ON DEFINITIONS IN FORMAL SYSTEMS (1)

HaskeLL B. CURRY

1. INTRODUCTION

The traditional conception of a definition, in relation to a mathematical
system, is that it is a convention in regard to the use of language. The idea
is to introduce a new symbol or symbol-combination, which we may call
the definiendum, with the stipulation that it is to stand for another symbol
combination, the definiens, whose meaning is already known in terms of
certain given symbols. It is intended that, given any combination of the symbols,
new and old, which is correctly formed, one can by successive replacements
of definienda by their corresponding definientia reduce the given expression
to one which is properly formed in terms of the given symbols; this latter
expression, which we may call the ultimate definiens of the given one, is suppo-
sed to always exist and be unique. The definitions are considered a kind of
shorthand which can, theoretically at least, be dispensed with altogether;
it has no relation to the content of the theory being considered, but only to
the language in which it is expressed.

On trouble with this idea is that we do not confine ourselves to making
definitions in this simple fashion. We define not single symbol combinations,
but whole schemes or families of them, and it is often convenient to call the
whole scheme of equations a definition. Thus in a Peano arithmetic we call
the schemes

(¢)) x+0=x
x+y=x+y

where the accent indicates the successor function and the letters x, y are intuitive
variables for natural numbers, a definition of addition; and it is indeed true
that the infinite set of equations formed by substituting numerals (i.e. expressions
in the series 0, 07, 0”/,...) for ‘x* and *y” in (1) in all possible ways constitute
a definition of addition in the sense that, given any expression formed from “0’,
the accent, ‘+’, and parentheses in the usual fashion, there is a unique numeral
which can be obtained from the expression by a series of steps, each of which
is a replacement of the left side of one of those equations by the corresponding

(¥ This article presents, in somewhat abbreviated form, the content
of [*], § 2E (numbers in brackets refer to the Bibliography). There is, however,
enough of the background to make the present discussion self-contained,
so far as explanations of ideas are concerned; but for formal proofs it will
be necessary to refer to [*]. In certain matters of detail some improvements
of presentation have been made.
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right side. But, if we generalize the notion of definition in the way suggested
by this example, it is not clear under what circumstances the series of repla-
cements has a unique termination. Indeed it is known that the question of
whether a set of equations in one or more new numerical functions satisfies
these conditions is undecidable (¢). Thus the problem of what constitutes
a definition under these general circumstances is far from being a trivial matter.

The example (1) illustrates another fact about definitions. We cannot
say that they are matters of language to be distinguished sharply from content.
Indeed, there are those who maintain that formal reasoning, as such, has
nothing to do with content anyway — that it is a// a matter of language — and
therefore it is impossible to make a sharp distinction between definitions
and other sorts of conventions. Even if one does not subscribe to this point
of view, one must agree that the conventions (1) are something more than
abbreviations. In fact it is more natural to think of them as postulates for an
extension of Peano arithmetic with addition as a new operation. This point
of view, whereby a definition is an extension of the underlying system, is a
fruitful one, which includes the notion of abbreviation as a special case. It
will form the basis of the discussion given here.

2. FORMAL SYSTEMS

Up to the present I have been rather vague as to the nature of the «mathe-
matical system» with which we are supposed to be dealing. Before we go further
it will be necessary to clarify this concept (%)

There are now in common use two sorts of deductive system which do
not presuppose logic. I shall call these syntactical systems and formal systems
respectively. These two sorts have much in common. I shall begin by describing
their common features; I shall comment on the differences and interrelations
between them.

To begin with, both sorts of system generate their theorems from certain
initial ones (the axioms) by explicitly stated rules. This is done in such a way
that an alleged process of derivation (proof) can be effectively checked. To
this end, a class of elementary statements is first specified : this is done by
postulating certain predicates, and certain objects; then an elementary state-
ment is one ascribing one of these predicates to an ordered sequence of the
proper number of objects. The predicates may be unary (%), like that symbolized

(*) It is well known (see e.g., [']) that there is no recursive method for
determining whether a set of equations of a certain form constitutes a recursive
definition of a function. This may be regarded as refinements of the statement
made in the text. Cf. « Church’s thesis » in [*], § 62.

(® Cf.[4 pp. 14-28; also [*].

() For certain objections to the word ,singulary’, used to replace ,unary’
by Quine, Carnap, Church and some others, see my review of [‘] in Journal
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by the Frege prefix ¢ -°, Hilbert’s «ist beweisbar» or Huntington’s «is in T»;
binary, like the equality or partial ordering of algebraic systems or the converti-
bility relation of Church’s A-conversion; or of still higher degree like the
betweenness relation (degree three), separation of point pairs (degree four),
or the sense-class equality of Veblen and Young (degree six). The axioms
must be a subclass of these elementary statements such that it is effectively
decidable whether or not an elementary statement is an axiom; and the rules
must be such that it is effectively decidable whether or not an alleged application
of the rule is correct. All of these relationships must, of course, be vapressed
in language; the language used for the actual statement of the necessary con-
ventions is called the U-language (¥). The U-language must then contain
means of forming names fot the objects; and it must contain verbs of the
proper sort for expressing the predicates.

So much for the ways in which the two sorts of systems are alike. They
differ in the nature of the objects.

In a syntactical system the objects are the words (or expressions) of a
suitable «object language» which may or may not be part of the U-language.
That is, there is specified a (finite or infinite) set («alphabet») of symbols or
letters; the words are then the linear strings of these letters. The words are
thus generated from the letters by concatenation; since this operation is asso-
ciative a word can generally be constructed in more than one way. If all words
are admissible the system will be called pantactic; if the system can be so
formulated that only certain «well-formed» words (wefs) need be taken account
of, it will be called eutactic; if certain modes of construction can be singled
out so that for any (word or) wef there is a unique construction (%) using such
modes it will be called rectonic (7).

In a formal system, on the other hand, it is simply specified that the
objects, called obs, are generated from certain primitive ones (the aroms) by
certain operations. In the most rigorous form of this conception (the only
one considered here) there is a list of the atoms and operations, with a definite

of the Franklin Institute, vol. 264, pp. 244-246 (1957), especially p. 246. There
is, unfortunately, an error in that review, in that the word at the end of the
next to the last line of the left hand column of p.246 should be ,second’ rather
than first’. The arguments in that review do, I maintain, demolish the claim
of ,singulary’ to be « etymologically more correct ». However the real objection
to ,singulary’ is that it is too much like ,singular’, particularly when one tries
to translate it into French (cf.[*], p. 252). The word ,singular’, however,
might be acceptable; but to a person accustomed to English, rather than to
Latin, it appears parallel to ,dual’ rather than ,binary’. (An other correction
is that the statement, made in the review, that the footnotes were numbered
serially is incorrect, and remarks on that point should be revised).

(*) See ['] pp. 25, 36.

(*) A construction may be exhibited in the form of a tree. When it is

said that the construction is unique, it is meant that this tree is unique. Cf.
[, §2B.
(") See[?].

107



positive integer assigned to each of the latter as its degree; it is then understood
that the obs are an inductive class whose basic elements are the atoms, and
such that the application of an operation of degree k to an ordered sequence
of k obs is an ob. There are no restrictions on the applicability of the operations
other than that the number of arguments must be as stated. It is important
that obs constructed in different ways are considered as distinct obs. Nothing
is said about the nature of the obs. However there is no objection to assigning
a unique concrete object to each ob; if this is done in such a way that distinct
objects are assigned to distinct obs, we say that we have a representation of
the formal system in the set of objects concerned. A formal system cannot
be conceived without a representation, since the names of the obs in the U-lan-
guage constitute a particular representation, called a presentation. But the
representation has no effect on the truth of the theorems.

Now the essential difference between these two conceptions does not
lie in the fact that a syntactical system is linguistic whereas a formal system
is not. In fact it has been pointed out, e.g. by Carnap and Lorenzen, that the
letters of a syntactical system do not have to be letters in the ordinary sense;
they may be stones or other physical objects, or even sounds. Again any formal
system can be represented in terms of symbols; so represented the formal
system is a tectonic syntactical system. The characteristic feature of a formal
system is rather the uniqueness of construction of its obs. A tectonic system
also has this property. Thus a tectonic system can always be regarded as a
represented formal system. But since the representation is irrelevant, a tectonic
system is a formal system as it stands. This is true of most systems of interest
in logic and mathematics which, as syntactical systems, are both eutactic and
tectonic. Other syntactical systems can be reduced to tectonic systems, and
hence to formal systems, by formalizing the notion of concatenation.

A formal system has a certain advantage of emphasis. In such a system
we do not specify a representation because it is irrelevant. Although a formal
system cannot be communicated without a presentation (and it may be necessary
to prove that the presentation is tectonic), it is natural to conceive of the
presentation as accidental, and a formal system as invariant with respect
to changes in (re)presentation. We can thus say that two tectonic systems
of quite different character represent the same formal system. For example
the fukasiewicz prefixed-operator form of the classical propositional calculus
is quite different from the one with binary infixes and parentheses; but from
the standpoint of formal systems no change has been made. For this and
other, more subjective, reasons the notion of formal system is preferred here.
However, in the study of definitions it may help understanding to think of
a formal system as symbolically represented. The reader may want to invent
an object language, and to replace the word ob by the word ‘wef’.

The above considerations require some modification when deductive
rules are taken into account. This is irrelevant here, because definitions depend
only on the obs, not what is said about them.
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3. DEFINITIONAL EXTENSIONS

We turn now to the formulation of definitions in the generalized
sense of § 1. We suppose that we have a formal system &,. To form a definition
over &, we form an extension &, of &, by adding new operations (and
atoms), and formulating a relation of definitional reduction such thai, under
certain circumstances, an ob of &, reduces to an ob of &, calledits ultimate
definiens. If there are predicates in &, the corresponding elementary statements
are to be true in &, if and only if the statements formed by replacing all obs
appearing as major arguments by their ultimate definientia are true in &,.
This last possibility, however, causes no particular trouble; and it is here
ignored.

Before making this more precise, we shall make some preliminary conven-
tions. We shall extend the term «operation» to include the atoms as operations
of degree zero. Obs and operations of &, will be described as basic, while
those of &, which are not in &, will be called new. Basic obs will be denoted
by letters at the beginning of the alphabet; while letters toward the end will
designate obs of &, which may be new or basic. An ob of the form.
D (A,, ..., Ay) where® is a new operation of degree n > 0 will be called simple

A definitional extension over 60 is now a formal system constituted as
follows :

1. The operations of &, consist of those of &, together with certain
new operations. The obs of &, are then generated by these operations as
explained in the definition of a formal system in § 2.

2. The elementary statements of &, are of the form

(2 XDy

Thus ‘D’ is a binary infix for expressing the new predicate of &,. In (2),
X will be called the definiendum and Y the definiens.
3. The axioms of &, consist of all instances of the reflexive law (o) (i.e.

(2) where Y is the same as X), together with a set & of defining axioms each
of which is of the form

3 b, ..., 4,) D Y,

where® is a new operation. Thus the definiendum of a defining axiom is always
simple. The axioms may be given by means of axiom schemes, as in (1); but
then the defining axioms are the individual instances of the schemes, not
the schemes themselves. The definitional extension will be said to be proper
if no two defining axioms have the same definiendum.

4. The single rule of &,, called Rd, is

XDY ®@4,..,A0) DB
XDy,

@

where Y’ is the result of replacing a component® (A,, .... Ay)of ¥ by B. We
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call an application of Rd a contraction. If (4) is such an application, we call
the left premise the major premise, the right premise the minor premise, and
X = Y’ the conclusion; also we call (4) a contraction on® and the particular
instance of @ which is eliminated the contracted operation. Note that the con-
tracted operation must be new, and the minor premise must have a simple
definiendum and a basic definiens.

4, DEFINITIONAL REDUCTIONS

A dervivation from (g) and & by means of Rd alone will be called a
(definitional) reduction; if it terminates in (2) it will be called a reduction
from X to ¥. An ob Y for which (2) holds will be called a definiens of X; an
ultimate definiens is a basic ob A4 such that

)] xXDA

A reduction terminating in such a statement will be called complete.

A definitional reduction can be exhibited in the form of a tree in the
usual fashion. We agree that above any junction (node) of such a tree the
major premise shall be on the left and the minor premise on the right. The
branch furthest to the left will then be called the principal branch, and the
node at its head the leading node, Now the statements corresponding to nodes
on the principal branch will all have the same definiendum, viz. that of the
leading node; we call this the definiendum of the reduction. We can modify
the tree by omitting the definienda throughout, provided that at the top of
each branch where there was originally an axiom we write an additional node
giving the definiendum of that axiom. In such a case the leading node will
always be the definiendum of some axiom; the nodes corresponding to minor
premises will always be basic, and each will be the terminus of a partial reduc-
tion having a simple definiendum.

Next we observe that it is unnecessary to repeat the definiendum in case
the axiom used is an instance of (g). For if the X in such an axiom is basic
the axiom cannot appear as either a major or minor premise; and if the X is
simple it can appear only as major premise for which the conclusion is the
same as the minor premise. In the latter case the major premise is superfluous.
We can therefore suppose, without explicit indication, that where the definien-
dum of a reduction is simple the axiom is a defining axiom with that definiendum
and the next node below as definiens; in any other case the axiom is an instance
of (), and the definiens of that axiom can be omitted.

With this understanding we conclude the (2) holds if and only if there
is a tree of one or more nodes with X as definiendum and Y as terminating
node. Tt follows at once that B is reflexive and transitive. It further has follow-
ing replacement property: Suppose (2) holds, andlet ¥ by obtained from U by
replacing a component X of U by Y. Then it is clear that the same replacements
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which reduce X to ¥ will also reduce U to V. Thus D is the monotone quasi-
ordering generated by E.

We now consider a standard form to which any reduction can be trans-
formed. Let XX be a reduction from X to ¥, and let Y be® (Y, ..., ¥), n = 0,
® an operation not necessarily new. If @ is basic, or if # > 0 and some argu-
ment Y} is new, the next step on the principal branch cannot be a contraction
on®. It must therefore be a replacement inside some argument Y. Now the
replacements inside the different ¥} are clearly permutable with one another.
We can therefore require that reductions inside the various Y3 be made in
order of increasing k. A reduction satisfying this condition throughout (i.e. for
all partial reductions), and such that no new operation is left uncontracted
when its turn comes, will be called a srandard reduction. In such a reduction
the contracted operation is always the first operation (in the above ordering)
which satisfies the restrictions of Rd. Then it is clear that there will be a com-
plete reduction of X if and only if there is a standard complete reduction.

Suppose we return to the situation of the preceding paragraph with all ¥
basic, so that Y is ® (4., ..., 4p). If @ is basic so is ¥, N is complete, and ¥ is
an ultimate definiens of X. If @ is new, the next step on the principal branch
must be an application of Rd in which the minor premise will be that stated
in (4). We must then find a partial reduction establishing that minor premise.
Such a partial reduction must have @ (4,, ..., 4,) as definiendum. This must
correspond to a defining axiom. If there is no such defining axiom we say
the reduction is blocked. If there is more than one there is a choice at this point.
Otherwise the axiom is unique.

It follows from this that in a proper definitional extension a standard
reduction is an algorithm in the sense of Markov (revised for a formal system
rather than a syntactical one). It may terminate in a basic ob, which is then
the unique ultimate definiens of JX; it may be blocked; or it may continue
indefinitely.

5. COMPLETE DEFINITIONS

If @ is a new operation of a definitional extension &, we shall say that &,
defines @ completely just when there is a unique ultimate definiens for every
O (A, ..., An); it defines® univalently just when there is at most one ultimate
definiens for every ® (A4, ..., Am). It defines @ explicitly (°) in terms of cer-
tain ¥, ..., wm if ®@ does not appear in the definiens of any defining axiom
and the axioms with @ in the definiendum contain no new operations other
than y,, ..., ¥m.

These terms apply no matter how the axioms of & may be expressed.

(*) See[*], pp. 4ff., and [’] p. 4.
(°) The definition given here is a correction of that given in[1].
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If the axioms are given by a finite number of axiom schemes containing intuitive
variables only for basic obs, then we replace ‘complete’ (‘univalent’) by ‘re-
cursive’ (‘partial recursive’). For the case where &, is a formulation of arithme-
tic with the successor function as sole operation, these terms are in agreement
with those given by Kleene (*°). The restriction to finite axiom schemes is
important for his work, and affects his arithmetization. A generalization of
his whole theory of recursive definitions to the case of a general &, is not
immediately available, because there is no simple analogue of the u-fonction.
However one can, presumably, reduce the general case to the numerical one
by the device of arithmetization.

The argument of § 4 shows that a proper definitional extension defines
every one of its new operations univalently. The converse is not true. In fact
let &, be the above system of arithmetic, and let & be the axiom and axiom
scheme

®©O)DO
(®
®x) D D(x)

These give a partial recursive definition of ®; but it is not proper since the

first axiom and the axiom scheme when x is 0 are two different axioms
for @ (0).

6. DEFINITIONAL IDENTITY

We have seen in § 4 that the relation I is a monotone quasi-ordering
generated by €. We now consider the monotone equivalence generated by
(. For this relation we use the customary binary infix ,=", Its postulates
are (g), €, Rd, transitivity (1) and symmetry (g) it then clearly has the repla-
cement property Rp. It seems proper to call this relation definitional identity.

Let us first look at the example (6). It is clear that the only value of x for
which @ (x) has an ultimate definiens is x = 0. On the other hand the statement

dx)=0

is true for every numeral x.

This strange result is due to the fact that (6) are defining axioms for an
improper definitional extension. For a proper definitional extension it may
be shown, by reasonably elementary means, that if

¥ X=Y

holds and either X or ¥ have an ultimate definiens, then they both have the

same ultimate definiens; by slightly more advanced methods, similar to those
(*%) See [*].
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used by Church and Rosser in proving a famous theorem of combinatory
logic, it can be shown that whenever (7) holds X and Y will have a common
definiens.

The failure of these properties in the case of improper definitional exten-
sions raises the question of whether such systems are entitled to be called
definitions. At least one must be on one’s guard in connection with them.
It is noteworthy that Church has always been careful to use a notation, viz.
the infix ,—> ’ in making definitions (i.e. defining axioms or axiom schemes).

All this naturally raises the question of whether an arbitrary definitional
extension can be made proper by omitting axioms in a constructively deter-
mined way. This is trivial in the case of (6). In the recursive case one can
imagine a machine which will carry out all alternatives simultaneously and
accepts only the alternative which first leads to a result, In the partial recursive
or univalent case I do not know the answer, and I suspect the question is
undecidable.

7. RELATIVE DEFINITIONS

In practice one makes definitions on top of previous definitions. Having
given an extension &, with defining axioms &,, one may wish to introduce
additional new operations with additional defining axioms &,. The extension
&, defined in this way is not, however, a definitional extension of &, as basic
system. The basic obs of the new system must be the same as for &,, viz.
obs of &,.

Nevertheless we may compare the extension &, with another extension &,
of infinitary character in which the axioms consist of these of &, together
with those assigning an ultimate definiens to every simple ob of &,. This
leads to theorems similar to the lemmas given by Kleene in support of his
Theorem II. For the formulation and proof of these theorems, as well as for
other developments of the theory of definition, the reader is referred else-
where (21).

(Regu le 10-5-1958) Pennsylvania State University
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