists of (Ex) followed by a com-
pletely open wif uniform in x and <-free, and a basic wff iff every
wi'd part of A of the form (Ex) B is a basic quantification. A is
normal iff A is closed, basic, and uniform.

3.7. Note that the definition of uniform in 3.6 differs from that
in Quine [6] in that in the latter umiform is defined for completely
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open wifs only. The definition of basic quantification in 3.6 differs
from that in [6] in the <-free requirement.

3.8. Metatheorem. Let A be a closed wif of MQ in primitive no-

tation. Then there exists an effective procedure for obtaining a nor-
mal wif B such that B = A e MQ.

3.9. Proof. Apply the following replacement rules as often as
possible to A. Replace a wf'd part of the form:

Q1. ~ ~C by C

Q2 (Ex) ~ (C;.Cy) by ~ (~ (Ex) ~C;. ~ (Ex) ~ Gy

Q3. (Ex)(~(C;.C).D) by ~ (~ (Ex)(~C,.D).~ (Ex) (~C,.D))

Q4 (EX)(D.~(G.C)) by ~(~ (Ex)(D.~C).~ (Ex) (D.~Cy)

Q5. (Ex) (Dy. ~ (C;.Gy).Dy) by ~ (~ (Ex) (Dy.~C;.Dy). ~ (EX) (D, . ~ Cy. Dy))

Q6. (Ex)C by C, if x is not free in C

Q7. (Ex)(C.D) by C.(Ex)D, if x is not free in C
Q8. (Ex)(D.C) by (Ex)D.C, if x is not free in C
Q9. (Ex) (D;.C.Dy) by (Ex) (D;.Dy).C, if x is not free in C
Q10. (Ex) ~ ¢ C by ~ < (Ex)C

Q11. (Ex) (~ < C.D) by (Ex)~<C.(Ex)D

Q12. (Ex)(D.~ <CQ) by (Ex)D.(Ex) ~<C

Q13. (Ex) (D;. ~ < C.Dy) by (Ex)(D;.D,).(Ex) ~<C

Q14. (Ex) ¢ C by < (Ex)C

Q15. (Ex) (¢ C.D) by (Ex) ¢ C.(Ex)D

Q16. (Ex) (D.< Q) by (Ex)D.(Ex) ¢ C

Q17. (Ex) (D;.< C.Dy) by (Ex) (D;.D). (Ex) ¢ C

Note that the procedure does not go on indefinitely. For instance,
each of the rules Q2-Q5 removes a part of the form ~ (C;.GC;) from
the scope of an occurrence of E, and eventually all such parts will
be removed. Similarly, the rules Q10-Q17 remove parts of the form
< C from scopes of occurrences of E, etc. o

Call the result A*. By 2.7, 2.8, 2.9, and 3.2 A' = A e MQ. Moreover,
A! is basic because if (Ex)A, is any wf'd part of A', then A, is com-
pletely open and uniform in x by Q6-Q9 and A, is <-free by Q10-
Q17.

Q18. Let y be an individual variable that does not occur in A
For each individual variable x that occurs in A’ replace x by y in
all its occurrences in A'. o

Call the resulting formula B. Then A' = B e MQ because all in-
dividual variables in A' are bound to quantifiers with non-over-
lapping scopes. Hence, A= B e MQ. Moreover, B is normal.
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3.10. Definition. Let A be a closed wff of MQ. Then A* is a
normal form of A iff A* can be derived from A by the method of 3.9.

3.11. Definitions. Propositional variables, closed atoms, and basic
quantifications are called constituents. (Note that every constituent
is a closed wif.) If A is a functional variable and x an individual
variable, then Ax is called a component.

3.12. Definitions. Let A be a completely open wff uniform in x
and <-free. Let Ay, ..., Ay be the k distinet components of A. Let
P1 ---» P be k distinct propositional variables. Substitute p; for A;
throughout A. The result A®™ of this substitution is called a medadic
analogue of A, and A is a medadic tautology iff A® eP.

3.13. If A is a medadic tautology, then A eMQ (A eMQ). More-

over, there is an effective procedure for determining whether or not
A®MeP.

3.14. Definitions. Let A be a normal wff. Then A is a truth
function of one or more of its k distinet constituents A;, ..., Ay, and a
truth table for A (9 (A)) can be constructed in the usual way. If the
value of A in Row (i) (the ith row) of & (A) is T (F), then Row (i)
will be called a T (an F) -row of J(A). Note that (A) is also a
table for Ay, ..., A,.

3.15. Definition.

(a) If A is a propositional variable and B a functional va-
riable, then A and Bx are wffs of degree 0.

(b) If A and B are wifs of degrees m and n, respectively,
then ~ A and (Ex) A are wffs of degree m, < A is a
wff of degree m-+1, and AB is a wff of degree max
{m, n}.

(This definition is adapted from Anderson [1], p.203.)

Note that every wff is a wif of some degree, and conversely.

4. A decision algorithm for MQ. 4.1. Definition. A is a tauto-
logy of degree n of MQ (n-tautology of MQ) iff

(1) A is a normal wif of degree n of MQ,
and (2) every F-row of 7(A) satisfies at least one of the follow-
ing six conditions:

T1. Some constituent (of A) of the form < B has F while
B has T.
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T2. Some constituent of the form < B has T, some constit-
uents of the forms < Dy, ..., ¢ Dy (h = 1) all have F,
while B © Dyv...vD, is a tautology of degree n;<ln.

T3. Some constituent of the form < B has T while ~ B is
a tautology of degree n;<<n.

T4. Some constituents of the forms (Ex)Dy,..., (Ex)D,
(h=1) all have F while D;v... vD, is a medadic tau-
tology.

T5. Some constituent of the form (Ex) B has T, some con-
stituents of the forms (Ex)D,, ..., (Ex)D, (h=>1) all
have F, while B o D,v ... vD, is a medadic tautology.

T6. Some constituent of the form (Ex) B has T while ~ B
is a medadic tautology.

(This definition is adapted from Anderson [1], p. 212, and Quine [6],
p. 6.)

4.2. Metatheorem. Every tautology (i.e., n-tautology for some n)
of MQ is a theorem of MQ.

4.3. Proof. By 3.2(a) it is sufficient to show that every tautology
A of MQ is a theorem of MQ. This is done by mathematical induc-
tion on the degree of A.

4.4, Observe that if & (A) has no F-rows, then A eMQ. Proof:
Let A;, ..., Ax be those k distinct constituents of A that are not of
the form < B, and let By, ..., B, be those 1 distinct constituents of A
that are of the form < B. Let py,...,px qQq ...,q; be k-+1 distinct
propositional variables not occurring in A. Substitute 1; for A; through-
out A. Then substitute q; for B; throughout the result A', substituting
first for those constituents of highest degree, then for those of next
highest degree, etc. Call the result A'. A" is a wff of P. Since

Iyu(A) (table for A in MQ) is also a table for A' in P, Ip(A")
has no F-rows. Hence A" eP and AeMQ.

4.5, Let A be a tautology of degree 0. Then each F-row of J(A)
satisfies T4, T5, or T6. Hence, by Quine’s decision algorithm for
PQ ([6]), AePQ. Thus AeMQ. (Alternatively, a proof similar to
that of 3.5 in Anderson [1] can be given, and appeal to Quine’s
result avoided.)

46. Let A be a tautology of degree n = 1. Suppose that for
every n; <n if C is a tautology of degree n;, then Ce MQ. To show
A eMQ. The proof is like that of 3.5 in Anderson [1], which can
easily be adapted to M and extended to take into account T4-Té of
4.1 of the present paper.
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4.7. Definition. Let A be a wff of MQ. Let Ay, ..., A, be those
distinct wf'd parts of A of the form < C. Let py, ..., p be k distinct
propositional variables not occurring in A. Substitute p; for A;
throughout A, substituting first for those wf'd parts of highest degree,
etc. The result A of this substitution is called an associate of A. (Note
that A is a wff of PQ.)

48. Lemma. If AeMQ, and A has as an associate a theorem of
PQ, then A has a normal form A* which has as an associate a theo-
rem of PQ and which is, hence, a tautology of MQ.

49. Proof. It will be convenient to consider the second part of
the assertion first. Suppose A* has as an associate a theorem A* of
PQ. Then by Quine’s decision algorithm for PQ ([6]), A* is a tauto-
logy of PQ; that is, every F-row of I5p(A*) satisfies T4, T5, or T6.
Therefore everyLF:_row of Iip(A*) satisfies T4, T5, or T6. Thus A* is
a tautology of MQ.

4.10. Consider now the first part of the assertion. If A is <-free,
the result is obvious. Assume A contains at least one occurrence of <.
Let Ay, ..., A (k=1) be the k distinct wf'd parts of A of the form
< C to which propositional variables are assigned per 4.7. (Then no
A; occurs solely as a part of an A;) Apply Q1-Q9 and Q18 to A as
often as possible. Call the result A*. A* has as an associate a theorem
of PQ. Suppose A! is not normal. Apply to A! any one of Q10-Q17
which is appropriate, and (A): do this in such a way that if Q;
(10 £ i < 17) is applied to a part B it is so applied to every occur-
rence of B in A. Call the result A". Consideration of the following
eight cases will show that A" has as an associate a theorem of

PQ.

4,11. Case 1. Suppose Q10 is applied to B in A' to get A'. Then
B is of the form (Ex)~<B; and A! is of the form D,(Ex)~ ¢BD,,
where D; and D, are formulas (finite sequences of primitive sym-
bols) of MQ. Assume (without loss of generality, because of (1)) that
D, and D, have no occurrence of B.

(1) Dy(Ex)~<B,D; has as an associate a theorem of PQ.
Let p be a propositional variable not occurring in (1).
Then

(2) Dy(Ex)~pDy has as an associate a theorem of PQ.
Therefore L

(3) D;~pD; has as an associate a theorem of PQ. Therefore

(4) D;~<(Ex)B;D; has as an associate a theorem of PQ.
Therefore _

(5) A" has as an associate a theorem of PQ.
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4.12. Case 2. Suppose Q11 is applied to B in A’ to get A'. Then
B is of the form (Ex)(~<B;.B;) and A' is of the form D,(Ex)(~<
B.B,)D;.

(1) Dy(Ex)(~<B.By)D, has as an associate a theorem of PQ.
Let p be a propositional variable not occurring in (1).

Then
(2) Dy(Ex)(~p.By)D; has as an associate a theorem of PQ.
Therefore o
(3) D;~p.(Ex)B;D, has as an associate a theorem of PQ.
Therefore

(4) D;~~(Ex)~<¥B,.(Ex)BsDy has as an associate a theorem
of PQ. Therefore

(5) D;(Ex)~<B,.(Ex)B;D, has as an associate a theorem of
PQ. Therefore

(6) A" has as an associate a theorem of PQ.
4.13. The remaining cases are similar.

4.14 If A" is not normal, the argument can be repeated, yielding
a wif A" which has as an associate a theorem of PQ. Eventually
a normal form A* will appear which has as an associate a theorem
of PQ.

This completes the proof of the lemma.

4.15. Metatheorem. If A is an axiom of MQ, then A has a normal
form A* which is a tautology of MQ.
4.16. Proof. Al, A2, A3, A7, A8, and A9 are associates of theorems

of PQ, so by 4.8 they have normal forms which are tautologies
of MQ.

4.17. Consider A6: ~(~<(A.~B).$A.~<B). Let D, be ~(Ex,) ...
(Exy)(~<(A.~B).CA.~OB), where ~< (A, ~B).¢A.~<B contains x;,
- X, free but no other free individual variables (n>0) Any in-
stance of A6 is of the form D, for some n>>0. Let D!, be ~(~<>(Exn)
- (Exy) (A.~B,).¢(Ex,) ... (Ex))A.~<(Ex,) . (Exl)B) Then D, =
D‘ e MQ (by successive apphcanons of some of Q10-Q17). Let 11 be
a normal form for (Ex,) ... (Ex\)(A.~B), A, for (Ex,) ... (Ex;)A, and
Ag for (Ex,) ... (Ex;)B. Then ~(~<1.<$hg. ~<$lg) is a normal form
for D,, A>BVA ~BeMQ. Therefore (Ex,) ... (Ex;)A > (Ex,) ...
(Exy)B v (Ex,) ... (Ex) (A. ~B) e MQ. Therefore A3 D Asvi; e MQ and
has as an associate a theorem of PQ. Hence A; D A3V}, is a tauto-
logy of MQ. Therefore ~(~<h;.$hg. ~<hy) is too (Every F-row of its
table satisfies T2).
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4.18. The arguments for the other axiom schemata are similar.

4.19. Definition. Row(i) of J(A) is satisfactory if it satisfies at
least one of T1-Té6 and umnsatisfactory otherwise.
Thus A is a tautology of MQ iff every F-row of (A) is satisfactory.

4.20. Lemma. If Z(A) has an unsatisfactory F-row, say Row(i),
then J(~(B.~A)) has a row, say Row(j), in which A has F and
which is also unsatisfactory.

4.21. Proof. (The proof given here is adapted from that of the
same lemma in Anderson [1].) If every constituent of B is also a
constituent of A, then 9 (A) is the same as Z(~(B.~A)); hence j=i.

4.22. Suppose B has constituents C, ..., C, (k=1) which are not
also constituents of A, and suppose they are arranged in order of
increasing degree, so that

deg(C;) < deg(Cy) < ... < deg(Cy)
Consider the following sequence of normal formulas:

G, = A
Gh+1 = Gh' Lo (C],."-'Ch),h — 1, 2, ...,k

Gy .1 has exactly one more constituent, namely C;, than Gy, so that
(G, 1) has exactly one more column than and twice as many rows
as 7(Gy). Moreover, J(Gy,{) = J(~(B.~A)). Hence it will be suf-
ficient to show that if J(G,) has an unsatisfactory F-row, then
J(Gy, 1) has an unsatisfactory row in which G, has F. The contra-
positive is established as follows.

4.23. Sublemma. If C.~(D.~D) is a tautology of degree n which
has exactly one more constituent, namely D, than C, then C is a
tautology.

4.24, Proof. Mathematical induction on n.

Suppose n = 0. If D is a propositional variable, then the sublemma
(for n = 0) is immediate. Suppose D is of the form (Ex)N. Assume
C.~((Ex)N.~(Ex)N) is a tautology of degree 0 and C is not a tauto-
logy. Then &(C) has an unsatisfactory F-row, say Row(i). Let Row(i)
of 7(C) assign values Vi, ..., Vi (each of which is T or F) to the k
constituents C;, ..., C, of C. Then in J(C.~((Ex)N.~(Ex)N)) there
will be a row (Row(ir)) which assigns the same values to the cons-
tituents Ci, ..., G, of C but assigns T to (Ex)N; similarly, there is a
Row(iy) of 7(C.~((Ex)N.~(Ex)N)) which assigns Vi, ..., Vi to the
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constituents C;, ..., C, but assigns F to (Ex)N. Thus 9(C) looks in
part as follows:

Qi wen: G
Row(i): Vi ... Vi

and 7(C.~((Ex)N.~(Ex)N)) looks in part as follows:

Cl ves Ck (EX}N
Row(ip): V;..V, T
Row(ig): V; ..V, F

Row(iy) and Row(iy) are both satisfactory. It will be shown that,
consequently, Row(i) is satisfactory. There are three cases to consider,
according as Row(iy) satisfies T4, T5, or Té.

4.25. Case 1. Row(iy) satisfies T4. Then in Row(iy) some consti-
tuents (Ex)Dy, ..., (Ex)Dy, (h=>1) all have F while D;v...vD, is a
medadic tautology. Then none of (Ex)Dy, ..., (Ex)D, is (Ex)N because
(Ex)N has T in Row(iy). Hence (Ex)D,,..., (Ex)D, are constituents
of C, so that Row(i) satisfies T4 and is, therefore, satisfactory.

4.26. Case 2. Row(iy) satisfies T5. Then some constituent (Ex)B
has T in Row(iy), some constituents (Ex)Djy,..., (Ex)D, (h=1) all
have F in Row(iy), while BoD,v...vD, is a medadic tautology.
If (Ex)B is not (Ex)N, then it is clear that Row(i) satisfies T5. Sup-
pose (Ex)B is (Ex)N. Then Row(iy) looks in part as follows (where
the dashes represent a succession of F’s):

(Ex)D; ... (Ex)D, (Ex)N

Row(iy): B sxe E T
where
((I) NDD]V ves VDh

is a medadic tautology. There are now three subcases, according as
Row(iy) satisfies T4, T5, or Té.

Subcase 1. Row(iy) satisfies T4. Then Row(iy) looks in part as
follows:

(Ex)DY; ... (Ex)D!,
Row(ip): F --- F

where
DY v ... vDY
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is a medadic tautology or

Dyv ..vD,vN

is a medadic tautology. If D', v... vD', is a medadic tautology, then
it is clear that Row(i) is satisfactory. Suppose D%v ... vD,vN is a
medadic tautology. Then, since Row(iy) and Row(iy) differ only in
the value assigned to (Ex)N, Row(i) must look in part as follows:

(Ex)D'; ... (Ex)D', (EX)D; ... (Ex)D,
Row(i): F --- F F --- F

Consider the formula
DYywv ... vD, vD,v ... vD,

Since
((1) N:JDlv e VDh

is a medadic tautology and
Dyv ... vD, vN

is a medadic tautology, it follows that
DYv ... vDivD;v ... vD,

is a medadic tautology. Hence Row(i) satisfies T4 and is, therefore,
satisfactory.

The remaining subcases are similar.
4.27. Case 3. The argument is similar to that of 4.26.

4.28. Suppose n=>1. Assume that for every n,<<n if C.~(D.~D)
is a tautology of degree n, which has exactly one more constituent,
namely D, than C, then C is a tautology. If D is a propositional
variable, then the sublemma (for n) is immediate. This leaves two
cases, namely, D of the form (Ex)N and D of the form <N. Suppose
D is of the form (Ex)N. Assume C.~((Ex)N.~(Ex)N) is a tautology
of degree n and C is not a tautology. Then ¥ (C) has an unsatis-
factory F-row, say Row(i). Let Row(i) of 7(C) assign values Vi, ..., V;.
to the k constituents Cy,...,C, of C. Then consider Row(i;) and
Row(ip) of J(C.~((Ex)N.~(Ex)N)) as before (4.24). Row(ir) and
Row(iy) are both satisfactory. It is to be shown that, consequently,
Row(i) is satisfactory. There are six cases to consider, according as
Row(ir) satisfies T1-T6. It is clear, however, that if Row(iy) satisfies
T1, T2, or T3, then Row(i) satisfies T1, T2, or T3, respectively; while
if Row(ir) satisfies T4, T5, or T6, then by the same arguments as
for n = 0 Row(i) is satisfactory.
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4.29. Suppose D is of the form ¢N. Assume C.~(CN.~<¢N) is a
tautology of degree n and C is not a tautology. Then Z(C) has an
unsatisfactory F-row, say Row(i). Let Row(i) of 9(C) assign values
Vi, ..., Vi to the k constituents C,, ..., C; of C. Then consider Row(iy)
and Row(iy) of (C.~(¥N.~ ¢N)) as before (4.24). They are both
satisfactory. It is to be shown that, consequently, Row(i) is satis-
factory. There are six cases to consider, according as Row(i) satisfies
T1-Té. It is clear, however, that if Row(ip) satisfies T4, T5, or T6,
then Row(i) satisfies T4, T5, or T6, respectively. Thus there are only
three cases to examine in detail. These are like those in the proof
of 3.19 of Anderson [1], which can easily be adapted to M and ex-
tended to take into account T4-Té.

4.30. Metatheorem. If A is a theorem of MQ, then A has a normal
form A* which is a tautology of MQ.

4.31. Proof. If A is an axiom of MQ, then 4.15 yields the result.

4.32. Suppose A is a consequence of B (e MQ) by R2, so that A
is ~<~B, where B has a normal form B* which is a tautology of
degree n. To show that A has a normal form A* which is a tautology
of degree n+1. A* = ~<>~B* is a normal form of A. Let the consti-
tuents of B* be By, ...,B, (k=1). Then the constituents of A* are
By, ..., By, ¢ ~B*. Then if Row(iy) is an F-row of 7(A*) it must assign
T to <~B*. Then Row(iy) satisfies T3.

4.33. Suppose A is a consequence of B (e MQ) and BS A (e MQ)
by R1, where B and BOA have normal forms B* and (BoA)*
which are tautologies. To show A has a normal form A* which
is a tautology. (BDA)* = (~(B.~A))* = ~(B*.~A*) = B*oA"
B* and B*>A* are tautologies. To show that A* is a tautology. (The
argument uses 4.20 and is like that in Anderson [1], p. 208.) Suppose
B* and ~(B*.~A*) are tautologies but A* is not. Then there is an
unsatisfactory F-row in (A*), say Row(i). By 4.20 (~(B*.~A"))
has an unsatisfactory row in which A* has F, say Row(j). Consider
the value of B* in Row(j). If B* has F in Row(j), then 7 (B*) has an
unsatisfactory F-row. This contradicts 4.20. If B* has T in Row(j),
then, since A* has F in Row(j), ~(B*.~A*) has F in Row(j), so that
J(~(B*.~A*)) has an unsatisfactory F-row. This yields a contradic-
tion. Hence A* is a tautology.

This completes the proof of 4.30.

4.34. Metatheorem. If A has a normal form A* which is a tauto-
logy, then every normal form of A is a tautology.
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4.35. Proof. Suppose A has a normal form A* which is a tauto-
logy. Then A is a theorem. Let A*; be a normal form of A other
than A*. Then A*; is a theorem. Therefore A*; has a normal form
A**, which is a tautology. But A*; is already normal. If A**, is
A*,, 4.34 is proved. Suppose A**; is not A*;. Then A**; must be ob-
tained from A*; by some of Q1-Q18 (because of the definition of
normal form (3.10)). But Q10-Q17 are certainly not used in getting
A**, from A*; because A*, is already normal, and Q1-Q9, Q18 pre-
serve tautologyhood, by Quine’s decision algorithm for PQ ([6]).

4.36. Metatheorem. Let C be a closed wif of MQ. Let C* be any
normal form of C. Then Ce MQ iff C* is a tautology of MQ.

4.37. Proof. If C* is a tautology of MQ, then by 4.2 C* e MQ and
hence CeMQ. If Ce MQ, then by 4.30 and 4.34 C* is a tautology
of MQ.

5. Further results. 5.1. MQ is consistent.

5.2. Proof. By the decision algorithm it is evident that for no p,
p e MQ.

5.3. Note that for no p, ¥popeMQ and ¢po> OpeMQ, and it
is not the case that (Ex)fx>(x)fxe MQ. Note also that, although
(x)0fx = O@)fxeMQ and (Ex)Ofx = O(x)fxe MQ, it is not the
case that O (Ex)fx> (Ex) Ofx e MQ.

5.4, Metatheorem. In MQ, < cannot be defined in terms of the
other primitive symbols.

55. Proof. Suppose it is possible to define <>. Then there is a
formula D containing no occurrence of < such that ¢p =DeMQ.
Let D* be a normal form of D. Then <p = D* is a tautology of MQ.
Let Dy, ..., Dy be the k distinct constituents of D*. Each D; (1<i<k)
is either a propositional variable or a quantification. (<¢p = D*)
has 4 X 2" F-rows, 4 rows for each of the 2* sets of values V¥, ...,
V®, for Dy, ...,D,. Call these rows Row (F;), Row (F;), Row (Fys),
Row (F,), Row (Fy), ..., Row (Fgk,). Consider Row (F;), ..., Row
(Fy) (1<i<<2Y).

P P D, ..D, D*
Row (Fy): T T Vo, .. VO, F
Row (Fy): F T VO, ... VO, F
Row (Fg): T F VO, . VO, T
Row (Fy): F F VO, .. VO, T

Each of these rows must be satisfactory. Row (F;;) satisfies T1. Since
no D; is an atom, none of the other three can satisfy T1, T2, or T3.
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Then they must satisfy T4, T5, or Té by virtue of Dy, ..., D;. There-
fore Row (F;3) also satisfies T4, T5, or Té by virtue of Dy, ..., D,.
Thus each F-row of (P = D*) is satisfactory by virtue of D, ..., Dy,
only. Hence the same is true of J (p = D*). Thus p = D* e MQ.
Then <¢p = peMQ. This contradicts 5.3. Thus < is independent.

5.6. The calculus S4Q. If the formula ¢<A><A is added as an
axiom to M, the resulting system is S4. (54 is described in Lewis and
Langford [4], p. 501, p. 493, and pp. 125-126.) Accordingly, $4Q is the
system which results from MQ if ¢<¢A 5 <A is added to MQ as an
axiom, and S4Q is the closure of S4Q.

5.7. Definition. A is a tautology of degree n of S4Q (n - tautology

of $4Q) iff o

(1) A is a normal wff of degree n of S4Q,
and (2) every F-row of Z(A) satisfies at least one of the
conditions T1-T6, or

T2'. Some constituent of the form <B of degree n,<n
has T, some constituents of the form <D, ..., ¢D,, <C,, ..., ¢C, all
have F (h20, m>0, h+m2>1), while BoD;v...vDyv Cv...vC,
is an (n,—1)-tautology of S4Q. (Anderson [1], Correction®)

5.8. Metatheorem. Let C be a closed wif of S4Q. Let C* be any
normal form of C. Then Ce S4Q iff C* is a tautology of S4Q.

5.9. Proof. The proof is analogous to that of 4.36.

5.10. The Barcan system S4Q'. If in S4Q A10 is replaced by
A10": ¢(Ex)AD (Ex)<A, the system S4Q' which results is the mona-
dic part of the one described in Barcan [2], pp.1-2 and p. 15. S4Q!
is a subsystem of S4Q; that is every theorem of S4Q' is a theorem
of $4Q. On the other hand, every normal theorem of 54Q is a theo-
rem of S4Q" because such a theorem A is a tautology of S4Q, and
inspection of the proof of 4.2 shows that A has a proof which does
not require A10. This proves the following.

5.11. Metatheorem. If C is a normal formula of S4Q!, then
CeS4Q' iff Ce S4Q.

(*) The following was brought to my attention by Professor Anderson and
has been taken into account in 5.7. Clause II of the Correction does not en-
tail clause II of the original paper. Hence, instead of replacing clause II of
the original paper by II of the Correction, one must add II of the Correction
to IT of the original paper, so that the procedure for $4 requires four con-
ditions instead of three. Then the argument goes through in the same way,
except that there are more cases to consider.
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completely normal form of C iff C*;, can be derived from C by the

5.12. The calculus S5Q. If the formula ©~<$AD ~< A is added
as an axiom to M, the resulting system is S5 (Lewis and Langford
[4], p.501). Accordingly, S5Q is the system which results from MQ
if O~CAD ~<CA is added to MQ as an axiom, and S5Q is the
closure of S5Q.

5.13. It is known that every wif of S5 can be reduced (effectively)
to a wif of degree at most 1. (See Parry [5], p. 151, footnote 19, and
references there given.)

5.14. Metatheorem. Let C be a closed wif of S5Q. Let C* be any
normal form of C. Then there exists an effective procedure for ob-
taining a wif B of S5Q such that B = AeS5Q and B is of degree
at most 1.

5.15. Proof. Apply 5.13 to C*, treating quantifications in C* as
though they were propositional variables.

5.16. Definition. Let C be a closed wff of S5Q. Then C*, is a
completely normal form of C iff C*; can be derived from C by the
method of 5.15.

5.17. Metatheorem. Let C be a closed wif of S5Q. Let C*, be any
completely normal form of C. Then CeS5Q iff C*,e MQ.

5.18. Proof. The proof is obvious.

6. An interpretation of MQ. The distinguishing feature of MQ
(and of S4Q and S5Q) is A10: (Ex)~<A> ~<(Ex)A. This axiom plays
a crucial role in the algorithm for reducing formulas to normal
form, inasmuch as it permits the removal of occurrences of < from
scopes of occurrences of E. The fact that all wifs of MQ can be re-
duced to normal form makes it possible to apply Quine’s interpre-
tation of modal logic on the pre-quantificational level to MQ as
well. ([7]. «Op» may be interpreted as «p is logically true», or «‘p is
true’ is analytic.»)

Note that, by A10, (Ex)Ofx> O(x)fxe MQ. In fact, (Ex)0Ofx =
O(x)fx e MQ and (x)Ofx = O(x)fx e MQ (but it is not the case that
O (Ex)fx > (Ex) Ofx e MQ). This suggests the following extension of
Quine’s interpretation to cases where <’s do occur in scopes of oc-
cwrrences of E. Interpret « Of» as «f is necessarily a universal prop-
erty.» (Then «Of» is not interpreted as a property.) This amounts
to reading «[Ofx» as if it were « O (x)fx.»
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More generally, interpret « JA,» where A is any wff, as if it were
«OA,» and give the latter Quine’s interpretation.

Supporting Metatheorem. D;[0AD; e MQ iff D, JAD, e MQ, where
D, and D, are finite sequences of primitive symbols of MQ.

Proof. It is sufficient to show that D;~<{~ADy = D;~ < ~AD,
e MQ. Let the free individual variables of A be x,...,x,. Then in
MQ: D;~<¢~AD, = D';~<(Ex,) ... (Ex;) ~AD%,= D!, ~{~AD!, =
D ~<(Ex,) ... (Ex;)~AD%; = D,~<~AD,.

Trinity College, Department of Mathematics M. J. POLIFERNO
Hartford 6, Connecticut.
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