THE INFERENTIAL APPROACH TO LOGICAL CALCULUS
(part II)
HASKELL B. CURRY

6. The elimination theorem. Besides the rules stated in §4, Gent-
zen stated a further rule, which he called «Cut» (Schnitt). This may
be formulated as follows:

(10) ¥ Al-9 %|—A3
%32 % -9 3

Here we retain the conventions of §4 according to which ¥) is
singular and § void in all singular systems.

The principle that concepts are determined by their rules of in-
troduction indicates that (10) ought to be derivable as a theorem.
Gentzen introduced it as a primitive rule, and then his principal
theorem (Hauptsatz) was to the effect that it is redundant. This is a
consequence of Gentzen’s motivation; from the standpoint of foun-
dations of ordinary logical calculus it is a quite natural assumption.
In [TFD] the rule (10) was taken as a theorem and called the elimina-
tion theorem (abbreviated ET). Because of its role in Gentzen’s
work it is often called the cut-elimination theorem; but from the
point of view of [TFD] it is A, rather than a cut, which is eliminated.

The original proof of Gentzen involved a double induction. There
was a primary induction on the number of operations in A, and a
secondary induction on the number of steps in deriving the premises.
The proof in [TFD], later modified in [ETM], was similar. It applies
in all the cases which satisfy certain conditions, of which the most
important is that, if the general formulation of the system allows
an additional parameter in the premises, inference from the premise
so altered to the correspondingly altered conclusion will remain
valid. This incudes all the singular systems, and those multiple
ones in which none of the rules are restricted to be singular, such
as LC,, LE, LK.

The invertibility properties mentioned in § 5 can easily be derived
from ET. On the other hand those properties can be derived in-
dependently (*¥), and in that case the proof of ET can be shortened.
Indeed in cases where all the rules are invertible, such as LC,, LE,,

(%) See §8.



and LK, the secondary induction in unnecessary (). But it seems to
be necessary, at least for certain cases, in all systems involving
quantifiers and in all systems which are absolutely based.

The proof requires that *K* be admissible, There is some interest

in systems in which the rules *K* are absent or modified. For these
ET is still open.

The elimination theorem is necessary in order to prove the equi-
valence of the different forms of systems. That the singular L-systems
can be interpreted in the T-systems can be shown directly; but the
converse requires ET. That the multiple systems can be interpreted
in the corresponding singular systems can be shown by the use of
ET for the latter; the converse argument requires also ET for the
multiple systems in case any of the rules Nx, Px is postulated. Thus
ET, and the equivalence to the corresponding singular system, holds
for LA,*, LM,*, LJ," (*), LE,*, LK,*. In regard to LD, the question
is still open, although I conjecture that ET and the equivalence holds.

Another consequence of the elimination theorem is the replace-
ment theorem. This says that if

(1) All—B B l— A

both hold, then an occurence of A can be replaced by one of B.
A more general theorem, applying to cases where only one of (1)
holds, can be proved by distinguishing positive and negative occur-
rences much as in [CLg] § 2D3.

In the following we shall be concerned with properties which, for
the most part, are quite independent of ET. The significance of ET
is that these properties, and the conclusions drawn from them, can
be extended under obvious limitations to the more conventional
formulations of logical calculus.

7. Deducibility theorems. Let us call a proper L-system one
formed with only (some selection of) the structural and operational
rules here considered. Then a proper algebraic (*) L-system has the
property that, although the rules may introduce new components (**),

(*) This appears from the work of Schiitte and Schmidt.

(*) The equivalence with ET added as postulate for both systems was first
shown by Maehara [DIL]. I understand from Umezawa [IPL], p.20 footnote
31 that ET for LJ* was proved by Ohnishi.

(%) For ‘algebraic system’ see § 3.

(*) A proposition A is said to be a component of a proposition B if A is



no component once introduced is ever entirely eliminated. Conse-
quently they have the following composition property (also called
«subformula property»): every component of a statement in a formal
derivation of a statement I'" is also a component of I' itself. Since
for any given I" there are only a finite number of components, and
since for some of the equivalent formulations mentioned in §5 the
number of possible statements which can be made from these com-
ponents is finite also, it follows that every proper algebraic L-system
is decidable,

If an L-system admits quantifiers or special rules, then the com-
position property fails, because the special rules and the rules for
quantifiers allow constituents (and hence possible components) to be
eliminated. But they may admit weaker forms of the composition
property from which interesting results follow. Thus the rules |—*
and Fj allow only elementary statements to be eliminated; the same
is true for F* if all counteraxioms are elementary. The quantification
rules allow the elimination of arbitrary components, but replace
them by others which differ only in their terms. Let us say that
two propositions which differ only in their terms have the same
propositional mairix. Then any L-system (formed with the rules listed
here) whose special rules eliminate only elementary propositions
has the composition property with respect to compound propositional
matrices.

Consider now the following properties, I" being a statement of
form (8):

Separation property: If I" holds, then it is derivable without using
any rules related to operations not appearing in T,

Conservation property: If T' holds and all its constituents are
elementary, then some constituent on the right is derivable in &
itself from the constituents on the left side.

Alternation property: If A is a derivation of

T|—AVB,

one of the parts from which B may be constructed by the operations. This
is here to include the case where A is B itself. For the precise definition
see [CLg], p.49. A component of a statement (8) is a component of any of
its constituents,



then we can find effectively a derivation of one of
X|—A %|— B
likewise if A is a derivation of
X |— (Hx) Ax),
then we can find effectively a derivation of

% ||— A®)

for some term ¢,

We shall study the conditions for validity of the properties.

If there are no special rules other than |—*, then the separation
property follows by the composition property for compound matrices;
and the conservation theorem is easily deduced from it. But if Fj
or F* (with counteraxioms elementary) are assumed, then caution
is necessary. For the rules Fj, F* are rules for negation, and since
in the F-formulation negation is defined only in terms of F, we must
think of negation as being at least implicitly present if F is. A more
elaborate investigation is necessary, in which the complex relations
between the F-, N-, and FN-formulation enter. The upshot is that
under certain reasonable assumptions on the counteraxioms, which
assumptions hold in particular if there are no counteraxioms or Fj
is not assumed, the separation and conservation properties hold
under the hypothesis that I" does not contain F, the conclusion of
the former being that I" can be derived without the rules for F.

The alternation property has a different status. In the first place
it is a theorem about singular systems which are absolutely based.
In the second place X must be formed from >, A, and universal
quantification only. In that case it is true without further restriction.

In all the foregoing it is supposed that the special rules Px and
Nx do not occur. Let us now discuss the case in which they do. The
cases of LCi*, LE*, LK,* can be taken care of by their equivalence
to LC,*, LE,", LK,"* respectively. There remain only the various
forms of LD. In [SLD] a form of Glivenko theorem was proved
which showed that LD; could be reduced to LM;. Not much has
been done with LD since that time. It seems likely that LD, (when
properly formulated) is equivalent to LD;. Concerning LD* not much
is known.

8. Permutation of rules. When we have a proof A of a state-
ment I" of form (8) containing a compound parametric consti-
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tuent A, it is sometimes desirable to know whether A can be re-
cast into a proof A* which ends with a rule introducing this A
as principal constituent. This question will be discussed here with
reference to the proper multiple systems, The discussion is a modi-
fication of Kleene’s [PIG] (*'). (See also Schiitte [SWK].)

In accordance with § 3 we may suppose that the prime statements
of A have only elementary constituents. If we use Formulation III
we may also suppose that *W* does not occur (**). Furthermore it
may be supposed that A has at least one ancestor in a prime state-
ment of A; for otherwise one can show that, by the omission of A
and all its ancestors, together with certain superfluous branches of
A, one can have a proof of the I formed by omitting A from T,
and from this one can have I" by K*,

The modus operandi is as follows. Let I" be represented (**) as

M A

where I stands for all the constituents other than A. (I shall use
letters from the middle of the alphabet for relatively fixed sets or
sequences of propositions.) Let A be exhibited in tree form. Let A’
be a part of A consisting of I" and those nodes of A which contain
a parametric ancestor of A. Then, since A is compound, there will
be no prime statements in A’, and there will be at least one top
node of A’ introducing A by an operational rule. Then a A* can be
constructed if the following conditions are fulfilled:

(a) There is a unique operational rule R; for introducing A (on
the appropriate side, of course). This will be of the form

T (=12 ..,m
% A

(*') The modification is considerable. Kleene considers only the systems
treated by Gentzen, viz. L] 1, and LK. Further his notion of permutability
is different; he is concerned more explicitly with a kind of generalized
interchange of two inferences, rather than moving a certain kind of inference
to the end of the proof. He also makes extensive use of structural rules,
whereas here the tendency is to minimize the use of *W*,

(4) If *W* are admitted the argument here given would be valid with
certain modifications. We should have to re-define ‘parametric ancestor’ so
as to allow passage back through *W=,

(%) It is not necessary to indicate on which side of I' the constituents
occur; but constituents on different sides are still to be regarded as unlike.
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where «X» stands for the parameters which vary according to the
application, and «{Q;» for the subalterns in the #’th premise, which
are uniquely determined by A.

(b) If an inference in A; is made by a rule Ry, then the inference
remains valid if A is removed as parameter and parameters £}; are
added.

(c) If A is introduced by *K* (or Fj), then the £J; can be intro-
duced by *K* (perhaps with Fj).

(d) The position of A in I" is such that it can be the principal
constituent of an inference by R;.

The proof that A* can be constructed if (a)—(d) holds is quite
simple (**). We proceed to discuss the conditions under which these
hypotheses hold.

The condition (a) fails for non-Ketonen forms of *A and V*, and
for quantification rules. However in Formulation IK and III it holds
for all algebraic operational rules.

As for condition (b), arbitrary changes of parameters can be made
for all rules except those restricted to be singular on the right and
quantification rules with a characteristic variable (which must not
appear in the new parameters). If R, is of the former kind then A,
since it is a parameter, must be on the left, and there is conflict
only if there is some £; on the right; this occurs only if R, is *P.
The case of quantifiers will concern us later.

The condition (c) causes no difficulty, since *K* is assumed with
full generality, if we do not have Fj. If A is introduced by Fj, then
it is on the right; and in that case there is a subaltern on the right
in every premise of every R; (*). Thus Fj causes no difficulty.

The condition (d) causes difficulty only in the case R, is restricted
to be singular on the right and 9% has a constituent on the right.
This can be seen from inspection of I' without knowledge of A.

Thus for algebraic systems the situation is as follows: There is no
restriction whatever for LC,, LE,, or LK,. For LA,, LM,, and L],

(*) For each i we simply make the transformation indicated under (b)
throughout, forming a proof tree A,”. If a top node of A’ is an introduction of
A by Ry, then the corresponding top mode of A, will be the #’th premise of
that inference; we then put over that node the proof of that premise from
A, If a top node of A’ is introduced by *K*, then by (c) we can derive the
corresponding node of A/ from the same premise in A, Finally from the con-
clusions of A/, ..., A’ one can obtain I" by R,.

(#5) Except N* in the N-formulation. But then we have no F.
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the condition (d) must be fulfilled; then the construction is possible
except in the case where R, is *P (*).

Let us turn now to quantified systems. There is no further res-
triction if R, is algebraic and no change in regard to (c) or (d). If
Ry is IT* or *Z, then it can be shown that the bound variables can
be so adjusted that there is no conflict with either of the conditions
(a) (*') or (b). If R, is =* or *II there may be an unavoidable conflict
with condition (b), and examples show that these cases are except-
ional (*¥). If no such conflict exists (**) there may still be conflict
with condition (a). This can be avoided by generalizing =* to () =*'

b i X | a|— Alt), Alw), ... Alt), 3
%) — @A®, 3

and then taking #;, ..., ¢, to be all the terms used in the various
applications of ¥*; similarly for *II. Thus in the quantified systems
we have 3* and *II as additional exceptions for R;; it does not make
any difference whether the system is classically or absolutely based.

The result is independent of ET. It includes the results on in-
vertibility mentioned in § 5 and § 6 (*'). But although it may shorten
the proof of ET, the exceptional cases make it seem unlikely that it
can completely replace ET.

By the aid of this theorem one can prove the theorem which
Gentzen called his «erweiterter Hauptsaiz», but which, from its
close connection with the Herbrand theorem, is better called the
Herbrand-Gentzen theorem (). This is to the effect that if " is a
theorem of LKy of form (8) such that all the constituents are in
prenex normal form, then there is a proof of I in which no quant-
ificational inference is above an algebraic one. This is not a direct
consequence of the present result, because it has to be shown that
conflict between the quantificational inferences does not occur.

(*%) Since *P is an exception we do not have to worry about the quasi-
singular constituent in Formulation IIL

(*") 1e., one can make the Q; the same in all the applications of R, in A.

(%) See Kleene [PIG], p.25.

(4°) This will occur, in particular if there are no instances of IT* or *Z in A.

(5%) This inference can be obtained by £* and W*.

(*!) Indeed it is only another way of formulating them.

(%2) See Craig [LRN]. The theorem is not a direct consequence of ET nor
is ET directly deducible from it; so that the term ‘extended ET" seems
inapt.
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9. Proof tableaux. A little experience with inferential methods
will soon convince one that there is a great deal of rewriting (**);
and that although the systems are decidable, yet an actual decision
may require the exploration of a large number of alternatives which
are difficult to keep track of. There is need of an algorithmic proce-
dure for carrying out the analysis. Such an algorithm should be
capable of giving a decision in the case of the decidable systems;
but for the quantified systems the most that can be expected is that
in all cases where a proof exists the algorithm, if pushed far enough,
will produce a proof (*), whereas in other cases the algorithm may
produce a negative decision or continue indefinitely. When this is
so the algorithm will be said to be complete (*).

Algorithms of the sort described were proposed by Beth in his
theory of «semantic tableaux», This is presented for classical cal-
culus in his [SEF], a revision for intuitionistic calculus in his [SCI].
In the latter publication it is explicitly tied to a Genizen-like system
given on p. 362. Both systems are presented and discussed at some
length in his [FMt]. Briefer or less formal explanations appear in
his other papers cited in the Bibliography. These formulations do
not agree exactly with one another. Moreover, as inferential formula-
tions of intuitionistic predicate calculus the formulations of his [SCI]
and [FMt] are not complete; for Kripke (**) has remarked that the
valid statement

A A>B|—B

is not obtainable by Beth’s algorithm (*).

In this section there will be proposed modifications of Beth's algo-
rithms which are complete and have some other advantages. Because
the interpretation in terms of «model» construction, which is Beth’s

(%%} Various devices, which will not be discussed here, can be used to
reduce the amount of rewriting.

(*) Not necessarily the same proof as that which was known to begin
with.

(%5) This completeness of the algorithm is not to be confused with seman-
tical completeness of the system.

(*) In correspondence, This correspondence contains many suggestions
in regard to inferential methods.

(5) Beth’s methods should be compared with those of Hintikka. See also
Rasiowa and Sikorski [GTh]. The latter shows that the Godel completeness
theorem can be derived quite elegantly by similar methods, Cf.Schiitte
[SVS].
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principal interest, is irrelevant here, the arrays constructed according
to the algorithm are called simply proof tableaux.

The principle of the algorithm is that we attempt to construct a
proof tree upside down. The process is defined by a sequence of
rules each of which, when applicable, assigns to a statement called
the datum another statement called the result (**). The datum is al-
ways an elementary statement (i.e., of form (8)); the result may be
an elementary statement, or a conjunction or alternation of such
statements (**), The rules are ordered, so that, given a datum I", the
rule to be applied to I'" is uniquely determined. The algorithm begins
with a certain initial datum I'), which we call the head of the
tableau. If I'y is of form (8) with some A; like some B;, then no rule
is applicable and the algorithm is said to close at I'y. If this is not
the case and still no rule is applicable, then we say the tableau is
open at I'o. If neither of these cases occurs, there is a rule R applic-
able to I'y. If the result of R is a single elementary statement Iy,
then we proceed with Iy as new head, and the original tableau is
closed or open according as the new one is. If the result of R is a
conjunction I'1 & I'e & ... & I'y, then we say the tableau splits con-
junctively into the subtableaux headed respectively by I'y, ..., I'ys
the original tableau closes just when all of these subtableaux close,
and is open when at least one of them is open. If R is an alternation
I't or I'g or ... or I, then we say the tableau splits alternatively
into the subtableaux headed by I'j;, ..., Iy respectively; it is closed
when at least one of the subtableaux closes, and is open when they
are all open. It is further agreed that if in this process we have a I,
which is the same (*) as some I', which has already appeared above
it, then the rule applied to I', cannot be applied again with the
same principal constituent to I'j; also that we do not have to repeat
constituents.

Under these circumstances, if the algorithm rules are such that
the inference from result to datum can always be made by an L-rule,
then a closed algorithm will give a proof if it is turned upside down
and superfluous alternatives are discarded. But it may not be a
decidable question whether the tableau closes or not for a given I'.

(*) The terms ‘premise’ and ‘conclusion’ would be misleading here, since
the rules work in the opposite direction from the inferential rules them-
selves.

(*) The conjunction and alternation are connections here (i.e. they form
statements from other statements), not operations.

(*) Le, has the same constituents except possibly for order. Without this
convention we might have infinite cycles.
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The ordering of the rules is governed by the following heuristic
principles, the earliest stated having the greatest priority: 1°. The rules
must be equivalences; more precisely, while the inference from re-
sult to datum is valid in the sense of deducibility, that from datum
to result is valid in the sense of admissibility (cf. §2). 2°. Rules
which can be moved to the end of the proof in § 8 precede the others.
3°. Rules which split the tableau follow those which do not. 4°. Rules
on the right should precede those on the left,

With this understanding the following algorithm is proposed. The
rule to be applied in any case is the first one that can be applied
subject to the above conventions. The sequences 3, 3; are to be void
in systems which are absolutely based, otherwise they are not so
restricted. The sequences X;, ¥);, §; must not contain any constituent
with the same main operation as the principal constituent, which
immediately follows them (*); whereas ¥;, s 3o, % 9) are not so
restricted (**). The range a, consists of a;, a,, ..., @,; a,,, is distinct
from any of these. The L-rule permitting the inference from result to
datum is indicated on the right, it being understood that *C* can be
used wherever needed. In the classically based systems XI is to be
omitted and XII is modified; in those without F; one must omit X.

I  %|—8.4583% (P*)
X Al— 3. B 3
I %|a|— 8. (VOA®), 3 ()

x | Op 41 |_ 31' A(ar+1)s 32

I %, (@A), % | o |— 9 (*Z)
X, A1), X | arey |— )
IV X|—9.AVBY, (V*)

X ”_ SI]l' A, B, 9]2

(%)) E.g., in IV the 9); must not contain any constituent of the form CV D.

(*®) An alternative procedure, which would give an ordering of the rules
more akin to those of Beth and Rasiowa-Sikorski, would be to require that
%, 9,, 3, be elementary. My proof of completeness would not work in
that case, but presumably it could be altered so as to do so. It may be
necessary to provide for alternation from side to side, and perhaps to make
other changes.
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v % AAB%R|—9 (*Ay

%, A B % |— 9

Vi X[|—9,AANBY, (A*)
¥|—9.A% & %|— 9. B Ve

VI %,AVB %|—9 (*V)
%A% & % B %|—9

VIIL ()% | o, |— 9y, (Hx)A@), Vs {54
% | o [— Du Ala), A@), ... Aa,), Vs, (Hx)A(x)

IX (%) % (V0A(®), % | o |— 9 (*IT)
%, A@), ..., Al@), B, (VO)A®) | o |— D

X 2[—9 (Fi) ()
X9 F

XI X|—A®™.9 (K*)

E|—A o %|—9 4

X % A>B%|—9 (*P)
¥, ADB%|—9A & % B%|—9

This algorithm is complete in the sense indicated. Even in the
undecidable cases the tableau will eventually close if Ty is derivable
at all, provided one develops all alternatives in some systematic
manner, In the decidable cases the tableau will eventually be either
closed or open. The proof is difficult. Whether or not some other
arrangement of the rules would be more advantageous for practical
purposes I do not know,

(*) The ay, ..., a, must contain all atoms which appear.
(*) The F,; as stated can be obtained by combining this with K*.
(*) One could restrict A to be one of the forms B5C, (Vx)B(x).

15



Bibliography

This bibliography lists items directly referred to in the text, and
also the principal publications known to me which make a sig-
nificant contribution to the subject matter of this paper and were
published since 1934. Works are cited by abbreviated titles in brack-
ets as listed below. When these citations are made without author’s
name (explicitly or in the context) it is understood the author is
Curry, or Curry and Feys. Journals are abbreviated according to the
practice of Mathematical Reviews (Providence, R.I.). The bibliography
may be supplemented by those found in [TFD], in Feys [MRD] and
[NCM], in the bibliographic and review sections of the Journal of
Symbolic Logic, and the reviews in Mathematical Reviews,

BetH, E. W.

[CCS] On the completeness of the classical sentential logic, in Nederl.
Akad. Wetensch, Proc., Ser. A., vol. 61 (= Indag. Math., vol. 20),
pp. 434-437 (1958).

[CRL] La crise de la raison et la logique. Collection de logique ma-
thématique, Série A., no.XII, Paris-Louvain, 1957.

[CSL] Construction sémantique de la logique intuitioniste, in Colloques
internationaux du Centre National de Recherche Scientifique,
no. LXX, Paris, 1958, pp. 77-84.

[FMt] The foundations of mathematics. Amsterdam, 1959. Especially
§ 145,

[MPT] On machines which prove theorems, in Simon Stevin, Jaargang
32, pp.49-59 (1957).

[RND] Remarks on natural deduction, in Nederl Akad, Wetenschap.
Proc., Ser. A, vol. 58 (= Indag, Math., vol. 17) pp. 322-325 (1955).

[RSm] Quelques remarques sur la sémantique, in Rev. Philos, de Lou-
vain, vol. 54, pp. 605-625 (1956),

[SCI] Semantic construction of intuitionistic logic, in Nederl Akad.
Wetenschap., Afdeling Letterkunde, Meded., vol.19, pp.357-388
(1956).

[SEF] Semantic entailment and formal derivability, in Nederl, Akad.
Wetenschap., Afdeling Letterkunde, Meded., vol. 18, pp.309-342
(1955).

[SPP] La sémantique et sa portée philosophique, in Semantica, Rome
1955, Archivio di filosofia, 1955, no. 3, pp. 41-62.

[STR] Semantics as a theory of referemce.. In Raymond KriBaNsky,

Philosophy in the mid-century, a survey. pp.62-100, Firenze,
1958.

16



Borkowskr, L. & SLupeckl, J.

[LSB]

Carnar, R,
[ISm]
[LSL]

CHURCH, A.
[IML]

Corr, 1.

[SLg]
[VND]

CralG, W.
[LRN]

Curnry, H. B.
[BVC]
[DNF]
[ETM]

[FML]
[GDT]

[ITN]

[NRG]
[PRC)
[TED]

[SLD]

FEys, R,
[MRD]

A logical system based on rules and its application in teaching
mathematical logic, in Studia Logica (Warsaw), vol.7, pp.71-
113 (1958).

Introduction to semantics, Cambridge, Mass., 1942,
The logical syntax of language. Translated from the German by
Amethe SmeEaTON, New York and London, 1937.

Introduction to mathematical logic. 2nd edition, Princeton, N. J.,
1956.

Symbolic Logic. New York, 1954,
Another variant of natural deduction, in ], Symb, Logic, vol. 21,
pp 52-55 (1956).

Linear reasoning, a new form of the Herbrand-Gentzen theorem,
in J. Symb. Logic, vol. 22, pp. 250-268 (1957).

Basic wverifiability in the combinatory theory of restricted gene-
rality, In process of publication.

The definition of negation by a fixed proposition in the inferen-
tial calculus, in J. Symb. Logic, vol. 17, pp. 98-104 (1952).

The elimination theorem when modality is present, in ]. Symb.
Logic, vol. 17, pp.249-265 (1952).

Foundations of mathematical logic. In press.

Generalizations of the deduction theorem, in Proc. of the Intern.
Cong. of Mathematicians, Amsterdam, 1954, vol. 2, pp. 399-400.
The inferential theory of negation, in Proc, Intern. Cong. Mathe-
maticians, Cambridge, Mass, 1950, vol. 1, p.722.

A note on the reduction of Gentzen’s calculus L], in Bull. Amer.
Math, Soc., vol. 45, pp. 288-293 (1939).

The permutability of rules in the classical inferential calculus,
in J. Symb. Logic, vol. 17, pp. 245-248 (1952).

The system LD, in ].Symb. Logic, vol. 17, pp. 35-42 (1952).

A theory of formal deducibility, Notre Dame Mathematical Lec-
tures No. 6, Notre Dame, Ind. (1950); 2nd ed. (1957).

Les méthodes récentes de déduction naturelle, in Rew, pht!os de
Louvain, vol. 44, pp. 370-400 (1946).

17



[NCM]

[TFD]

Frrcy, F. B,
[SLG]

GENTZEN, G,
[EUA]

[NFW]

[RDL]

MULs]

[WFR]

Gumin, H. &
[SPK]

HERBRAND, J.
[RTD]

Note complémentaire sur les méthodes de déduction naturelle,
in Rev. Philos. de Louvain, vol. 45, pp. 60-72 (1947).

Une théorie formalisée démontrée sans symboles, in Les études
philosophiques. vol. 10, pp. 3-14 (1956).

(See also GentzEN [RDL]).

Symbolic logic - an introduction. New York, 1952,

Uber die Existenz unabhingiger Axiomensysteme zu unendlichen
Satzsystemen, in Math. Ann. vol. 107, pp.329-350 (1932).

Neue Fassung des Widerspruchsfreiheitsbeweises fiir die reine
Zahlentheorie in Forschungen zur Logik und zur Grundlegung
der exakten Wissenschaften, Heft 4, pp.19-44 (1938).
Recherches sur la déduction logique. French translation of [ULS]
by RobertFevs and Jean Laprire. Paris, 1955,

Untersuchungen iiber das logische Schliessen, in Math.Z., vol.
39, pp. 176-210, 405-431 (1934). For French translation see GENT-
zEN [RDL],

Die Widerspruchsfreiheit der reinen Zahlentheorie, in Math. Ann.,
vol. 112, pp. 493-565 (1936).

HerMEs, H.

Die Soundness der Pridikatenkalkiils auf der Basis der Quine-
schen Regeln, in Arch, Math. Logik Grundlagenforsch. vol. 2,
pp. 68-77 (1956).

Recherches sur la théorie de la démonstration, in Travaux de la
société des sciences et des lettres de Varsovie, Classe 111, Sciences
mathémaltiques et physiques, no. 33 (1930).

HiuserT, D. and BernAys, P,

[GLM]

Grundfagen der Mathematik, I. Berlin, 1934.

Hintikka, K. J. J.

[FCQ]

Jasgowskl, S,
[RSF]

Jonansson, 1.
[MKR]

18

Form and content in quantification theory, in Acta Philos. Fenn.,
vol. 8, pp.7-55 (1955),

On the rules of suppositions in formal logic, in Studia Logica.
vol. 1, pp.5-32 (1934).

Der Minimalkalkiil, ein reduzierter intuitionistischer Formalis-
mus, in Compositio Math., vol. 4, pp. 119-136 (1936),



KANGER, S.

[PLG] Provability in logic, in Stockholm studies in philosophy, No. 1.
Stockholm, 1957.

Keronen, O.
[UPK] Untersuchungen zum Priidikatenkalkul, in Ann. Acad. Sci, Fenn.,
Ser. A., no.23 (1944),

KLEENE, S. C.
[ILg] On the intuitionistic logic, in Proc. Xth International Congress
of Philosophy, Amsterdam, 1948, pp.741-743.
[IMM] Introduction to metamathematics. Amsterdam-Groningen, 1952.
Especially Chapter XV; also Chapters IV - VIL,
[PIG]  Permutability of inferences in Gentzen’s calculi L] and LK, in
Memoirs Amer. Math. Soc., No. 10, pp. 1-26 (1952).

KNEALE, W,
[PLG] The province of logic, in Contemporary British philosophy, Third
series, edited by H.D. LeEwis, pp. 237-262, London, 1956.
(1924-25).

KoLMoGoRov, A,
[PTN] O principie tertium non datur, in Mat, Sb, vol.32, pp.646-667

KRIPKE, S.
[CTM] A completeness theorem in modal logic, in ]J. Symb. Logic. vol.
24, pp. 1-14 (1959).
[SLE] The system LE. Submitted to Westinghouse Science Talent Search,
February 1958, Not yet published.

Kuroba, S. A.

[ILS] An investigation of the logical structure of mathematics (A se-
ries of papers published in various places), Parts I-1I Abk. Math.
Sem. Univ. Hamburg, vol.22, pp.242-266 (1958), and vol. 23, pp.
201-227 (1958); Parts III-IV, Nagoya Math. ]., vol. 13, pp.24-52,
123-133 (1958); Part V, J. Symb. Logic, vol. 23, pp. 393-407 (1958);
Parts VI-VIII, Nagoya Math. ]., vol. 14, pp. 95-158 (1959); Parts
IX-X, Osaka Math. ]., vol. 11, pp. 7-42, 213-245 (1959); Part XII,
Proc. Japan Acad., vol. 34, pp. 400403 (1958); Part XIII, Nagoya
Math. ]., vol. 16, pp. 195-203 (1960). A brief summary is in Part
XII. Part XI is in Japanese.

[IUF] Intuitionistische Untersuchungen der formalistischen Logik, in
Nagoya Math. ]., vol. 2, pp. 3547 (1951).

LesrLanc, H.
[IDL] An introduction to deductive logic, New York and London, 1955.

19



LeBLaNc, H. & HalLpERIN, T.
[NDS] Nondesignating singular terms, in Philos. Rewv., vol. 68, pp.239-
243 (1959).

LoreNzeN, P,
[ALU] Algebraische und logistische Untersuchungen iiber freie Verbiin-
de, in J. Symb. Logic., vol. 16, pp. 81-106 (1951).
[EOL] Einfiihrung in die operative Logik und Mathematik. Berlin-Got-
tingen-Heidelberg, 1955,
[KBM] Konstruktive Begriindung der Mathematik, in Math. Z. vol. 53,
Pp. 162202 (1950).

Lukasiewicz, J.
[ASS] Aristotle’s syllogistic from the standpoint of modern formal lo-
gic. Oxford, 1951,

MAEHARA, S.
[DIL] Eine Darstellung der intuitionistischen Logik in der klassischen,
in Nagoya Math. ]., vol. 7, pp. 45-64 (1954),

MonTacug, R, & Henkin, L,
[DFD] On the definition of formal deduction, in J. Symb, Logic, vol. 21,
pp. 129-136 (1956).
MonTacug, R. & Kavisu, D,
[RDN) Remarks on descriptions and natural deduction, in Arch. Math.
Logik Grundlagenforschung, vol.3, pp.50-73 (1957).

Nouin, L.
[SDN] Sur un systéme de «déduction natureller, in Comptes rendus des
séances de I'Académie des Sciences, Paris, vol. 246, pp. 1128-1131
(1958).

Onnisar, M. & Matsumoro, K.
[GMM] Genizen method in modal calculi, in Osaka Math. |., vol. 9, pp.
113-130 (1957), and vol. 11, pp. 115-120 (1959).

PorrER, K.,

[FLA] Functional logic without axioms or primitive rules of inference,
in Nederl. Akad. Wetenschap., Ser. A, vol. 50, pp. 1214-1224 (=
Indag. Math., vol.9, pp.561-571), (1947). (This paper contains
erroneous results which vitiate many of author’s conclusions.
See review in Math. Rev., vol. 9, p.231 (1948). The error is car-
ried forward from an earlier paper, and affects the entire series.)

[LAS] Logic without assumptions, in Proc, Aristotelian Society, n.s.,
vol. 47, pp. 251-292 (1947).

20



[NFL]

[TDd]

[TML]

Quing, W. V.
[MeL]

[NDd]

New foundations for logic, in Mind, vol. 56, pp.193-235 (1947);
Errata, vol. 57, pp. 69-70 (1948),

On the theory of deduction in Nederl, Akad. Wetensch., Ser. A,
vol. 51, pp.173-183, 322-331 (= Indag. Math., vol. 10, pp. 44-54,
111-120) (1948).

The trivialization of mathematical logic, in Proc. of the Xth
International Congress of Philosophy. Amsterdam (1948), vol. 1,
pp. 722-727.

Methods of Logic. New York, 1950; revised edition, New York,
1959.

On natural deduction, in . Symb, Logic, vol. 15, pp. 93-102 (1950).

Rasiowa, H. & Sixorski, R.

[GTh]

On the Gentzen theorem, in Fund. Math., vol. 68, pp. 57-69 (1960).

ScamipT, (H.) Arnold

([VAL]
ScuiTTE, K.
[ALG]

[BTh]
[SVS]

[SWK]

[WFT]

[WLS]

SHimavT, T.

[PSC]
Taxkeuts, G.
[CRR]

[FCG]

[GLC]

Mathematische Gesetze der Logik . 1. Vorlesungen iiber Aussagen-
logik, Berlin-Gottingen-Heidelberg, 1960.

Die aussagenlogischen Grundeigenschaften formaler Systeme, in
Dialectica, vol. 12, pp.422-442 (1958).

Beweistheorie. Berlin-Gottingen-Heidelberg, (1960)

Ein system des verkniipfenden Schliessens, in Archiv, Math. Lo-
gik Grundlagenforschung, vol. 2, pp. 55-67 (1956).
Schlussweisenkalkiile der Pridikatenlogik, in Math. Ann., vol. 122
pp. 47-65 (1950),

Zur Widerspruchsfreiheit einer typenfreien Logik, in Math. Ann.,
vol. 125, pp.394-400 (1953).

Ein widerspruchsloses System der Analysis auf typenfreier
Grundlage, in Math. Z., vol. 61, pp. 160-179 (1954).

Proof of a special case of the fundamental comnjecture of Ta-
keuti’s GLC, in ]. Math. Soc. Japan, vol. 8, pp. 135-144 (1956).

Construction of ramified real numbers, in Ann. Japan Assoc. for
Philos. of Science, vol.1, pp. 41-61 (1956).

On the fundamental conjecture of GLC, in J. Math. Soc, Japan,
vol. 7, pp. 249-275, 394-408 (1955); vol. 8, pp. 54-64, 145-155 (1956);
vol. 10, pp. 121-134 (1958).

On a generalized logic calculus, in Japanese J. Math., vol. 23,
pp. 39-96 (1953). Errata, Ibid., vol. 24, pp. 149-156 (1954).

21



[MTF] A metamathematical theorem on functions, in ], Math, Soc.
Japan, vol. 8, pp. 65-78 (1956).
[RFC] Remark on the fundamental conjecture of GLC, in J. Math. Soc.
Japan, vol. 10, pp. 44-45,
[TON] Omn the theory of ordinal numbers, in J. Math. Soc. Japan, vol.9,
pp. 93-120 (1957).
Umezawa, T.
[IPL]  On intermediate propositional logics, in J. Symb. Logic, vol. 24,
Pp. 20-36 (1959).
[LII]  On logics intermediate between intuitionistic and classical pre-
dicate logic, in J. Symb. Logic, vol. 24, pp. 141-153 (1959).
[ZSA] Uber die Zwischensysteme der Aussagenlogik, in Nagoya Math. ].
vol. 9, pp. 181-189 (1955).
The Pennsylvania State University H. B. Curry

ERRATUM

A serious misprint has rendered unintelligible a passage in the
first part of this paper. The editor apologizes for this error. The text
should read as follows:

Fasc. 11-

12 (1960), page 125, lines 5 and 4 from bottom, the rule

P* must be:
p* %,A H—- B
X|—A>B

22



