AXIOMATIZATION OF INFINITE VALUED LOGICS

J. BARKLEY ROSSER

1. The propositional calculus. The infinite valued propositional
calculus was first described in 1930 by Lukasiewicz and Tarski (see
[1]). They used the two propositional connectives C and N, construed
as generalizations of implication and negation respectively. The pro-
positions involved were to be considered as taking any of an infin-
ity of truth values, these being real numbers lying in the range 0
to 1 inclusive. Interpretations of such a situation are necessarily
unnatural, but the suggestion was that one might conceive of 0 as
the ultimate of falsehood and 1 as the ultimate of truth. With C and
N are associated the respective truth functions:

(1) c(x¥,y) = min(l, 1 — x + y)
(2) nx) =1 — x

Note that C can be thought of as embodying the notion of <,
since CPQ can have the ultimate of truth if and only if the value
assigned to P is not greater than that assigned to Q.

Lukasiewicz and Tarski defined

(3) APQ for CCPQQ
“4) KPQ for NAN PNQ

and observed that A and K can serve fairly well as generalizations
of disjunction and conjunction respectively. In particular, they satis-
fy many familiar laws. For instance, they satisfy the commutative
laws that no matter what values are assigned to P and Q, the value
of APQ is the same as that of AQP, and the value of KPQ is the
same as that of KQP. They also satisfy the associative laws that
AAPQR takes the same value as APAQR and that KKPQR takes the
same value as KPKQR. We note that N satisfies the law of double
negation, that NNP takes the same value as P; accordingly, as we
have embodied one of de Morgan's laws in the definition of K, we
readily infer the other, namely that APQ takes the same value as
NKNP NQ. We note also the familiar results that APP and KPP take’
the same value as P, and CPQ takes the same value as CNQNP.
There are also the distributive laws that KPAQR takes the same
value as AKPQKPR, and APKQR takes the same value as KAPQAPR.

However, CPCQR does not always take the same value as CKPQR,
nor does APQ always take the same value as CNPQ. This suggests
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defining B and L as alternative notions of disjunction and conjunc-
tion respectively by

(5) BPQ for CNPQ
(6) LPQ for NCPNQ.

For these also, we have the commutative and associative laws,
and de Morgan’s laws. Of the six additional distributive laws that
one could write by combining either of the disjunctions with either
of the conjunctions, only two are valid, namely that LPAQR takes
the same value as ALPQLPR, and BPKQR takes the same value as
KBPQBPR. In addition, CPCQR takes the same value as CLPQR.
Also BPNP always takes the value unity, which APNP commonly
does not do; dually, LPNP always takes the value zero, which KPNP
commonly does not do. Commonly BPP and LPP do not take the
same value as P.

There are truth functions associated with A, K, B, and L respect-
ively, namely:

(7) a(x,y) = max(x,y)

@ k(x,y) = min (x,y)

9 b(x,y) = min(l,x +y)

(10) 1(x,y) = max (0,x +y—1).

In view of the proposed interpretation of unity as the ultimate
of truth, especial interest attaches to those propositions, such as
BPNP or CPCQP, which always take the value unity regardless of
the values assigned to their constituents. A conjecture of Lukasie-
wicz, recorded in [1], asserted in effect that the propositions which
always take the value unity are just those derivable by Rule C below
from the five axiom schemes displayed below.

Rule C. If P and CPQ, then Q.

L1. CPCQP.
L2. CCPQCCQRCPR.
L3. CAPQAQP.
L4. ACPQCQP.
L5. CCNPNQCQP.
A proof of this conjecture was announced in 1935 by Wajsberg

(see [2]), but publication was delayed and the proof was lost during
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the dislocations of the war. A later, and probably quite different,
proof was published in 1958 by Rose and Rosser (see [3]), and in
1959 still another proof was published by Chang using algebraic
techniques (see [4]). Proofs of axiom scheme L4 from the others
were published in 1958 by Meredith (see [5]) and Chang (see [6]).
A proof that L4 cannot be derived from L1, L2, and L3 alone was
communicated privately to us by A.R.Turquette, and is in process
of publication. This is of interest because the first four of Lukasie-
wicz’s axiom schemes do not involve N.

There is considerable diversity of choice as to the possible sets
of truth values. Each must be a set of real numbers, infinite in num-
ber, lying in the range 0 to 1 inclusive, and closed under application
of the truth functions ¢ and n. It is clear that a proposition always
takes the value unity relative to one such set if and only if it does
so relative to all such sets. As illustrations of such sets we might
cite: all rational numbers in the range 0 to 1; all real numbers in
the range 0 to 1; all rational numbers in the range 0 to 1 having
a fractional representation whose denominator is a power of 2; all
real numbers in the range 0 to 1 differing by an integer from an
integer multiple of x.

One cannot construct all truth functions by means of ¢ and n;
indeed one clearly cannot construct a truth function whose value
will be different from 0 or 1 when the value 1 is assigned to all the
arguments. This inability to construct all truth functions is described
by saying that the calculus in terms of C and N is functionally in-
complete, A simple cardinality argument shows that any calculus
with a most a denumerable number of propositional connectives
must be functionally incomplete.

Instead of confining our attention to formulas whose value is al-
ways unity, we could inquire about the class of formulas each of
which always takes a value =#. For instance, if #=0,5, then APNP
would lie in the corresponding class. A reasonable question to ask
is for which choices of r is the corresponding class of formulas re-
cursively enumerable. As there is a non-denumerable number of
possible 7's, and only a denumerable number of recursively enumer-
able classes of formulas built from C and N, the chance of choosing
an r which corresponds to a recursively enumerable class is vanish-
ingly small in this case. Since the axiomatization of Lukasiewicz
shows that the choice » = 1 produces a recursively enumerable class,
one must conclude that this choice of r is quite special. Naturally
it is also quite special in that it is the largest possible choice of 7,
but it is not clear that there is any relationship between these two
special properties of » = 1.
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We need hardly note that the determination of a class associated
with 7 depends on both the set of propositional connectives and the
set of truth values that one has chosen.

2. Indication of proofs. The proof of Lukasiewicz’s conjecture by
Rose and Rosser involves a frightening amount of detail, but we will
attempt to give the basic idea and to make it plausible that one
could expand this into a complete proof by adjoining a sufficient
number of details.

As developed by Rose and Rosser there were originally two quite
separate phases of the proof. In the first phase, it was established
that there are finitely many axiom schemes (more than seventy
were required at first) which suffice (with Rule C). In the second
phase, these schemes were derived from Lukasiewicz’s five axiom
schemes. Many opportunities for ingenuity and dexterity in hand-
ling formulas occurred in the second phase, but there were no con-
ceptual difficulties, and so little real interest attaches to this phase.
In preparing [3], the historical origins of the proof were completely
submerged, and what is left of the pattern of the first phase is obs-
cured by the tremendous mass of details derived from the second
phase.

Conceptually, there is heavy reliance on a result of McNaughton
(see [7]). For conciseness, let us temporarily refer to a polynomial,
a + X b; x; in which @ and the b; are all integers, as a McNaughton
polynomial. The relevant result by McNaughton is the following.

Let P be a proposition built by C and N from some or all of the
basic propositions Py, ..., P,. Using xy, ..., x, as variables denoting
values of the respective P,’s, there are McNaughton polynomials f;;
and g; in the x’s such that in the j-th domain of the unit n-cube,
given by

fi; =0 i=1..,q

the value of P is given by g;. Such domains cover the entire cube.

The proof goes by induction on the number of symbols in P, and
it suffices to indicate one portion of the proof, namely where we
assume the result for P; and P, and deduce it when P is CP{P,. That
is, we assume that when

(11) f2>0 P=1, . P

holds, then the value of P,, is given by g3 (m = 1, 2). Then (see (1)
above) if (11) holds for both m = 1 and 2 and if

g —g} =0,
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take g; = 1, while if (11) holds for both m =1 and 2 and if
gl—g? 20,
take g; = 1——g},+ g?.

Although this result is metamathematical, there is a formal equi-
valent. To get this, one shows that for each McNaughton polynomial
f there is a proposition F such that F takes the value f when
0 <f<1 and otherwise F takes the value 0 or 1 according as
f<0 or f>1 This is proved by induction on the sum of the
absolute values of the coefficients appearing in f. Consequently, one
has the possibility of proving results involving F and f by induction,
which means that each such proof is reducible to a finite number
of explicit, direct steps; by having available an appropriate formal
equivalent for each of these steps, one can formalize the result in
question. As the first phase of the proof was originally conceived,
formalization of each step was commonly achieved by adjoining
a suitably chosen axiom, but in [3] one commonly cites a result
proved earlier for just this purpose.

Assuming that F;; has been chosen to go with f;; + 1 and G; to go
with g;, one can formalize McNaughton’s key result as signifying
that if one assumes each of Fi(i =1, ..., o;) in addition to Luka-
siewicz’s axioms, then G, = P is deducible, where Q = R denotes
LCQRCRQ.

The proof of this formal result follows the same inductive schema
that was used in the proof of the metamathematical result. There
are a finite number of direct steps, each of which embodies one or
more results involving a.McNaughton polynomial f and its corres-
ponding proposition F; as noted above, each proof of one of these
results is done by induction at the cost of adjoining a finite number
of axioms or having proved a finite number of formal results from
Lukasiewicz’s axioms.

If P happens to take only the value unity, then G; is CRR for
each j. Then the formal conclusion is the same in each region of
the unit n-cube. As the regions cover the cube, the corresponding
sets of F;; are exhaustive, which can be proved formally by an in-
duction based on a finite number of formal results. Thus one can
infer CRR = P, from which P itself readily follows.

We shall now summarize Chang’s algebraic proof of the complet-
eness of Lukasiewicz's axioms. This makes extensive use of a very
interesting algebraic structure, which Chang refers to as an MV-
algebra (see [8]) but which other authors generally refer to as a
Chang algebra.
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A Chang algebra is a generalization of a Boolean algebra. It is a

system (A, +, -, — 0, 1) depending on a set A which contains at
least the elements 0 and 1 and which is closed under the binary
operations + and - and the unary operation —. In the classically

careless algebraic tradition, A is commonly used alone to denote
the entire structure, which after making the definitions

Def. xVy = (xy) + ¥ Ny = (x + y)y

is required to satisfy the axioms:

Al x+y=y+x. - Al xy=y=x.

A2 x+(y+a)=(@x+y) +z. A2 x(yz) = (xy)z
A3 x+x=1, AY. xx=0.

A4 x+1=1. A4, x0=0.

A5 x+0=x. AS. xl=x.

A6 x+y=xy. Ab. xy=x+y.

A% x=gR, AS8. 0=1.

A9 xVy=1yVx. AY. xAy =yAx.

A10. xV(yVz) = (xVy)Vz. A0 xA(yAz) = (xAy)Az.

All x+ (yAz) = (x + y)A(x + 2). A1l x(yVz) = (x'y)V(x2).
A12. 0+ 1.

We have xVx = x = x Ax. The following conditions are equivalent,
and usually fail: x +x=x, xx=x, x+x=x xx=x, xVx = 1,
xAx = 0.

Each Boolean algebra is a Chang algebra. Specifically, Boolean
algebras are just those Chang algebras in which the additional
axiom x + x = x holds.

Before proceeding further with properties of Chang algebras, we
shall note the connection between the Lukasiewicz-Tarski infinite
valued propositional calculus and a Chang algebra. If on the basis
of Lukasiewicz’s axioms, one divides propositions built out of C and
N into equivalence classes with respect to the = defined above, the
resulting set of classes, A;, is a Chang algebra on the basis that the
class containing CRR is 1, the class containing NCRR is 0, + paral-
lels B, - parallels L, and — parallels N. Incidentally, V parallels A,
and A parallels K.

The fact that A;, is a Chang algebra is proved in [8] by making use
of the consequences of the Lukasiewicz axioms given in the early
part of [3]. That Ay, is a Chang algebra embodies a relationship which
parallels the relationship between the two valued propositional cal-
culus and Boolean algebra. This suggests that one might seek an
algebraic proof of te completeness of the Lukasiewicz axioms by
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paralleling the algebraic proof of completeness for the two valued
propositional calculus. In synopsis, this latter proof goes as follows.
By the Stone decomposition theorem, any Boolean algebra is isomor-
phic to a subalgebra of a direct product of simple Boolean algebras;
a simple Boolean algebra contains only the elements 0 and 1. Let us
now consider a proposition P, built up out of Py, ..., P,, which is not
deducible in the two valued propositional calculus. The equivalence
class to which it belongs is not the unity for the Boolean algebra of
equivalence classes, and hence it must have a 0 assigned to it in
one of the simple Boolean factors of the direct product decomposition.
In this factor, each of the equivalence classes containing Py, ..., P, is
assigned a value x4, ..., x, which is 0 or 1. Upon assigning these same
values to the Py, ..., P, themselves, the value 0 will be assigned to P.
By contraposition, any P which takes only the value 1 must be
provable.

We first look for the.generalization of the Stone decomposition
theorem to the infinite valued case. Let us define an ideal as a subset
I of A with the following properties:

(i Oel
(ii) f x, yel,thenx+y ¢ L
(iii) If xel and yeA, then xAy & L

This parallels the definition of an ideal in Boolean algebras. We
continue the parallel by defining a maximal ideal of A as an ideal
different from A which is not a proper subclass of any ideal different
from A. We say that A is simple if {0} is the sole maximal ideal in
A. We say that A is representable if it is isomorphic to a subalgebra
of a direct product of simple Chang algebras. By Thm. 4.9 of [8], A
is representable if and only if {0} is the intersection of all maximal
ideals.

Here the parallel with Boolean algebras ends. It is not true that
every Chang algebra is representable; an example of one which is
not representable is cited by Chang on p. 486 of [8].

There are of course non-simple Chang algebras which are repre-
sentable, for instance any direct product of simple Chang algebras.
Moreover, by appealing to the known fact of the completeness of
the infinite valued propositional calculus, and using Thm. 5.3 of [8],
one can infer that A;, is representable. If one could find a different
proof that A; is representable, one could conversely infer the com-
pleteness of the infinite valued propositional calculus without cir-
cularity, and the analogy with the two valued case would be main-
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tained. Some measure of the difficulties which might be expected
to attend the search for an alternate proof that A; is representable
can be inferred from the result (communicated privately by Chang)
that the class of representable Chang algebras is not an arithmetic
class.

The procedure used in [4] by Chang to get an algebraic proof of
completeness starts with a deeper analysis of ideals. Let us say that
an ideal I is a prime ideal if for each x and y at least one of x'y or
x+y is in 1. For Boolean algebras, prime ideals coincide with maximal
ideals. This is not the case for Chang algebras, in which maximal
ideals are prime ideals, but prime ideals need not be maximal ideals.
Indeed one of the key results of [4] is that for each Chang algebra
A, {0} is the intersection of all prime ideals; we earlier noted that
this can fail for maximal ideals.

For any ideal I, the relation R defined by

xRy iff @y) + Fx)el

is an equivalence relation. The set of equivalence classes, A/I, is
again a Chang algebra.

Def. x<y iff  xVy = y.

< is a partial ordering. Each of +, -, V, and A is monotone with
respect to <. Also x<y iff y<ux.

osxy<xAy<x <aVyzx+y<l

Usually, a Chang algebra A is not linearly ordered by <. However,
the quotient algebra A/I is linearly ordered if and only if I is a
prime ideal. Consider the direct product of all factors of the form
A/l, where I is a prime ideal. Since {0} is the intersection of all
prime ideals, it follows that A is isomorphic to a subalgebra of the
direct product

Thus we have another key result of [4], that each Chang algebra
is isomorphic to a subalgebra of a direct product of linearly ordered
Chang algebras. Thus, let P be a proposition built from Py, ..., P, by
C and N which is not derivable from the Lukasiewicz axioms, Then
the equivalence class to which it belongs in Ay, is not unity. So, look-
ing at the isomorphism of A; to a subalgebra of a direct product of
linearly ordered Chang algebras, we must find a factor A* in which
the equivalence class of P is not represented by unity. Thus in A*
the representative p* of the equivalence class of P is such that the
structure of p* is exactly similar to that of P and p*+1 holds in A*.

If A is a linearly ordered Chang algebra, we can define a closely
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related linearly ordered Abelian group as follows. Let the elements
of G be ordered pairs, (x,m), in which x is some element of A dif-
ferent from unity and = is an integer.

We define
{(x+ym+n)ifxt+ty=+1

(#.m) + (y,n) = {(x-'y,m+n+1) tx+y=1

(x,— (m+1)) if x+0

—(®m) = {(0,—m) if x=0

m=nand x <y

s < ({y.n) if
reth} (v.m) 1 {orm<n.

Then G is a linearly ordered group, with (0,0) serving as the zero
of the group.

For the A* above, we form the corresponding G*, writing ¢ for
(0,1). Then we construct an element g* of G* analogous to p* by
replacing

x+y by min(c,x +¥y)
x by c—=x
xy by max(c,x +y—c)

where the operations on the right are group operations. Then be-
cause p* ¥ 1 holds in A*, we will have

(0<c) & (0<%, <) & ... & (0<x,<c) & (g*F0)

holding in G*, where the x’s are the ultimate constituents of g*
corresponding to the constituents Py, ..., P, of P. So

(12) (0<c) & (0<%, <¢c)6...6 (0<x,<c) » (g* =¢)

is not a universal theorem of ordered Abelian groups. Since the
rational numbers constitute a universal model for linearly ordered
groups (see [9]), a counter-example for (12) can be found in the
rationals. Then we can assign the rational values x;/c to the consti-
tuents of P and it will take a value different from unity.

This shows that if P is not provable, then one can find rational
values for its constituents which will make P different from unity.
That the values of the constituents can be taken rational rather than
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real seems at first a slightly stronger result that was obtained before.
However, since the value of P is a continuous function of the values
of its constituents, and since each acceptable set of truth values is
dense in the interval 0 to 1, it follows that if in one set of truth
values one can find values for the constituents which make P dif-
ferent from unity, one can do so in each set of truth values.

The algebraic completeness proof given by Chang in [4] is non-
constructive, whereas that given by Rose and Rosser in [3] is con-
structive, in the sense that if P always takes the value unity then
from the structure of P one can proceed in a strictly determinate
way to write out a proof for P. This constructiveness is mainly theo-
retical, since if P is of reasonable length or complexity, the proof

supplied for it by the methods of Rose and Rosser will be impractic-
ably long.

3. Preliminaries for the predicate calculus. There are some other
results in the propositional calculus which are of use for the predi-
cate calculus. One such is referred to as Lemma B in [10], and we
shall adhere to this nomenclature.

Lemma B. Let P, ..., P, be a set of propositions, and let P, S,
..., 8, be propositions built out of the P; by means of C and N. Sup-
pose that no contradiction is deducible from the §; by means of
Rule C and the Lukasiewicz axiom schemes. Then P is deducible
from the S; by means of Rule C and the Lukasiewicz axiom schemes
if and only every assignment of rational truth values to the P; which
makes each §; equal to unity also makes P equal to unity.

We first note that if a class of propositions all have the value
unity, then any proposition which is deducible from the class by
Rule C also has the value unity. Thus it is immediate that if P is
deducible from the §;, then it must take the value unity whenever
they do. Now suppose that P is not deducible from the S;. If on the
basis of Lukasiewicz’s axioms plus the S; one divides the propositions
into equivalence classes with respect to =, one gets a Chang algebra
Ag; the hypothesis that no contradiction is deducible from the S; is
needed to verify A12. As in Chang's algebraic proof of completeness,
we find a linearly ordered Chang algebra A* in which a representa-
tive p* of P is different from unity while the representatives s*; of
S; are equal to unity. We generate the ordered Abelian group G*
corresponding to A* in which there is g* corresponding to p* and
t*; corresponding to s*;. Then the relation
(0<lc) & (0<x;<¢) &... 6 (0<x,<c) & (', = ¢)

&...&(t*), =c) » (g* =¢)

146



is violated in G*, and so must be violated in the rationals. This gives
us rational values of the P; such that each §; is unity but P is not.

The proof sketched above is similar to that given in [10]. It will
be noted that the proof depends on the fact that the set of S; was
finite in number. Indeed, Lemma B fails to hold if the set of §; is
allowed to be infinite, as is shown in [10]. This was disappointing at
the time it was noted, since a proof of completeness for the predicate
calculus would have been forthcoming if Lemma B should have held
for infinite classes of §; as well as for finite. This is shown in [10],
and sketched below.

Another useful result from [10] is:

Lemma A. Let Py, ... be a set of propositions, and let Sy, ... be pro-
positions built out of the P; by means of C and N. A set ¥ of the §;
can be added to Lukasiewicz's axioms without contradiction if and
only if values can be assigned to the P; such that the members of &
are all simultaneously unity.

As before, if all members of & are unity, then all propositions de-
rivable from & must be unity; thus no contradiction can be derived
from &. To prove the converse, we first restrict attention to the case
where & is finite. Suppose no contradiction is derivable from %. In
Lemma B, take P to be LP,NP,. Then P is not derivable from % and
so there must be rational values of the P; which give the value unity
to every member of &, A limiting procedure can now be used to
cover the case where ¥ is (denumerably) infinite.

In [10] a proof of Lemma A is given directly from the fact that
the Lukasiewicz axioms are complete, without having to go through
a generalization of Chang’s algebraic proof of completeness.

Because the transition from finite & to infinite & is made by a
limiting process, the proof of Lemma A only suffices to show the
existence of real (rather than rational) values of the P; that make
all members of & equal to unity. Indeed, in a private communication,
Chang has given an illustration of an infinite & for which there
exist irrational values of the P; which make all the members of &
equal to unity but for which there is no set of rational values with
the desired property. Thus the limiting procedure seems an unavoid-
able feature of the proof.

One can paraphrase Lemma A by saying that a set ¥ of proposi-
tions is satisfiable if and only if it is consistent.

4. The predicate calculus. In order to conform with the familiar
notation when quantification is present, we shall write ~P for NP,
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P>Q for CPQ, PVQ for APQ, PAQ for KPQ, P+Q for BPQ, and
P:Q for LPQ. We introduce individual variables x, y, ..., predicates
F(x), G(x, y), etc, and the existential quantifier (Ex). We define
(x)P as ~(Ex)~P. Thus, except for the additional combinations
P+Q and P'Q, the formalism is precisely that of the classical two
valued predicate calculus. We introduce the abbreviations mP and
Pm respectively for P+P+ ... +P (m summands) and P'P- ... ‘P
(m factors).

In terms of some universe U and some linearly ordered Chang al-
gebra A, we say that a set of predicate functions f(x), g(x, y) etc.,
from U to A constitute an A-assignment for a set & of formulas if
to each predicate F(x), G(x, y), etc., which appears in one of the ¥,
one of the predicate functions f(x), g(x, ¥), etc., is assigned; we
further assign members of A as values to each member of & by in-
terpreting the +, -, V, and A appearing as the same relations of A,
and the ~ as the — of A, and whenever a part (Ex) H(x) occurs in
one of the members of &, its value is taken to be the least upper
bound in A of the values of H(x) as x runs over the members of U.
It is assumed that the least upper bounds required for parts of mem-
bers of & are available, but not necessarily that least upper bounds
exist for arbitrary sets of members of A.

If we define x as n(x), x+y as b(x, y), and x'y as I(x, y), as in
(2), {9), and (10), then the rationals from 0 to 1 inclusive form a
linearly ordered Chang algebra; so also do the reals. If A is the
Chang algebra of the rationals, then rather few sets of formulas &
can have an A-assignment (unless U is finite) because the required
rational least upper bounds will commonly fail to exist. If A is the
Chang algebra of the reals, then least upper bounds exist for all
sets; thus one can take arbitrary U and arbitrary predicate functions
f(x), g(x, y), etc., from U to A and they will be an A-assignment
for an arbitrary set & provided only that each predicate appearing
in & has a predicate function assigned to it.

We say that a formula is valid if it takes the value unity for each
A-assignment for which A is the set of reals from 0 to 1. We say
that a formula is strongly valid if it takes the value unity for each
A-assignment over each linearly ordered Chang algebra A with res-
pect to which it has an A-assignment.

The concepts of A-assignment and strong validity are due to Chang,
and are introduced in [14].

Because of the great convenience of the reals for forming A-assign-
ments, it is natural to make a study of valid formulas. Another con-
sideration which justifies giving primary attention to the valid for-
mulas is the fact, shown by Rutledge in Sect.II. 4 of [12], that the
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set of valid formulas is the intersection of the sets of formulas which
are valid in each finite valued predicate calculus, as defined in [11].

By analogy with the two-valued case, we seek an axiomatization
which characterizes the set of valid formulas. A consistent set of
axiom schemes and rules would be called complete if one could
derive from them exactly the set of valid formulas. It has just been
discovered that there is no complete set with a finite or recursively
enumerable set of rules and a finite or recursively enumerable set
of axioms (see Sect. 6 below) but in the meantime considerable work
of interest was done in the search for such a set. A set of axioms
was proposed by Mrs. Hay in [10], where a weak completeness proof
was given to the effect that if a formula P is valid then there is an
m such that mP can be proved. Mr. L. P. Belluce, a pupil of Chang,
has issued an abstract (see [13]) announcing a stronger completeness
result for Mrs. Hay's axioms, namely that if P is valid, then P+P
is provable, In both [10] and [13] are given extensions of Lemma A
to the predicate calculus, to the effect that a set & can be added to
Mrs. Hay’s set of axioms without a contradiction if and only if
there is a universe U and an A-assignment from U to the set of
reals from 0 to 1 such that each member of & takes the value unity.
This is just the generalization of the Lowenheim-Skolem theorem to
the infinite valued case. Whereas one could easily infer completeness
from this in the two valued case, there is no way to do this in the
infinite valued case. In [10], it is inferred that if P never takes the
value 0, then there is an m such that mP is provable. In [13], it is
inferred that if the value of P is always greater than one half, then
P+P is provable.

In [12], a study is made of the monadic predicate calculus, in
which only a single individual variable occurs. For this case a set
of axiom schemes is presented and a proof of completeness is given.
The methods are algebraic in character, and considerably generalize
the methods of [4].

In [14], it is announced that every strongly valid formula is pro-
vable from the set of axioms given by Mrs. Hay in [10].

§. Indication of techniques. The complications of [12] are so se-
vere that it seems futile to say more about this development than
we have already. However, the developments of [10] are sufficiently
similar to the Henkin-Hasenjaeger proof of the Lowenheim-Skolem
theorem for the two valued case that it seems worthwhile indicating
where the differences lie for the infinite valued case.

Mrs. Hay uses Rule C and the rule, «If P, then (x)P». For her
axiom schemes she uses first the Lukasiewicz schemes (with L4 de-
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leted, since it is dependent) and the following quantification axiom
schemes:

Hi. (((Ex)P):(Ex)P)> (Ex)(PP)

H2. F(y, y)D(Ex)F(x, y), with suitable prohibitions to prevent con-
fusion of bound variables,

H3. (Ex) F(x) D (Ey) F(y).

H4. (x)(PoQ)>((Ex)PDQ) if there are no free occurrences of x

in Q.

HS5. (Po(Ex)Q)>(Ex)(P>oQ) if there are no free occurrences of
x in P.

Of these axiom schemes, all but H1 are familiar from two valued
quantification theory. Indeed, with some aid at crucial spots from
the Lukasiewicz axioms, they are just the axioms needed to carry
through the initial steps of the Henkin-Hasenjaeger proof.

Specifically, let & be a consistent set of closed formulas. We adjoin
«constants» a;, as, ... without sacrificing consistency. Then we enum-
erate the formulas with a single free variable, F;(x;), and adjoin
axioms

(13) (Ex;) F; (x;) D Fi(a;).

Again, we do not lose consistency.

Because we now have (Ex;) Fi(x;) equivalent to F;(a;), we can for
each formula with no free variables find an equivalent formula with
no variables at all. Let 9 be the class of all provable formulas with
neither free or bound variables. These have as constituents (F(a,),
G(a,, b,), etc., and by Lemma A we can find real values for the
constituents such that each member of & takes the value unity. If we
take U to consist of ay, as, ..., then the determinations given for F(a,),
G(a,, by), etc., define predicate functions from U to A. Again, because
of the equivalence of (E;) (F;(x;) and Fi(a;), we can conclude that
this choice of U and predicate functions is an A-assignment which
gives the value unity to all provable closed formulas, and hence to
each member of &.

Analogously to the two valued case, one can conclude that if a
formula P never takes the value 0, then a contradiction will ensue
if ~P be added to Mrs. Hay's axioms. Unlike the two valued case,
the inconsistency of ~P merely lets one infer mP for some m.

If Lemma B had been available for infinite classes of S;, then the
completeness of Mrs. Hay’s axiom schemes could have been infer-
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red by some modification of the argument given above. Suppose
that R is a closed formula which is not provable. Then the addition
of the constants and the axioms (13) would leave R unprovable.
Consequently, R*, the formula with no bound or free variables which
is equivalent to R, is not deducible from &. Then Lemma B (if the
necessary strong form were available) would provide a determination
which gives the value unity to all members of & and a smaller
value to R*, and hence to R.

The methods used in [13] and [14] are generalizations of the com-
pleteness proof of Rasiowa and Sikorski (see [15]). A key result of
[15] is the following lemma, which is valid for the two valued case.

Lemma R-S. In a Boolean algebra B, let x==1. Let b;=%;b;; be a
denumerable set of infinite sums which exist in B. Then there is a
proper maximal ideal J containing x which preserves each of the
given sums, in the sense that for each i, b; is in J if and only if
b;; is in J for each j.

In attempting to generalize this to a Chang algebra, there is first
of all the question if we should require J to be a maximal ideal or
a prime ideal, since these are not the same for Chang algebras.
There seems no good reason for believing that the lemma holds
generally in either case.

For the intended application, we do not need the lemma in its
full strenght. Because Mrs. Hay includes Rule C and the Lukasiewicz
axioms, the equivalence classes for the predicate calculus with res-
pect to = form a Chang algebra, Ay. We require Lemma R-S only
for this special Chang algebra. Moreover, the set of sums which are
to be preserved by J are those in which b;; is the equivalence class of
Fi(y;) and b; is the equivalence class of (Ey) Fi(y).

For these, by an argument not unlike that used to show that one
can add all the axioms (13) without introducing a contradiction
(we let y; play the role of the a; of (13)), it is possible to prove
useful special cases of Lemwma R-S. In [14], it is announced that if
a #+0, then one can find a prime ideal J in Ay, preserving sums
of the sort noted above, such that a is not in J. Because one has
here a prime ideal rather than a maximal ideal, one does not con-
clude that every valid formula is provable, but only that every
strongly valid formula is provable.

In [13] it is announced that if a is of infinite order in Ay (that is,
there is no finite integer m for which ma = 1), then one can find
a proper maximal ideal J in Apg, preserving sums of the sort noted
above, such that a is in J. From this, the general line of argument
is as follows. Suppose P+P not provable. Then, if p is the equi-
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valence class of P in Ag, p+p=1. So by Thm. 3.9 of [8], pp is of
infinite order. Then by the lemma noted above, we find a proper
maximal ideal J which preserves sums as required and contains
p'p. Then, by the results of [8], Ag/] is simple and locally finite.
So the corresponding linearly ordered Abelian group is Archimed-
ean, and thus is isomorphic to a subset of the reals. This enables us
to define an A-assignment to the reals in which PP has the value
0. So P must have a value <0.5.

By contraposition, if P always has a value greater than one half
(and so, a fortiori, if P is valid), then P+P is provable.

From this, one can infer the result implied by Belluce in [13] that
P is valid if and only if P+P" is provable for each #. For if each
of P+P* is provable, then each can take only the value unity, whence
we conclude that P can take only the value unity. Conversely sup-
pose P+P" not provable for some »#. Then P*+ P* is not provable,
and so there is an A-assignment in which P* takes a value < 0.5.
Then P+1, and so P is not valid.

6. The non-axiomatizability of the infinite valued predicate cal-
culus. Just recently we received a private communication from
Specker announcing that a student of his, B. Scarpellini, has proved
that the set of valid formulas is not recursively enumerable. We have
no details as to the method of proof. This shows that Mrs. Hay’s
set of axiom schemes is not complete, and indeed that no recursively
enumerable set of axioms with the same rules can be complete.

One can obtain completeness by use of an infinitary type of rule,
as noted by Belluce in [13], specifically the rule:

If each of P+P" then P.

We noted above why this would enable one to prove every valid
formula, and only such.

This indicates that while one cannot characterize the set of valid
formulas by means of a recursive predicate preceded merely by an
existential quantifier, one can do so if one precedes the existential
quantifier by a universal quantifier.

In view of the incompleteness of the polyadic predicate calculus,
the result of Rutledge in [12] showing the completeness of the mon-
adic predicate calculus takes on exceptional interest.

One can also conclude that there must be valid formulas which
are not strongly valid. One waits with interest to see whether Scar-
pellini’s proof will provide a means of exhibiting such a formula.
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