FORMALIZATION IN BIOLOGY

J. H. WoODGER

The word ‘formalization’ seems to be used in two senses — a narrow
and a wide sense. In my monograph The Technique of Theory Construction
(1939) I distinguished four processes : (i) formalization; (ii) axiomatization;
(iii) logical analysis; and (iv) symbolization. By ‘formalization’ I meant the
process of constructing the metatheory of a scientific theory; this is formalization
in the narrower or stricter sense. But the word also seems to be used in a
much wider sense which includes at least axiomatization and symbolization.
On the present occasion I shall assume that formalization in the wider sense
is intended; because, at least as far as biology is concerned, there appears
to be no need for formalization in the narrower sense.

Anyone who attempts to build a bridge between natural science on the
one hand and logic and mathematics on the other is always confronted with
difficult problems of exposition. In talking to his colleagues in natural science
(especially in the biological sciences) he will be compelled to spend much
time in explaining the mathematics, leaving little for the natural science. In
talking to mathematicians it will be necessary for him to explain the natural
science, leaving little time for the mathematics,

When I was invited to take part in a colloquium on scientific applications
of mathematical logic held in Paris in August 1952 I decided that it would
be better to try to deal with logical and mathematical problems which have
arisen from such applications rather than with biological problems themselves.
On the present occasion I shall try to interest you in a problem of biological
definition, for the solution of which the theory of sets offers a suitable founda-
tion. The biological topic concerned is not one which involves a great deal
of specialized knowledge, but is at the same time one of general interest and
importance because it is not confined to pure biology but occurs also in medi-
cine, sociology and criminology. I refer to the antithesis between heredity
and environment, and the problem of making clear the distinction between
them, a problem to which I have devoted a good deal of time and attention.
In biological books we read of hereditary (or inborn) characters and acquired
characters. We are told that hereditary characters are those which are ‘due
to heredity” and acquired characters are those which are ‘due to environment®,
In order to deal with the problem within set-theory I shall refer to the classes
of lives which are specified by reference to these characters and I shall call
such classes phenotypes, — a word which is already in use in genetics. A pheno-
type is a sub-set of a species which is specified by reference to some observation
or test other than a breeding experiment. A phenotype is a natural kind or
sort in the sense that if P is a phenotype and x is anything which is nor a member
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of P, then P U {x} is not a phenotype.Genetics is primarily an affair of parents
and offspring. It is assumed that each parent makes a physical contribution —
called a gamete — towards each offspring. The two gametes unite to form
a fertilized egg or zygote. This zygote begins to develop in its environment
and if this environment is favourable and the zygote healthy the process of
development continues until the adult condition is reached and the offspring
may itself become a parent. What develops out of a zygote in a given environ-
ment is here called a life.

When people say that a certain phenotype (or character characterizing
members of that phenotype) is ‘due to heredity’ they appear to mean ‘dependent
upon the kind of egg from which development of members of that phenotype
begins’; and when they say ‘due to environment’ they appear to mean ‘de-
pendent upon the kind of environment in which such development occurs’.

Now I assume that no phenotype can be hereditary in the sense of being
dependent only on the kind of egg involved, because there are some environ-
ments in which no egg will develop, such as boiling oil or strong acid; clearly
environments of these kinds must be excluded. Similarly I assume that no
phenotype can be acquired in the sense of depending only on the Kind of
environment. Because a phenotype, members of which appear in an environ-
ment of a given kind irrespective of the kind of egg, from which development
begins, would be as extraordinary as one, members of which appear irrespective
of the kind of environment in which development takes place. Thus we expect
a healthy child who is brought up in a home in which English is the principal
language spoken, to speak English, irrespective of whether the child’s parents
came from China or Peru. But we do not expect the dogs and cats which are
reared in such homes to speak English.

But if all this is admitted then it is clear that we cannot distinguish hereditary
phenotypes from acquired phenotypes in the traditional way, since we are
driven to admit that in both cases the kind of egg and the kind of environment
is involved. In the first case to emphasize the kind of egg but must at the same
time exclude certain kinds of environment. In the second case we want to
emphasize the kind of environment but must exclude certain kinds of egg.
How is this to be done? I propose to do it in the following way: First I define
the notion of a genetical system. Next I explain what T mean by saying that
a phenotype is environmentally insensitive in a genetical system. Finally I define
an hereditary (or inborn) phenotype as one which is environmentally insensitive
in every genetical system of which it is a member. Similarly, I define what is
meant by saying that a phenotype is zygotically insensitive in a genetical system
and then I define an acquired phenotype as one which is zygotically insensitive
in every genetical system of which it is a member.

The chief difficulty is to define ‘genctical system’ and my first task must
ibe to explain the notions by means of which this difficulty is to be overcome.
I must mention first that the definitions to be given here all belong to an axiom
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system an exposition of which cannot be given here (). The primitives are
functors which have variables whose values are individuals associated with
them, but on the present occasion I must begin my exposition with the help
of functors of higher type.

I use

Lg(2)

to denote the set of all lives which develop in an environment belonging to
the set E from a zygote (fertilized egg) belonging to the set Z. For genetical
purposes it is frequently necessary to specify sets of zygotes by reference to the
kinds of gametes (or parental contributions) which have united to form them.
I therefore use

U@,B)

to denote the set of all zygotes which are formed by the union of a gamete
belonging to the set « with one belonging to  (small Greek letters are here
used as variables which have classes of gametes as their values). It frequently
happens that we want to substitute expressions of this form for the variable ‘Z’
in expressions like ‘Lz (Z)’. In this way the notation can become rather cum-
bersome and it is then worth while to introduce an abbreviation by definition,
thus I put:

<D (“s ﬁs E)’ for ‘LE (U((X., 3))’
Next I use

G (X)

to denote the class of all gametes which are formed by members of the class X of
lives when they develop in members of the classe E of environments. Here
again it frequently happens that we want to substitute expressions like «DN(«,B,EY’
for the X’ in ‘G g(X)’ and abbreviation again becomes desirable. I therefore put

‘G (o, B, E)’ for Gg (D (,B, E))’

We are now ready to undertake the rather difficult task of defining ‘genetical
system’. This is difficult not so much because the notion itself is difficult but
because, like all definitions, this one must be so formulated as to exclude
certain possibilities but not others, and in the present state of the analysis
it is not easy to foresee all that may be required of the new notion of genetical
system. What I have to offer therefore is not presented as something that is
in any sense final. The suitability of a definition, like that of an axiom, can
only be decided when its consequences have been well worked out, and I
cannot claim to have carried this process very far with the definition of ‘genetical
system’. In what follows the definition is reached by a succession of steps.

(*) An account of this system will be published with the other contribu-
tions to an international symposium on the Axiomatic Method which was
held at the University of California, Berkeley, December 26, 1957 to January
4, 1958.
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1. A genetical set is any set consisting of a finite number of pair-wise
mutually exclusive phenotypes, a finite number of classes of gametes and a
finite number of classes of environments. It will be assumed that the classes
which are members of a genetical set are all non-empty and finite.

2. Since a genetical set S does not include classes of zygotes among its
members, we cannot speak of the zygote classes belonging to such a set, but
we can speak of the classes of zygotes associated with it, meaning thereby
the set of all classes Z of zygotes such that for some gamete classes o and [
belonging to S we have Z = U («, B).

3. A genetical set S is developmentally closed if and only if for any gamete
classes o and 3 belonging to S ,and any environment class X belonging to S,
we have either D (a, 8, K) = A, or there exists a phenotype P belonging
to .S such that D (o, B, K) £ A and D (&, B, K) C P.

4. A genetical set S is genetically closed if and only if for any gamete
classes o and P and any environment classes K belonging to S such that
Do, B,K)£ A, we have G (2, B, K) == A and G (=, B, K) C g, where g is
the sum of all the gamete classes in S.

5. A genetical set S is phenotypically connected if and only if, for every
phenotype P belonging to S, there exist gamete casses o and 3 of S, and an
environment class K of § such that D («, 3, K) = A and D («, 3, K) C P.

6. Finally, a genetical system is a genetical set which is phenotypically
connected and both developmentally and genetically closed.

Suppose & is the class of all garden peas with green seedleaves, g the
class of all gametes produced by such peas when they develop in members
of the class M of all environments in which such peas develop normally
to maturity (and excluding environments in which mutation involving colour
of the seed leaves occurs ), then the set { G, g, M} will be an example of the
simplest kind of genetical system — the kind I call genetical units; namely
those with one phenotype, one gamete class and one class of environments
and no more. In this case we shall have :

D(gg M) A and D(g,g, M)C
and

gg M)Aand (g2, M)Cg.

Genetical systems, being sets, will be subject to the operations of addition
and multiplication and to the relation of inclusion in the ordinary set-theoretical
sense. Moreover, being sets of sets they capn also be combined in another
way which I call set-by-set addition multiplication and inclusion. Thus if
{P,a, E} and {0, B, K} are genetical systems, then their ordinary sum will
be {P,0Q,x,B,E, K}, but their set-by-set sumwillbe {PU Q,a U B, EU K}.
Their ordinary product will (if P £ Q, o = 8 and E == K) be the null class
and their set-by-set product will be {Pn Q, an B, EN K}. Similarly it is possi-
ble to have one genetical system included in another in the ordinary sense and
also in the sense in which {P, «, E} isincluded in { @, 4§ K} if PC Q, o C B, and
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EC K. The task of working out theorems concerning these operations on, and
relations between, genetical systems has as yet hardly begun. Also the task of
discovering under what conditions sums and products of genetical systems are
themselves genetical systems has not yet been carried very far. It is of some
interest to note, however, that the genetical systems studied in Mendelian
genetics can all be represented as sums of genetical units or as set-by-set pro-
ducts of such sums. It is characteristic of Mendelian genetics that it deals almost
exclusively with genetical systems having only one environment class. We can
define the system number of a genetical system S as the ordered triple <<n,n, k>
of natural numbers, where n is the number of phenotypes, m the number
of gamete classes and & the number of environment classes of S. The cardinal
number of S will then be the sum of these three numbers. Every genetic unit
will have the system number <<1, 1, 1>>; the systems studied in Mendelian
genetics under the heading ,monochybridism’ usually have the system number
<2, 2, 1>-; and those exhibiting dihybridism have the system number <<4.4,1>.
If in a genetical system S there exists a pair of gamete classes « and B and
an environment class K such that G («,(, K) £ A and G (o, B, K) is in-
cluded in the sum of exactly 2/ of the gamete classes of S, but there is no such
combination of gamete and environment classes of S which yields the sum
of a higher number of gamete classes of S, then we can say that S is of order I.
It is possible to have two Mendelian systems both of system number <4, 4, 1>
but one being of order 1 (with monohybrids) and the other of order 2 (with
dihybrids).

We now come to the problem: What does it mean to say that a phenotype P
is environmentally insensitive in a genetical system S? This can be most easily
explained by reference to a matrix of the relation Lg (Z) C P when the values
of the variables ‘E’ and ‘P’ are confined to the environment classes and pheno-
types, and the values of ‘Z” to the associated zygote classes, of S. Under these
circumstances this is a functional relation in the sense that each pair of values
of the independent variables ‘E’ and ¢Z’ there will be only one corresponding
value of ‘P’. For suppose that S is a genetical system, Z an associated zygote
class and E and P members of S such that

Lg(Z)s£ A and Lg2)C P
then if Q is a phenotype of S distinct from P such that

Lg(2)CQ

we must have Lg(Z) C Py Q. But a genetical system is a genetical set and
by definition the phenotypes of a genetical set are mutually exclusive; conse-
quently PN @ = A and so Lg(Z) = A, which is contrary to our hypothesis,
There can, therefore, be no such Q@ distinct from P in S. Returning now to
the problem of explaining environmental insensitivity, suppose

S: ={P,Q, R, &,B ,E,, E,, Es}
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is a genetical system and
Z,=U®); Z,= U(,B) and Z; = UR,P)

are its associated zygote classes. Suppose, further, that S, has the following
L-matrix:

L | 2| % | 2

E, P Q

E, P Q A

E, | P A A

Here we put the designations of the associated zygote classes at the tops of
the columns and the designations of the environment classes at the left hand
ends of the rows. If Lg; (Z)) C X we write ‘X’ in the intersection of the jth
column with the ith row. It will be noticed that ‘P’ occurs in every row of the
column headed ‘Z,’ and in no other column. ‘Q’, however, occurs in column Z,
but only in two of its rows and R’ occurs in only one row of the column headed
‘Z3’. Now when a phenotype designation occurs in every row of every column
in which it occurs at all T say that the phenotype so designated is environmen-
tally insensitive in the genetical system concerned.

Now suppose that the matrix of S, is as follows:

L Z;_ Z‘ 23

E, P P P

E. | @ | ¢ | A

E, | R A A

In this case ‘P’ occurs in every column of the row labelled ‘E,’ but in no other
row; ‘Q° occurs in row E, but not in each of its columns; and ‘R’ occurs
in only one column of row E;. We define a phenotype as being zygotically
insensitive in a genetical system S if and only if its designation occurs in every
column of every row of the L-matrix of S in which it occurs at all. This in
our last example only P is zygotically insensitive in S,.

Against these definitions it might well be objected that they are not for-
mulated within the object language because they involve reference to the
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designations of the phenotypes concerned. For that reason the following
formulations are offered. Let us use ‘P Phen S’ as an abbreviation for ‘P is
a phenotype and a member of the genetical system S’;and ‘P EI S’ as an
abbreviation for ‘P Phen S and P is environmentally insensitive in S°. We
now define this relation as follows:

P EISif and only if P Phen S and for every Z,if Z is an associated zygote
class of S and there is an environment class K of S such that Lg(Z)# A
and Lg(Z) C P, then for every environment class M of S we have L u(Z)# A
and Ly (Z) CP.

Similarly, using ‘P ZI S’ as an abbreviation for ‘PPhen S and Pis zygoti-
cally insensitive in S” we define this relation as follows:

P Z1 S if and only if P Phen S and for every environment class K of S,
if there is a zygote class Z associated with S such that L (Z) # A and Lx(Z)CP,
then for every zygote class W associated with S we have Ly (W)+# A and
Ly (w)CP.

Using the Principia Mathematica arrow notation we now say:

P is hereditary if and only if P;en ‘PC E*—I P
and

- —
P is acquired if and only if Phen ‘P C Z I’ P.

It will be evident that, if these definitions are adopted, then a// the pheno-
types of a genetical system which has only one environment class will be
environmentally insensitive in that system. Now it has already been mentioned
that the vast majority of Mendelian systems have only one environment class;
consequently it is not surprising, in the light of what has been said, that the
phenotypes in Mendelian systems are commonly said to be hereditary. It
is possible that, if more systems were studied which have more than one envi-
ronment class, we might find that some phenotypes which were formerly
labelled as hereditary are in fact neither hereditary nor acquired and that yet
others were both hereditary and acquired. For there appears to be no reason,
when these notions are analysed more carefully than is usually the case, for
supposing that they are either mutually exclusive or together exhaustive,

I should like to end on a note of interrogation by briefly mentioning
a problem for which I have not yet succeeded in finding a solution. As we
are dealing with finite classes there will, presumably, be genetical systems
which are maximal in the sense that if any new members are added to their
gemete or environment classes the result is nof a genetical system because
it is not developmentally closed. But there is a serious difficulty about defining
maximal genetical systems in this way. Suppose, for example, that we have
two genetical systems: S, = {P,«, K} and S, = {P,B, M} such that « # B
and K # M. Now it may be the case that the set-by-set sum of S, and S,
namely: 8; = {P,a UB, K UM} is also a genetical system and a step nearer
a maximal system than either S, or S,. But there is another possibility. It may
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be the case that the ordinary sum of S, and S,, namely: §; = {P, «, §, X, M}
is not developmentally closed; not because either S, or S, is maximal in the
above sense, but for another reason. It may be because, although we have
D (x,o, K)C Pand D B, R, M) C P, we do not have either D (a, 0, M) C P
or DB, B, K) C P. When this happens D (x, ¢, K) and D (B, §, M) are said
to be phenocopies of one another. Thus the existence of phenocopies seems
greatly to complicate the task of defining maximal genetical systems. At
present 1 am unable to see clearly how to deal with this problem; neither am
I at all clear about its importance.

UNIVERSITY OF LONDON (Regu le 15 mars 1958)
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