THE INFERENTIAL APPROACH TO LOGICAL CALCULUS
(part I)

HASKELL B. CURRY

1. Introduction. In his doctoral thesis [ULS] (') Gentzen presented
a new approach to the logical calculus whose central characteristic
was that it laid great emphasis on inferential rules which seemed to
flow naturally from meanings as intuitively conceived. It is approp-
riate to call this mode of approach to logic the inferential approach.

This approach has been a major interest of Canon Feys, as is
shown by his publications on the subject (). Because of its bearing
on some basic methodological questions, it has also a close connec-
tion with combinatory logic. During the past academic year I gave
at the Pennsylvania State University a course of lectures principally
devoted to it; and in these lectures several innovations, contributed
by various persons, were included. These reasons make it seem a
suitable subject for a paper in this collection. The present paper
contain a summary account of the inferential systems with special
emphasis on features which go beyond or modify the presentations I
have previously made. The detailed proofs of the results are too
voluminous for presentation here. Eventually I hope to publish the
lectures in book form; the reader is referred to that book, or to
original sources in the literature, for more details (*).

It will be appropriate, before we begin, to make a few remarks
about the historical background.

Gentzen’s work was preceded by a series of papers of Paul Hertz.
In a paper [EUA] written before his thesis, Gentzen refers explicitly
to Hertz; and shows that a certain rule, which Hertz called «Syll»,
could be reduced to a simpler rule which Gentzen called «Cut»
(Schnitt). There is also enough resemblance between Gentzen's work
and that of Herbrand [RTD] to lead one to infer that there was
some influence of the latter on the former.

At about the same time as Gentzen, Jaskowski presented, in his

(1) For explanation of the letters in bracklets see the Bibliography (to ap-
pear at the end of the second part of this paper).

(® See his [MRD], [NCM], [TFD].

(®) See [FML]. For the previous treatments see [TFD] and other papers
listed in the Bibliography.
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[RSF] (*), a closely related system. From statements made by the
author one gathers that his work was inspired by Lukasiewicz; Jas-
kowski states that similar ideas were presented by Lukasiewicz as
far back as 1927. Jaskowski gave inferential formulations of the
classical propositional algebra, of the «positive» (in the present term-
inology «absolute») propositional algebra, of the algebra of Kolmo-
gorov (%), of an «extended theory of deduction» allied to protothetics,
and of a form of predicate calculus which does not presuppose that
the domain of individuals be nonvoid. The rules are of the type which
Gentzen called N-rules (here called T-rules) with a technique for
expressing them in linear form somewhat similar to that used by
Fitch [SLg]; there is nothing analogous to Gentzen’s L-rules. The
latter are the principal concern of this paper, which thus owes but
little to Jaskowski and his predecessors.

Shortly after his thesis appeared Gentzen published his famous
proof of the consistency of arithmetic using a transfinite induction
up to the first gnumber (*). This sensational result should have
drawn attention to his inferential methods; but it seemed to do
rather the reverse. At any rate, as World War II was drawing to a
close, and Gentzen went to his death in a concentration camp in
Prague, the thesis was relatively little known. I understand that
Kleene, who has since contributed greatly to the elaboration of Gent-
zen systems, only rediscovered them about 1947.

In recent years, however, there has been a considerable develop-
ment of Gentzen’s ideas. Space limitations do not permit me to dis-
cuss all these developments or even to mention the names of the
authors. However the principal publications which have come to
my attention and bear directly on the subject of this paper are listed
in the Bibliography.

This paper does not attempt to handle, even summarily, all the
questions connected with the inferential approach. The discussion
will be limited to questions which are 1) strictly constructive, 2) re-
lated to first order predicate calculus and to a formulation rather
closely allied to Gentzen’s own. Even then there is some selection.

(*) A resumé of this paper is given in Feys [NCM].

(5) See Kolmogorov [PTN]. I have never seen this paper. Jaskowski treats
only the part in which the only operations are implication and negation.
From the statements made by him and also Feys [NCM], Church [IML] note
210, it appears that this part is exactly the same as the corresponding part
of the «minimal logic» of Johansson [MKR].

(®) The original presentation was made in Gentzen [WFR], a revised
presentation in his [NFW].
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However, I shall go into some detail in regard to questions of moti-
vation.

2. Preliminary analysis. In the inferential systems the axioms,
which, for reasons shortly to be explained, are called prime state-
ments, play a relatively minor role; the essential content of the
system is contained in the inferential (or deductive) rules. Except
for a few rather trivial rules of a special nature, these rules are
associated with the separate operations; and those which are so
associated with a particular operation express the meaning of that
operation. In order to show in what sense this is true, I shall discuss
here in some detail the motivation back of the rules with particular
emphasis on implication. The motivation is quite different from that
given by either Gentzen or Jaskowski, who were interested in setting
up logical calculus as an end in itself; but is similar to those
of Hertz and Lorenzen, and it is in some respects an improvement
over that found in [TFD]. The main point is that the logical calculus
is regarded as an instrument in the broader problem of methodology
of formal reasoning.

Before we start on this, it is necessary to explain that I am using
the terms «sentence», «statement», and «proposition» in somewhat
peculiar senses. A sentence is a string of words in the language,
called the U-language, which is actually being used, such that the
string constitutes a sentence in the sense of ordinary grammar. Each
such sentence expresses a statement, and this is capable of being under-
stood by the users of the U-language. When, in a particular formal
context, we talk about certain objects which, when that formal con-
text is interpreted, become statements, I shall call these objects pro-
positions. Thus strings of symbols in an object language are propo-
sitions provided they correspond to sentences in the interpreted object
language ("). The distinction between statements and sentences is
left to the readers’ philosophy, and, within limits, it is not important
what sort of philosophy he adopts; but that between either of these
and a proposition is quite important. Propositions are named in the
U-language; statements are asserted, denied, believed, and under-
stood; and although the U-language does possess devices for talking
about its statements, that is quite different from the formal type of
consideration which characterizes propositions.

() From this point of view the U-language is what is often called the
«metalanguage». But the terms «U-language» and «metalanguage» are not
synonymous. In some semantical studies the U-language is the metalan-
guage, in others it is the metametalanguage.
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We shall be concerned with statements which relate to some un-
specified underlying formal theory or system . Here by theory I
mean a set or class € of statements, called the elementary statements
of &, within which there is distinguished in some objective way
the subclass of true elementary statements, or elementary theorems
of &. We shall suppose the class € is a definite class, in that given
any statement, we can determine effectively whether or not it be-
longs to €. It is not, however, necessary that there be an effective
process for deciding whether or not an elementary statement is true.
A deductive theory is one in which the elementary theorems form an
inductive class (°). The basis is a class ! of axioms; from these the
elementary theorems are generated by certain deductive rules R.
Ordinarily it is required that the class 2 be definite and that the
rules ;¢ be such that an alleged proof can be effectively checked;
in such a case we can say that the deductive theory is effectively
generated or formal.

A (formal) theory becomes a (formal) system when there is a de-
finite class of formal objects and one or more predicates such that
every elementary statement is to the effect that such and such a
predicate applies to such and such an ordered sequence of formal
objects. The formal objects may be taken as strings of letters in an
object language, or as generated from certain atoms by operations,
so as to form structures like branched trees rather than strings. The
predicate may be binary, like «=» or « <»; ternary like betweenness;
or unary, in which case we have elementary statements which say
that such and such a formal object belongs to a certain class.

We are now concerned with the following question. Suppose that
from the elementary statements of & we form new statements by
means of the ordinary propositional connectives of the U-language.
How are these new statements to be interpreted ? Is it possible to
explain their meaning in a strictly constructive way without doing
violence to our intuitions ?

Ag stated we shall consider this question with reference to impli-
cation. If A and B are elementary statements of a deductive theory
&, what is meant by the statement

1) If A, then B?

It is useless to say that this means that either A is false or B is true;

() Le. a class defined by a fundamental inductive definition in the sense
of Kleene [IMM] p. 258.
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for in general there is no constructive meaning to be attached to
the falsity of an elementary statement — in the present context, as
we shall see, falsity is more difficult to define semantically than is
implication. There are two principal ways by which a constructive
meaning can be attached to (1). In the first way, we form a theory
&’ by adjoining A to & as a new axiom; then (1) is true just when
B is a theorem of &'. I shall call this the deducibility interpretation
of (1). A second method, which Lorenzen has emphasized, is to form
a system &” by adjoining a deductive rule (which has, in this case,
only one instance) permitting the passage from A to B; then (1) is
true if every theorem of & is also a theorem of &. Following Lo-
renzen’s terminology I shall call this second interpretation the ad-
missibility (Zuldssigkeit) interpretation. These two interpretations are
not the only ones possible; both have the property that (1) is true
wherever B is itself a theorem of &. The first interpretation is adopt-
ed here. The second interpretation is more general than the first;
but it is curious that Lorenzen, starting with it, arrives at exactly
the same logical calculus as that which is described later. Relative
to a vacuous system & the two interpretations are equivalent.

These considerations answer the question about (1) if A and B
are elementary. But what if they are not ? How should one explain,
for instance:

If (if A then B), then (if C, then A and E) ?

Statements formed in this way from elementary statements of &
I shall call the compound statements of (or relative to) &; we are
concerned with finding an interpretation for them.

At this point let us proceed to a higher stage of formalization. Let
us form a system L(&) whose formal objects are called propositions.
We shall interpret these propositions as compound statements of &;
but of course this interpretation is to be used only as motivation for
setting up the systems, and has nothing to do with the formal devel-
opments themselves. In discussing interpretations however, it will
be permissible to identify propositions with the statements which
interpret them. Then in L(&) the «logical connectives» become opera-
tions; the statement (1) becomes a proposition which we write

A DB.
The elementary statements of L(&) will be of the form
2) Ay .o Ay |— B,

with m >0 (for =0 we have simply a blank on the left). We shall
interpret this as meaning that B is, in some sense to be explained
later, derivable from A, ..., Ap.
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The first explanation of this derivability is the existence of a tree
constructed according to certain rules, which are here called the
T-rules (*). I shall call such a tree a T-proof. The nodes of a T-proof
for (2) are propositions; the bottom node is B, and the top nodes
consist of «suppositions», which are either instances of Ay, ..., Ap,
or are cancelled in the course of the construction. The rules state
under what conditions on the portion of the tree above a given
node a proposition may be put at that node, and, in certain cases,
suppositions cancelled. There are two rules for each operation; one
for introduction and one for elimination. The former allows a new
proposition formed with the operation to be placed at the node; the
latter allows a proposition formed by the operation and placed im-
mediately above the node to be broken up, and, perhaps, disappear. The
rules for introduction are determined by the meaning of the opera-
tions in question. Thus the rule Pi for introduction of ASB says
that a sufficient condition for putting ADB at a given node is that
the part of the T-proof above that node be a T-proof with B at the
bottom; then all occurrences of A among the suppositions may be
cancelled. If we think of the T-proof above B as a derivation of B
from the theory generated by its uncancelled top nodes, this is evi-
dently in accord with the meaning of (1) as presented in the third
preceding paragraph.

Now it is a well recognized principle that the meaning of a notion
is determined by the conditions under which it can be introduced
into discourse. The consequences which can be inferred from its pre-
sence are, in fact, determined by these conditions. This, in essence,
is Lorenzen’s «principle of inversion». According to it the T-rules
for elimination are consequences, in a certain sense, of those for in-
troduction. For example, suppose A>SB appears at a certain node,
and that that node is neither a supposition nor obtained by elimina-
tion. That means that the part of the T-proof above it must be a
T-proof ending in B, with A possibly appearing as a supposition.
In that case we cannot expect to draw any inference unless A is also
derivable; then we can infer B by putting the derivation of A over
each occurrence of A as a supposition. If we accept the principle
that we can make the same inferences from A>B no matter how
it is obtained that we can when it is first introduced, then the rule
Pe for elimination of ADB is

(*) Gentzen called these the N-rules. The change from «N» to «T» was
made in [TFD] on account of possible confusion of «N» with negation, The
rules of Jaskowski are essentially T-rules.
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ADB A
Pe —D

B,

in other words, modus ponens.

These rules state the cases in which (2) holds if all the operations
considered are implications. However, if we stop at this point it is
evident that the system L(G) is a schematic system in the sense of
[CLg] p.37. To get a truly deductive system we must pass to the
L-rules of Gentzen. This will require certain preliminary formula-
tions, which are the same for all operations, and rules which char-
acterize the separate operations.

For the preliminary formulation we note the following: 1°, the
statement (2) is true when m=1 and B is the same as A;, or m=0
and B an axiom of &; 2°, the truth of (2) is independent of the order
and multiplicity of the A;; 3°, if (2) is true, then it remains true if
additional propositions are adjoined on the left; and 4°, given fixed
Ay, ..., A, the class of propositions B for which (2) holds is closed
with respect to the deductive rules of &. Here the property 1° can
be guaranteed by taking the indicated statements as axioms of L(5);
I call these prime statements to distinguish them from the axioms
of & itself. The properties 2° and 3° are guaranteed by rules called
structural rules. As for property 4° a special rule will guarantee that
also,

This brings us to the rules, called «operational rules» (**), which
are related to the operations. In accordance with the principle of
the third preceding paragraph, it suffices to consider rules for in-
troducing the logical operations into (2). There are two kinds of
introduction, on the left and on the right. In accordance with the
intended interpretation the rules on the right are the same, except
for a change in notation, as for a T-rule, the cancellation of a suppo-
sition being indicated by simply omitting it in the conclusion. Thus
the rule P* for introducing A>B on the right is (here ¥ is an ar-
bitrary sequence of propositions):

For the introduction of ADB on the left we have to ask under what
circumstances we can have a T-proof ending in C and starting with
a supposition A D B. Inspection of the argument given above for Pe

(1% Gentzen called them «logical rules».
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shows that such a supposition cannot be eliminated unless A is al-
ready present, and in that case the supposition will be replaced
by B. Thus the rule for introduction of implication on the left is

E|l—A % B|—C
X A>B|—C

*P

3. Formulation of the singular systems. The formulation of the
basic «structural» rules and of the rules for implication has been
discussed in some detail in § 2. We turn now to consider the rules
for other operations. This will be done in rather less detail.

The other positive operations; /\ (conjunction) and V (alternation)
cause no particular difficulty. By methods analogous to those of
§ 2 we have the rules

) ZAl-C  %B|-cC El—4Aa XZ|—B
£AANB|—C ZAAB|—C ¥|l—ANB
£ A|l-Cc %B|—-Cc  %|—A4 %|—B

%, AV B|—C ¥|—AVB ~E|—AVB

Note that *A and V* each consist of two separate rules; A* and *V
are single rules with two premises each.

If we adjoin these rules to those considered in § 2 we have a sys-
tem which has been called LA, or the singular absolute system. The
T-rules for it form the system TA. Let us call a proposition A such
that

(4) —a

is true in LA,, a thesis of LA; this term will also be used for other
systems. The totality of these theses of LA constitute the absolute
propositional algebra. This turns out to be identical with the «posi-
tive Logik» of Hilbert and Bernays. The formulation given by them
in [GLM.I] as well as suitable modifications of it will be referred
to as HA. We thus have an interpretation of HA in terms of formal
deducibility.

The absolute algebra HA does not contain all classically valid
propositions which involve only the operations >, A, V. Let us call
the latter HC. Then it is well known that Peirce’s law, viz.

(5) |—A > B o A o A
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is not valid in HA; and that the adjunction of (5) to HA gives a for-
mulation of HC. If we adjoin to LA, the rule

¥, A>DB|—A
X|— A,

Px

we have a system LC; in which, it turns out, the theses are precisely
those for which the corresponding statement is derivable in HC.
These theses constitute the classical propositional algebra. It has a
corresponding T-form which will be called TC.

We turn now to consider the adjunction of negation and quan-
tification. These may be adjoined either to LA or LC. In the former
case we call the system absolutely based, in the later classically
based.

In regard to negation, it has been remarked already that it is not
in general a constructive concept (''). Proving constructively the
falsity of a single elementary statement would demonstrate the con-
sistency of &, and this is not in general possible. There are however,
at least two ways of introducing a constructive notion analogous
to negation. The first of these is to define a statement as false for &
in case its adjunction to the axioms for & will make the latter in-
consistent (in the sense that every elementary statement is derivable);
this kind of negation is called absurdity ('*). Again we may consider
theories & in which, in addition to the axioms there are counter-
axioms, and we say that a statement is false if a counteraxiom
can be derived from it. This kind of negation is called refutability (**).
With each kind of negation there is associated a definition of con-
sistency and completeness; those associated with absurdity are Post
consistency and completeness. Completeness with respect to any
sort of negation is equivalent to a law of excluded middle; if we
postulate that law we say we have a complete negation.

Returning now to higher formalization, we express the negation
operation, following the practice of the intuitionists, by the prefix
«—>». We may also introduce a fixed, perhaps fictitious, counter-

(*1) At least not in the strictest sense of constructiveness.

(1?) The term was introduced by the intuitionists; indeed their system,
L], is precisely that obtained by basing absurdity on LA.
« (18) The term is taken from Carnap [ISm]. (In his [LSL] the word had a
different sense.) Lukasiewicz [ASS] uses the term «rejection».
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axiom F. Such an F can be defined as the negation of any absolute
thesis; conversely negation can be defined in terms of F thus:

(6) —~A=ADF.

We may take F,—, or both together (with (6) as a theorem) as
primitives, giving F, N, and FN-formulations respectively. The re-
lations between these are rather complex (**); and I shall consider
here only the F-formulation. Then refutability requires only (6) and,

if there are additional counteraxioms Fy, F,, ..., the rule
F* % “_ Fi
X|—F.

This will not occur if & is void. Absurdity can be expressed by the
rule

Fj E
% ||— A,

and completeness by the rule

XL—A|—A
X||—A

Nx

which, in view of (6), is a special case of Px. This gives us five
kinds of negation (the subscript 1 being understood in each case), as
follows:

LM, minimal negation (**), or absolute refutability. Formed as
above stated with (6), and, possibly, F*.

L], intuitionistic negation, or absolute absurdity. Formed by ad-
joining Fj to LM.

LD, strict negation (**), or complete refutability. Formed by ad-
joining Nx to LM.

(4) An account of the relations between the F and N formulations was
attempted in [DNF]. Essential changes will be made in [FML].

(¥¥) The name comes from Johansson [MKR]. For relation to Kolmogorov
[PTN] see footnote 5.

(1% A term introduced in [TFD], I am not too happy about it, but I' can
think of no better one.
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LE, classical refutability (*’). Formed by adjoining Px to LM; or
(6) and, possibly, F*, to LC. It includes LD.

LK, classical negation, or complete absurdity. Formed by adjoining

Nx and Fj to LM or Fj to LD; in either case Px is redundant.

Of all these systems Gentzen considered explicitly only L] and LK.

We turn now to quantification. This will only arise when the un-
derlying theory & is itself a system. The system L(®&) will then
contain two kinds of objects: terms, which represent the formal ob-
jects of & itself, and propositions, which represent its (compound
or elementary) statements. If we think of (2) as stating that B is a
thesis of some extension, then we have now to think of extensions
formed by adjoining terms as well as propositions. Let a be the set
of terms adjoined, then in order to make o explicit we can write
(2) in the form

o) Ay .., Ay | o |— B.

The set o will be called the range of (7). A lot of fuss has to be made
over collision of bound variables, substitution etc. But in the long
run we end up with rules as follows:

%, A() « |— B H,%la,b[—A(b)
%, (Vx)A(x) o |— B %|a |— (Vx)A(x)

*

s % A®)|a.b |— B 5 ¥la |— A®)
%, (Hx)A(x) |« |— B %|a |— (Fx)A(x)

Here ¢ is any term, and b is a variable, called the characteristic va-
riable, which does not otherwise occur. These rules may be adjoined
to any of the systems previously discussed; the new system is indi-
cated by affixing an asterisk, so that, for example, from LA we have
LA*. In such systems the rules for operations other than quantifica-
tion — these will be called the algebraic rules — hold for an ar-
bitrary range which is the same in all premises and conclusion. Sys-
tems with only algebraic rules will be called algebraic systems;
other systems, in contradistinction, will be called quantified systems.

4. Multiple formulations.. Gentzen presented, besides the system
L], a system LK, (**) which differed from L], solely in the fact that

(") Due to Kripke [SLE].
(1%) Gentzen called these systems L] and LK respectively.
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sequences of more than one constituent were allowed on the right.
The elementary statements of the new system are those of the form

(8) A, ... Ap|o|—By, ..., B,

No commitment is made to a specific interpretation for (8); but if
we interpret it in terms of the usual two-valued truth tables with 1
for truth and 0 for falsity, regarding it as true when some A; has
the value 0 or some B; has the value 1, and as false if all A; have
the value 1 and all B; the value 0, then the rules of LK, preserve
truth. The system LK is called the multiple form of LK, It is devel-
oped by a formal analogy. The rules allow arbitrary changes in the
order and multiplicity, and also the adjunction of new propositions,
on the right as well as on the left. The special rules for the opera-
tion admit the adjunction of arbitrary elements on the right; these
are carried down unchanged from the premises to the conclusion.
The theses of LK,,, viz. those propositions A for which (4) is deriv-
able in LK, turn out to be the same as those for LK;.

If this transformation is applied to LA; we get a system in which
Px is redundant. The theses of the system are the same as those of
HC. It is therefore appropriate to call it LC,, or the multiple form
of LC.

This raises the question of whether or not there is a system LA,
constituting a multiple formulation of LA, whereas LA, is a sin-
gular formulation of LA. This question was, so far as I know, first
raised in [NRG]. As shown there, if we interpret (8) as

Ay, ... Ay|la|— B, VB,V ... VB,

(with association, preferably, to the right), then we have an inter-
pretation of the multiple system in the singular. The only rule of
LC,, which is not valid when so translated into LA;* is P*. Thus if
we restrict P* to be singular, allowing all other rules to be mul-
tiple, we have a formulation LA,,.

In a similar way we can form multiple forms of all the systems
considered in § 3. For those systems which are classically based there
is no restriction on the multiple rules; but for those which are ab-
solutely based the rules P* and II* must be restricted to be sin-
gular (**). All these systems are equivalent to the corresponding sin-
gular systems (*).

(**) In the case of what are called below the special rules the situation
is a little complex. If N* is taken as an independent rule (see below) it
must also be singular,

(**) These multiple systems were, so far as I know, first seriously studied
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Thus for all the systems we have singular and multiple L-forms.
One can formulate also T-forms and H-forms (*'). All of the different
forms of the same system appear to be equivalent (*2).

The whole set of rules, for both singular and multiple cases, will
now be exhibited in a table. In this X, 9), 3 represent sequences of
propositions; X is arbitrary, 9) is restricted to be singular in all sin-
gular cases, and 3 is void in all singular cases, but ) and 3 are
both arbitrary in the multiple cases. The notation

(9) AI’ vary Am - B

indicates that A, ..., A;,, B are elementary and that there is a deduc-
tive rule in & allowing us to infer B whenever A, ..., A,, are verified.

PRIME STATEMENTS:

(P1) A|— A

(p2) ||— A where A is an axiom of &.

STRUCTURAL RULES.

*C  If ¥’ is a permutation of %. C* If 9) is a permutation of ).
¥I-9 =9
L) -9
W % AA|—9 W X |— A A3
£Al-9 E|—a3
K X9 K X8
%EAI—-9 Xl—a 3

by Maehara, In his [DIL] he gave the essentials of a proof that L], is equi-
valent to LJ,. See note (22).

(®!) There are also lattice forms. When quantifiers are present we are
then lead to the cylindric algebras of Tarski, the polyadic algebras of Hal-
mos, etc. These go beyond the scope of the present article.

(*) This has been shown for all the cases mentioned here except LD (and,
of course, LD*), for which the question is not quite settled. See § 6.
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OPERATIONAL RULES.

Ao B|—9

‘A LAY £B[|—9

£ AAB|—9

vV RAl-9%B|—9
%L AVE|—9

‘N X|— A3
X, — A|—F 3
*IT  If ¢ is a term

X AD [a|—9
X (Vo)A®) | |— 9

*3  If b is a variable which
does not occur in %, )

X A®) |0, b |— 9
% (Ax)A@x) | a |[— 9

SPECIAL RULES

—* If A, ..., A, — B, then
A3 i=1,2 ..m
X[— B 3

X ANB[—9

Pi’

At

% Al—B3

% |—A D> B3

I__“_'f_ A 3%~ B3
X|—AAB3

%43 %|—B3

T|-AVB 3 X|—AVB 3

N % A F 3

l-.[.

2*

%, — A |~ 3§

If b is a variable which
does not occur in %, §
X | a.b |— A®), 3

x| a|— (Vx)A(x), 3

If £ is a term

X|a,b|— A@, 3
X | al— (@0A@), 3

(*®) For the F-formulation, which is the only one here considered, the
rules *N* are special cases of *P*. In the FN-formulation they would have
to be stated as separate rules; in the N-formulation the indicated «F»s
would be omitted on the right. However, for these formulations some chan-

ges would have to be made in the text.
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Px %A:)B||--A3

Z |- A 3
Nx % —A|— A 3§
T|— 4 3
E* %H_ FI’B
Z|—F 3
Fji 2%|—F3
X[— A3

In connection with these rules the following terminology is useful.
Let us call the individual occurrences of the propositions Ay,..., Ay, B
in (7) or of Ay, ..., Ay, By, ....B, in (8) the constituents (**) of that
statement. Constituents which are instances of the same proposition
will be said to be alike. We may speak also of the constituents of
an inference or a proof. Among the constituents of an inference there
are these kinds. Those in the sequences X, 9), or 3 occur in matching
sets, one in each of the premises and one in the conclusion, so that
these constituents pass unchanged, so to speak, through the infer-
ence; these will be called parametric constituents, or parameters (**).
Each operational rule introduces a new constituent, formed by the
operation in question, into the conclusion; this constituent will be
called the principal constituent, and the constituent(s) in the pre-
mises representing the components from which it is formed will
be called the subaliern constituents or subalterns. It il also convenient
to define a relation of ancestor and descendant (**) among the con-
stituents in a proof; each parametric constituent in the conclusion
is descendant of all those that match it in the premises, and the
principal constituent is descendant of each of the subalterns; the
relation of descendant is then extended so as to be transitive, and
that of ancestor is defined to be its converse. We may also speak
of parametric ancestors or descendants in an obvious sense (*').

() In an article of this kind it is not possible to be absolutely precise
in regard to the distinction between a constituent and the propositions of
which it is an occurrence.

(2%) The term «parameter», properly speaking, refers to the set of mat-
ching parametric constituents.

(*) Due to Kleene [PIG].

(®") These terms can be extended to the structural rules *K* and *W#¥,
and also to the special rules, in an obvious sense. However in *K* there
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5. Modified formulations. The formulation given in §4 will be
called Formulation I. We shall consider here a number of variants
of this formulation.

In Formulation I it is required that the parameters be alike in all
the premises. If we modify the rules with more than one premise
so that each may have its own X and ) (or J), all of these having
mates in the conclusion, we get a formulation called Formulation II.
Thus the rule A* would become

X% —A3 %X[—B 3
X, % [[— A A B 3 B

In Formulation II there is a one-one correspondence, such that cor-
responding constituents are alike, between the parametric consti-
tuents of the conclusion and those of the premises collectively.

Ketonen, in 1944, introduced an important modification. We have
seen that *A consists of two separate rules. Ketonen proposed to
replace these by the single rule

%A B|—9
X, AAB||—9.

- In the multiple cases one can make an analogous change in V*. Ke-
tonen also proposed to modify *P so as to read

X|—A9 %B[—9
X, A>B|—9.

This again is only possible in the multiple systems. I shall indicate
that Ketonen modifications have been made to the extent compa-
tible with the singularity restrictions by adding a «K», e.g. Formula-
tion. IK.

The advantage of the Ketonen modifications is that they make
certain of the rules invertible, in the sense that the inference from
the conclusion to any premise is admissible (*). Then Ketonen

are no subalterns; in *W* the subalterns are like the principal constituent,
and in Px one subaltern is like the principal constituent and the other con-
tains a replica of it as component, etc.

(%¥) Cf. § 2. This does not imply that one can derive the premises from the
conclusion by application of the rules.
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showed that all operational rules of Formulation IK are invertible
in LK,; and from this fact he was able to prove the completeness
of LK with extraordinary elegance (*). In LA, the invertibility holds
with respect to the right premise but not with respect to the left. The
invertibility can be restored by introducing into the left premise a
constituent, called the quasi-principal constituent (**), which is like
the principal constituent, so that the rule becomes

TADB|—AY %B|—9
%, AD>B|[—9.

The rules II* and *¥ are invertible in all systems, but not the
rules £* and *II; these two can be made invertible by adjoining a
quasi-principal constituent (which is necessary even in LK,). The
same is true for certain special rules. The formulation obtained from
Formulation IK by introducing quasi-principal constituents as just
indicated will be called Formulation III. In it all operational rules
are invertible (*).

Certain restrictions can be made, without loss of generality, in re-
gard to the prime statements (pl) and the rules *K*. The former can
be restricted to the case that A is elementary. The latter can be res-
tricted in all singular systems, and also in all cassically based sys-
tems, to be made initially (*). In the absolutely based multiple sys-
tems this is true on the left; but on the right one must admit also
the possibility of an application immediately following a rule which
is restricted to be singular on the right (e.g. P*, IT*). Likewise the
principal constituent can be restricted to one which is elementary, or
cannot introduced by other means.

The rules *W* can be shown to be redundant if in all cases where
a rule other than *K* is not invertible with respect to a given premise

(*®) These results hold also for LC, LE in virtue of the discussion in § 6.

(*) This is a special kind of subaltern.

(*) I have purposely not treated the special rules at length. The rules Px
and Nx are invertible since the premise can be obtained from the conclusion
by *K. In the systems with K*, we can replace Fj by a rule for dropping F
when there is some other constituent on the right; such a rule is invertible
by K*. The rules |—*,F* are not invertible, and need to be modified as stated
in Formulation III.

(3%) This is equivalent to admitting as prime statements all those of form
(7) or (8) in which a constituent on the left is like one on the right, and omit-
ting *K* altogether.
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a quasi-principal constituent (**) occurs in that premise (). Thus in
formulation III the rules *W* are redundant, and can be omitted al-
together.

Even if *W* are redundant, it may be necessary to have two or
more occurrences of the same proposition on the same side of a
statement. In order to exclude this possibility, and thus to allow the
sides of a sentence (8) to be interpreted as classes of propositions, it
is sufficient to adjoin rules obtained from those already present by
allowing the same constituent to serve two or more times as a sub-
altern, or as a subaltern and a parameter. The following are exam-
ples (*):

From Ketonen *A % Al—9
LANA|-9
% A|— B

From P*

£, A|—A > B

The formulation so obtained from Formulation III will be called
Formulation IV.

The formulations are all equivalent to one another in all cases
where *K* and *W* are admissible (whether explicitly assumed or
not); but if this is not the case there may be essential differences
between them.

() The presence of such a quasi-principal constituent does not always
make the rule invertible; e.g. in the original form of *P.

(¥) In the case of singular systems this has to be done only on the left.

(%) The examples given in [TFD] (Remark 5 on p.37) were ftrivial in that
the conclusion was obtained by *C* from one premise. This is true in most
cases. Of those given here, the second is such that the conclusion can be
obtained by the ordinary P* and *K. This is typical. It requires uses of
*K* transcending the restrictions discussed above.

(to be continued)

The Pennsylvania State University H. B. Curry
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