REALIZABILITY AND SHANIN'S ALGORITHM
FOR THE CONSTRUCTIVE DECIPHERING
OF MATHEMATICAL SENTENCES

S. C. KLEENE

1. In [2] or [5] § 82 Kleene interpreted number-theoretic state-
ments through a notion of «realizability», which can be introduced
in the following manner.

Consider a formal language like that in [5] but with symbols for
some further primitive recursive functions and predicates (besides
*, 4+, *, =). We merely assume that these include all the ones ap-
pearing below with notations similar to the informal notations of
[5] (indexed bottom p. 538). We also write (ay, ...,a,) for po....p;" (*).

An algorithm is given ([2] top p. 120, or § 5 below) which to each
formula E of this language correlates another formula r E of the
same language. A closed formula E is said to be realizable, if r E
is true; an open formula, if r YE, where YE is the closure of E, is
true. Thus a closed formula is interpreted by reading r E in place
of E itself.

Readers of [5] § 82 will not find r E, but only «E is realizable»
in the informal language. Thence r E is to be obtained by transla-
tion into the formal language (now more extensive than in [5]).
Specifically, r E is Je[e r E] where, if E is closed, e r E expresses
«e realizes E». If E is open, e r E expresses that e realizes E for
given natural numbers y,, ..., y,, as the values of the free variables
¥1» +--» Y Of E; or in the terminology of [5], writing E as E(yy, ..., V)
and y;, ..., Y, for the numerals expressing y,, ..., ¥,,. that e realizes
E(yl, veey ym).

In general, certain constructive properties are made explicit in r E
which, Kleene argued, are implicit in E from the intuitionistic stand-
point but not from the classical. For this reason, r E is not in general
equivalent to E classically; for E may be true classically without

() To get by here without extending the intuitionistic number-theoretic
system of [5], we could use the familiar procedures for eliminating the
additional symbols ([5] § 74 Example 9 p. 415), except (for a reason to ap-
pear in § 5 below) using V instead of 3 (cf. [5] *181 p. 408). The formula
in the proof of Theorem 27 middle p.243 can be replaced by vcd{vu
[B(c,d,0,u) o Q(xy ..., X, w)] & Vi[i<<y 5 vuv[B(c,d,i’, u) & B(c, d, i, v)
S R(L, v, %, -, x,,0)]] D Ble, d, v, W)}, Ble, d, i, w) by — vv[es=("d)v
+w] & w<(i"*d)’ (cf. [5] *180b), and i<Ty by yali=+y+a].
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those properties holding, so that r E is false (example in [2] § 9 or
[5] bottom p.513). A fortiori, r E is not in general equivalent to E
in the prior intuitionistic formal systems of number theory, which
are subsystems of the classical (though in [2] Kleene proposed ad-
joining r E ~ E to such systems).

Subsequently (in [6]) Kleene receded from the position that this
realizability algorithm r is wholly appropriate as an intuitionistic
interpretation of number-theoretic formulas; it enforces constructiv-
ity in such a drastic form as to leave no room for relativized con-
structivity. In [6] he introduced another realizability notion r’. The
algorithm 1’ takes any formula E of intuitionistic analysis (construed
to include a sufficient collection of symbols for primitive recursive
functionals and predicates), and hence any formula of the present
language, into a formula r’ E of intuitionistic analysis. Most of what
is done below for r will be applicable to r’ also (¥).

2. In [17] (*) Shanin writes «The principles of constructive under-
standing of mathematical sentences presented by Kleene have, in
our opinion, real shortcomings of a fundamental character. These
shortcomings can be clearly seen in the simplest examples.» Let F
be Yxyz(x=y & y=z D x=z). Should we write out r F, «we would
obtain an altogether cumbersome sentence F;, more cumbersome
and complex than the original sentence F. Furthermore, in the new
sentence we do not reveal any features that would testify to the fact
that, in some respect, the new sentence is simpler than the original
and may be taken as an interpretation of the original one. ... If now
we should apply the deciphering rules to F,, we would get a third
sentence F; much more involved than F,, and so on. The deciphering
rules for sentences presented by Kleene are not idempotent.» (F; is r F,
Fyis rr F, etc)

Shanin proposes a different algorithm, which we call s, which
«connects the constructive problems not with all sentences but only
with some. Altering in this direction the basic theoretical apparatus
of Kleene makes for greater intelligibility of the problem of con-
structive understanding of mathematical sentences than has hitherto
been attained in other theories.»

3. Kleene aimed at simplicity in the statement of the algorithm,
while Shanin aims at simplicity in the results of its application. Each

(® A monograph [7] dealing with intuitionistic analysis along the lines
indicated in [4] and [6] is in preparation.
(% I thank A. Alexander Khoury for his translation of this paper.
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kind of simplicity has its uses, and the two kinds are mutually op-
posed.

Kleene’s r E is Je[e r E], where e r E is defined recursively by
seven simple clauses, each applying uniformly to all formulas that
have a given logical symbol (or none) outermost.

Shanin writes «The algorithm of exposition of constructive prob-
lems and the algorithm of interpretation of elementary formulas
[which together constitute s] are rather unwieldy.» In [17] he only
illustrates the action of s, for the detailed description of which
the reader is referred to the longer paper [16].

4. Kleene's objectives did not relate to the form of the formulas
r E. Therefore it was permissible in his context to simplify the for-
mulas r E by use of any accepted constructive principles of inference.

In fact, r is idempotent, not «immediately» in the sense thatr r E
is (the same formula as) E, but «essentially» in the sense that r r E
is equivalent (intuitionistically) to r E. Take the case (of primary in-
terest for the interpretation) of a closed E. By Nelson’s [14] Corol-
lary Theorem 2 p. 323, r E o E is realizable (*). So by [14] Theorem
1 p.313 (sincer E, r E o E  E), if r E is realizable, so is E; i.e.
r r E implies r E. Similarly, r E implies r r E (). (For open E, [14]
Theorem 1 is applied instead to the result of an arbitrary substitu-
tion of numerals for the free variables of E.) Another proof will be
given in § 6 below.

The proofs of such equivalences might be carried out in stated
formal systems, as a control that they use only principles of infer-
ence which are accepted as constructive, and also to define any dif-
ferences in the extensions of constructiveness.

It is known that a formal system S consisting of the intuitionistic
formal number theory (as in [5]) with the recursion equations for
a suitable finite list of additional primitive recursive functions will
suffice for formalizing the usual intuitionistically developed theory
of general and partial recursive functions (*). The original investiga-
tion in this direction was Nelson's [14]. From work in a-preliminary
stage, we believe a recent new approach to recursive functions may
offer some advantages in the formalization.

() Nelson’s [14] Theorem 1, Corollary Theorem 2, Corollary 4.1, and Cor-
ollary Theorem 5 are stated in [2] as (I), (II), (III}, and (IV), respectively (for
the notation, cf. p.120). Theorem 1 is also given with a simpler proof in
[5] Theorem 62 (a) p.504.

(® E o ' E is not always realizable’, though ' E o E is. Nevertheless, r’
is (essentially) idempotent. A proof, in our notes since September 1952, was
intended for publication in [7].
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In this short communication we must content ourselves with
proofs presented informally, although the results may be stated in
the formal language. But it should be clear that the informal proofs
can be formalized in an S of the sort described, or (where stated)
in § with Markov’s principle (§ 5 below) adjoined.

However for the (essential) idempotence of r, the formalization
of the above proof is already available in Nelson’s version S; of S.
By [14] Corollary Theorem 5 p. 365, - r (r E o E) (*). By [14] Cor-
ollary 4.1 p.361, r r E, r (rE D E)  r E. Thence by the deduction
theorem, — rr E O r E. Similarly, - rE > rr E. Thus — rr E
~ r E

5. Shanin does have an objective relating to the form of the for-
mulas s E. He finds in Lorenzen [12] ideas by which in his view
formulas containing only the logical symbols & >, —, ¥y can be
constructively understood. Under Brouwer’s interpretation of V and
3, formulas composed by applying only these two symbols to com-
ponents already constructively understood can be constructively un-
derstood (°). This gives Shanin the incentive to decipher arbitrary
formulas by formulas of this sort (which, when only 3 is applied,
he calls completely regular; when V is applied only after 3, regular).
Acceptance of «Markov’s principle» ([13], and lectures in 1952-53),
which we can formalize by the formula
M;: vex[—Vy—>Ti(e,x,y) D IyTi(e x y)],
gives him the means for doing so (7). This suggests to us to verify
that the same essentially can be done using r.

(®) We see no reason why & should not be included with the symbols Vs
3 applicable to the components.

(") Replacing Ti(e,x,y) by T,(e x,,..., %, ¥), we have formulas M, (n =
0,1, 2, ...). All these formulas M,, are implied by M;, as is —Vy—P = 3yP
for any prime formula P (expressing a primitive recursive predicate P). An
equivalent formulation in different symbolism is: — (x)A(x) — (Ex)—A(x),
A primitive recursive (Kreisel).

It was found from the beginning of the investigations of realizability in
1941 that there are cases in which the realizability of a formula was
proved only classically, including cases where what is lacking intuitionisti-
cally is this principle to infer that a value of a partial recursive function
p(x) = wyP(x,y) is defined ( 3yP(x, y)) when only the absurdity of its
indefinition (—— 3yP(x,y) or — ¥Yy—P(x,y)) is given. One class of
examples dating from February 1951 is in G. F. Rose’s [15] p.11. Cf. Re-
mark 2.5 below.

Especially in connection with the author's investigations of r’, it became
apparent to him (before he learned of Markov's [13]) that considerable inter-
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Let us write the definition of e r E in what seems now the most
convenient form, changing it from [2] p. 120 or the direct formaliza-
tion of [5] § 82 in respects immaterial for the definition of r E as
Jele r E] (°)). The bound variables are to be chosen to avoid colli-
sions (similarly later).
er Pis P (for P a prime formula).

r (A&B)is(e)gr A& (e); r B.

r(AVB)is[(e)y =08 (e)yr A] V [(e)g = 0 & (e); r B].
r{A o B)is yalar A o 3Jy[Ti(e,a,y) & U(y) r B]].

r —A is va[—a r A].

r vxA(x) is yx3y[Ti(e,x,y) & U(y) r A®)].

r 3xA(x) is (e); r A((e)y).

M b B s
o0 0000

Tueorem 1. For each formula E, the formula e r E is equivalent
to a formula e r; E in which 3 occurs only in parts of the form
yTi(t, x,y) (x and y distinct variables, t a term not containing x
or y) and NV does not occur. (Then r E is equivalent to Jele r; E].)

Proor. We define e r, E like e r E, changing three clauses (cf. [5]
*158 and § 63 (61a)).

3. ery (AVB)is[(e)g =0 D (e);r; Al & [(e)y = 0 D (e)1 r1 B].

est attaches to intuitionistic systems with this principle adjoined, because
cf a variety of results which it then (or only then) becomes possible to ob-
tain. An example recently come to light is Gédel's result that, if strong com-
pleteness of the intuitionistic predicate calculus is provable intuitionistically,
s0 is —(x)A(x) — (Ex)—A(x) for each primitive recursive A (cf. Kreisel
[9] Remark 2.1 and [10]).

Kreisel [10] shows that the principle is not provable in the existing in-
tuitionistic formal systems.

A different but related extension of intuitionistic systems, expressible by
———>(—> ¥xA(x) > 3Ix—A(x)) for x ranging over the natural numbers
but A(x) not necessarily prime, was proposed by Kuroda in [11], known to
us only through Ohnishi’s review.

() The reader who prefers may work directly from the definition of e r E
in [2] p. 120; e.g. then e r (A & B) is equivalent to e = ((e)o, (e)y) & (e)gr A
& (e); r B.

Some of the differences between the present definition and [2] p.120 are
due to Nelson [14] p.356. The equivalence of the present and former r E
(call them r E and ry E, respectively) is proved by defining for each E a pair
of primitive recursive functions {g(e) and mg(e) such that: when e realizes
the result E(Y) of substituting any numerals Y for the free variables Y of E,
Cr(e) realizesy E(Y); and when e realizes, E(Y), mg(e) realizes E(Y). For
example, Cayp(e) = (e)g) (0, Lalle))) + sg((e)g) (1Ex((e))), ta=nle) =
Aa CB({e}(nA(e))), etc. (Some similar proofs are given in the text in more
detail.)
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4. er; (A o B)is yalar; A D 3yT(e,a,y) &
Vy[Ti(e,a,y) o U(y) ry Bl
6. e r; YxA(x) is vx[3yTi(e.x,y) &
vy[Ti(e,x, ) D U(y) ry Ax)]].

CororLary 1.1. Using Markov’s principle M, (and [5] *83a), e r E
is equivalent to a formula e ry E in which V and 3 do not occur.
(Then r E is equivalent to Je[e ry E], which is completely regular.)

6. Shanin’s objection to r that it alters, without clarifying, some
simple formulas suggests to us to verify that, for a certain class of
E’s (including all regular formulas), r E is equivalent to E. The (es-
sential) idempotence of r will become an application of this result.

Lemma 2.1a. To each formula E(Y) containing free only the var-
iables Y and not containing V' or 3, there is a number ey, such that,
for each choice of matural numbers Y (with corresponding numer-
als Y):

(i) If E(Y) is realizable, then E(Y) is true.

(ii)a If E(Y) is true, then ey realizes E(Y).

Proor, by induction on the number of logical symbols in E(Y)
(briefly, E). According as E is of the form P (a prime formula), A & B,
A D B, —A, or YxA(x), let eg = 0, {es,eg), Aaep, 0, or Ax ey,
respectively. One case will suffice for illustration.

Case 4: Eis A D B. Then eg = Aa ep. (i) Suppose A(Y) o B(Y) is
realizable; say e realizes it. Suppose A(Y) is true. By the hypothesis
of the induction (ii)a, e, realizes A(Y), so {e}(es) realizes B(Y) (i.e.
in the formal language, Jy[T;(e.es,y) & U(y) r B(Y)]), and by hyp.
ind. (i), B(Y) is true. Thus A(Y) o B(Y) is true. (ii)a Suppose
A(Y) o B(Y) is true. Suppose a realizes A(Y); then by hyp. ind. (i),
A(Y) is true, so B(Y) is true, and by hyp. ind. (ii)a, eg realizes B(Y).
Thus Aa eg realizes A(Y) o B(Y).

LemMa 2.1b. To each formula E(Y) containing free only the var-
iables Y, and containing no 3, other than in parts of the form
3xP(x) with P(x) prime, and no V, there is a partial recursive func-
tion ¢g(Y) such that, for each Y (°) :

(1)  If E(Y) is realizable, then E(Y) is true.

(ii)b If E(Y) is true, then eg(Y) (is defined and) realizes E(Y).

(") In the corresponding lemma for r, W' js admitted also in parts of
the form 3aP(a) with a a function variable and P(a) prime.
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Proor, by ind. According as E(Y) is of the form P, A & B, A o B,
—A, YXA(x), or 3xP(x), let ex(Y) = 0, {es(Y), ea(Y)), Aa &5(Y),
0, Ax g5x(x, Y), or (uxP(x,Y),0) where P(x,Y) is the predicate ex-
pressed by the prime formula P(x).

Lemma 2.2. For each formula E composed without using > or ¥y
from components Cy, ..., C; (not necessarily prime), r E is equivalent
to the formula composed correspondingly from r Ci, ..., r G ().

Proor. By induction, it will suffice to verify that r (A & B),
r (AVB), r —A, and r 3JxA(x) are equivalent to r A & r B,
rAVYrB, — r A, and 3x r A(x), respectively. For example:

Case 3: E is A V B. Part 1. Assume r (A V B), ie. for some e,
[(€)g =0& (e)sr Al V[(e) * 08 (e); r Bl. Case A: (e} = 0 &
(e); r A. Then (e); r A, whence r A, whence r A V r B. Case B:
(€)g = 0 & (¢); r B. Similarly. Part 2. Assume r A V r B. Case A:
r A, ie., for some a, a r A. Then (0,a) r (A V B), sor (AV B).
Case B: r B. Similarly.

Tueorem 2. For each formula E in which no 3, other than in
parts of the form 3JxP(x) with P(x) prime, and no V lies in the scope
of any D or y:

(iii) r E is equivalent to E, ie. E(Y) is realizable if and only if
E(Y) is true.

Proor. Consider the minimal components C,, ..., C; of E which
stand inside no O or Y. These components contain no J, other
than in parts of the form 3xP(x), and no V. By Lemma 2.1a (or
Lemma 2.1b if C; contains parts 3JxP(x)), r C; is equivalent to C; (i
= 1, ..., !). But E is composed from C,, ..., C; without using > or
V. By Lemma 2.2, (iii) holds.

Remark 2.3. The condition on E in this theorem does not cover
all cases in which (iii) holds. For, if E, is equivalent intuitionistically
to E by inferences formalizable in S, then r E; is equivalent to r E,
using Nelson’s [14] Theorem 1 or formally [14] Corollary 4.2
p. 362 (*; and hence, if E satisfies the condition, r E; is equivalent
to E;. (Conversely, by Theorem 1 above, if r E; is equivalent to E,,
then E,; is equivalent to an E satisfying the condition.) Any 3J-prenex
part Jx;...X,A(Xy, ..., X,) is equivalent in S to a part 3xP(x). An E,
might have V's and 3’s which could by intuitionistic equivalences

(1) In the corresponding lemma for r’, — and 3a for a function variable
a must also be excluded.

160



be brought into 3J-prenex parts, or be removed by advance across
—'s ([5] *63, *86).

CoroLLARY 2.4, For each formula E:
(iv) r r E is equivalent fo r E.

Remark 2.5. We have stated the theorem so that applications
do not depend on accepting Markov’s principle M;. By the theorem,
M, is equivalent to r M, i.e., Markov’s principle implies, and is im-
plied by, its own realizability (by reasoning formalizable in S).

7. Shanin gives no indication in [17] that he has considered the
question whether s is «essentially» distinet from r in the sense that
s E is not always equivalent to r E. The current situation, in which
several pairwise essentially distinct interpretations have appeared
(the identical interpretation, r Kleene [2], r’ Kleene [6], Godel’s inter-
pretation [1], [8], and others in Kreisel [8]), surely makes it of interest
to know whether Shanin’s s is still another. In § 8 we shall show
that, using Markov’s principle, s is «essentially» equivalent to r, i.e.
s E is always equivalent to r E. Two preliminary difficulties face us.

First, we must arrange that s operate in the same language as r.
Shanin illustrates s starting in another language in which the terms
are built from numerals and variables by repeated use of (essen-
tially) Kleene’s universal partial recursive functions {z}(x, ..., %) (=
UuyT,(2, %y, ..., x,. ¥))) [5] § 65. His prime (or «elementary») for-
mulas are !t («t is defined») and t; = t, (complete equality [5] § 63)
where t, t;, t; are any terms. He first applies «the algorithm of ex-
position of constructive problems» within this language, and then
applies «the algorithm of interpretation of elementary formulas» to
express !t and t; = t; in a language like ours.

In Shanin’s first language of course he can express all primitive
recursive functions and predicates. The fact that he must in his first
algorithm so express even such simple predicates as = and << re-
quires in general more steps in his second algorithm. There can be
no objection from the standpoint of the interpretation to adding to
Shanin’s first language all our symbols for primitive recursive func-
tions and predicates.

Now we have a language with both his symbols and ours. But his
symbols { }( ), !, = which ours lacks can be expressed in terms
of ours. In the case of no nesting of { }( ), equivalents in ours of !t
and t; = t, are given by [5] § 63 Theorem XIX (a) fourth line and
Example 2 next page. The 3I's which these equivalents contain can
be removed as in the proof of Theorem 1 and Corollary above,
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granting Markov’s principle. Nested uses of { }( ) can be eliminated
progressively from inside, similarly to [5] § 74, but using ¥ instead
of 3 (cf. [5] *181). This essentially is Shanin’s second algorithm ().
We can thus interpret each formula in the language having both
his symbols and ours as standing for a formula in ours.

In some steps his first algorithm introduces new instances of
{ }(), !, =. We can instead pass directly to te result of their
elimination (as indeed is done in defining e r E, e r; Eor e ry E
compared to defining «e realizes E(Y)» verbally).

In brief, he applies his two algorithms successively. Instead, we
apply his second algorithm intermittently, so as to remain in our
language throughout the application of his first algorithm.

Our second preliminary difficulty is that his two algorithms are
described in detail only in [16], of which we have seen only Hey-
ting’s review. But the illustrations of their action in [17] are suffi-
cient to enable us, we believe, to set up an algorithm s which must
agree with his to within inessential details when the languages are
brought into correspondence in the manner just indicated. We use
the slight simplifications which our symbolism affords within the
spirit of his procedure.

8. Now we find four general differences between Shanin’s pro-
cedure and our r. (1) His utilizes Markov’s principle to end up in
[16], according to Heyting's review, with completely regular formu-
las (in [17] with regular formulas). (2) His in [16] leaves complete-
ly regular formulas (in [17] regular formulas) unaltered, and al-
ters regular components of irregular formulas less than r does. 3)
His handles consecutive occurrences of a given one of &, V, V, 3
in one operation (*¥). (4) His does not contract pairs (or n-tuples)
of natural numbers into single natural numbers ().

In §§ 5 and 6 we have seen the way to bridge the differences (1)
and (2), respectively. We arrange our treatment to allow the choice
(A or B) of following [16] or [17], and also the choice (a or b) of
assuming Markov’s principle or not. Shanin calls a formula normal,
if it contains no V or 3J: we call a formula seminormal, if it con-
tains no 3, except in parts of the form JxP(x) (P(x) prime), and

(') He requires an extra step because he doesn’t assume for his o, the
Property 0,(z, X;, ..., Xp, ¥)=0 & 0,(2, Xy, ..., X,, W)=0 5 y=w, which is al-
ready built into the representing function of our predicate T,(3, x,, ..., x,,, ¥).

(') For prenex V’s, this was introduced into the handling of the realizabil-
ity notion in [3] (cf. [5] pp. 503, 508).

() Is 3%...x,A(%g, ...y X,) OF IXA((X)y ..., (X),) simpler ?
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no V. Allowing seminormal instead of only normal components, we
obtain completely semiregular (semiregular) formulas instead of
completely regular (regular) ones.

Under Choice b, to each formula E we now correlate a list d of
variables d, ..., d; (! = 0) and a seminormal formula d s E. Just as
e r E expresses «e realizes E(Y)» and r E expresses «E(Y) is realiz-
able», we can read d s E as «b solve E(Y)» and s E (below) as «E(Y)
is solvablen».

1. If E is seminormal, d is empty (! = 0) and d s E is E.

In the remaining cases E shall not be seminormal. We write a
for the list of variables ay, ..., a, correlated to A, and b for the list
by, ..., b,, correlated to B.

2.IfEis Aj & ... & A, where # > 1 and none of A,, ..., A, is a

conjunction, then dis a;, ..., 0y and d s Eis a; s Ay & ... & a; 5 A,
3. If Eis Ay V... V A; where # > 1 and none of A,, ..., A,is a
disjunction, then b is u, a, ..., a; and d s E is

M=0>a5sA]&..86u=k-2>0a,_ ;54 ,]6u>k-2
D ap s ALl

4 IfEis A > B, then dis b and, if # >0, d s E is
Vﬁ[ﬂ sAD 3Y1Tﬂ(b1l a, Yl) & ... & QYmTu(bml a, an) & VYI"'ym
ITﬂ(b]' a, Y1) &..6& Tn(bm; a, }'m) ) U(Yl)l s g U(Ym) S B]] (WhICh
for m = 0 reduces to WaJa s A > s B]); butif # = 0, d s E is
sA>bsB

5. If E is —A, then d is empty and d s E is va[— a s Al

6. If E is Y¥A where x consists of #>>0 variables and A does
not begin withy, then d is a and b s E is vi[3y Te(a 2y &... &
AVnTk(@n % ¥n) & VY1 ValTe(an 2. y1) & ... & Ti(@n £ v,) D Ulyy),
+»» U(yn) s A]] (which for # = 0 reduces to Vi[s A)).

7. If E is 3%A where x consists of # > 0 variables and A does
not begin with 3, then dis x, a and d s Eis a s A.

Lemma 3.1b. To each formula E(Y) containing only the var
iables Y, there are partial recursive functions ve and by such that:

(v) If d solve E(Y), then yy(d,Y) (is defined and) realizes E(Y).

(vi) If e realizes E(Y), then dgle, Y) (is defined and) = (dy, ..., dy)
where dy, ..., d; solve E(Y).

Proor, by ind. on the number of logical symbols in E, with cases
corresponding to those in the definition of d s E.

Case 1: E is seminormal. Then d is empty and d s E is E. (v)
Let yp(Y) = sg(Y) (Lemma 2.1b). If b solve E(Y), then E(Y) is true,
and by (ii)b eg(Y) realizes E(Y). (vi) Let dz(e, Y) = 1. Suppose e
realizes E(Y). By Lemma 2.1b (i), E(Y) is true, ie. d;, ..., d;for I = 0
solve E(Y); and (for = 0) (d,....d;) = 1.
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Case 3: Eis A V ... V A, ete. Say e.g. E is (A;V Ay) V A;. Then
D is u, ag, 0y a3 etc. (v) Using [5] Theorem XX (c) p.337, let
ye®, Y) = (0, (0, ya(ay, Y)) ) if # = 0 (CasE A), = (0, (1, yas(az, Y)))
if uw=1 (Case B), = (1, ag(as, Y)) if u > 1 (Case C). Sup-
pose b solve E(Y). In Case A, then qa; solve A,(Y), so by hyp. ind.
(v), vai(ay, Y) realizes A((Y), so (0, (0,yai(q1, Y))) (= yg(d, Y)) real-
izes E(Y). The other two cases are similar. (vi) Say e.g. n, = 2,
ny = 0, n3 = 1. Let dg(e, Y) = (0, (Das((e)s, 1, Y))o (Bas((e)y, 1, ))1, 0)
if (€) = (€)1,0 = 0 (CasE A), = (1,0, 0,0) if (e)y = 0 & (e);. o > 0
(Case B), = (2, 0, 0, (das((e)y, Y))q) if (e)y = 0 (Case C). Suppose e
realizes E(Y). In Case A, (e);,; realizes A((Y) so da((e;. 1, Y) = (a1,
ag) where @y, Qg solve A1(Y), ie. (‘631((8)1! 1 Y))o, (BA]((’B)L 1 Y))]_
solve A((Y), so 0, (das((e)y. 1. Y))y, (da1((€)1, 1 Y))1, O solve E(Y).

Under Choice a, we modify the construction of d s E to make the
result always normal: first replace each part of E of the form
3xP(x) (P(x) prime) by — yx—>P(x), then apply the clauses used
under Choice b, and finally replace each resulting 3yT by — yy—T.
To distinguish this from the former b s E, we may write them b s, E
and d s, E, respectively. In Lemma 3.1a, the parameters Y are omit-
ted from the functions vy and 8g, but Markov’s principle is assumed.

We give four definitions of s E. Say E is E; V ... V E; where j > 1
and none of E;, ..., E; is a disjunction. Under DeriniTION Aa, Ab,
Ba, or Bb, s E is I3[0 s, E]. 3ID[d s, E], 304Dy s, EJ V ... V 3,
[d; s Ej], or 304[d; s, E;] V ... V 3b,[d; s, E;], respectively. Under
each definition, when b is empty, d s E as defined earlier and s E as
defined now coincide; so the notation is consistent. Respectively,
s E is (and is E when E is) completely regular, completely semi-
regular, regular, semiregular.

TueoreM 3. Assuming Markov’s principle, if Definition Aa or Ba
is chosen, for each formula E:

(vii) s E is equivalent to r E.

Proor. Under Definition Aa (Ab), the theorem is immediate from

Lemma 3.1a (3.1b). Under Definition Ba (Bb), it follows thence by
Lemma 2.2,
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