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THE CONSISTENCY OF ARITHMETIC, BASED ON A LOGIC OF
MEANING CONTAINMENT∗

ROSS T. BRADY

Dedicated to Richard Sylvan and Robert Meyer, who provided the
inspiration for this work.

1. Introduction

The logic MC of meaning containment has been developed over a number
of works, particularly in Brady [1996] and [UL], and recently modified in
Brady and Meinander [2008]. This paper also utilizes some results and dis-
cussion from Brady and Rush [2008], in the application of this logic to arith-
metic.

In order to understand the differences between this account of arithmetic
and that of classical logic, we need to consider the conceptual differences
between the logic MC and classical logic. The logic MC is basically con-
ceptualized in terms of meaning rather than truth and falsity, and thus careful
conceptual distinctions need to be drawn in the application of MC. This con-
trasts with classical logic, where numbers are identified with sets and the
equivalents of the Axiom of Choice cover quite a range of pure and applied
set-theory. We will conceptualize the entailment logic MC as the logic of
meaning containment, and this idea will determine the axiomatization of
the logic, and its quantificational and arithmetic extensions. This paper will
serve to illustrate the impact this conceptual difference will have on the ap-
plication and meta-theory of logic.

∗I wish to acknowledge the support of the Australian Research Council Discovery Grant
DP0556114 in the preparation of this paper. I wish to thank Martin Bunder and Su Roger-
son for their help in clarifying aspects of this paper upon its presentation to the Australasian
Association for Logic Conference, held at the University of Melbourne, in July, 2009. Fur-
ther, I wish to thank Stewart Shapiro (on skype) and members of the Arche Centre of the
University of St Andrews for pointing out some serious deficiencies in the paper, which were
subsequently corrected. Also, I wish to thank some members of the audience in Lisbon, at
the World Congress in Universal Logic, for their discussion of key points in the paper.
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354 ROSS T. BRADY

The logic MC itself is a weak relevant logic containing neither of the key
classical principles: the Law of Excluded Middle (LEM) and the Disjunctive
Syllogism (DS). It also restricts distribution principles in order to maintain
intensionality appropriate to a meaning-based logic. The content semantics
of MC can be seen to satisfy the intensional set-theoretic containment prop-
erties, thus representing meaning containment without these extensional fea-
tures. This is the preferred semantics as it pins down the logic rather than
provide a semantics for a wide range of logics, as is the case with truth-
theoretic semantics. (See Brady [1996] and [UL].)

We now consider the key technical results, achieved thus far, which illus-
trate the difference between this meaning-based logic and the truth-based
classical logic. The principle one is the simple consistency of naive set the-
ory and higher-order predicate theory, initiated in Brady [1971] and set out
in full in [UL]. The simple consistency results in [UL] are wide-ranging in
that they apply to a generalized comprehension axiom for classes and also
for higher-order predicates that together suffice to solve the set-theoretic and
semantic paradoxes in a non-ad hoc way. Another important result is the
decidability of the predicate logic, obtained in Brady [2002–5] using a nor-
malized natural deduction system.

As early as the mid-60’s, Richard Sylvan (then Routley) had said “Gödel’s
proof would not go through with a decent logic”. The rationale for this
followed from discussion with Len Goddard about having to change the logic
to solve the paradoxes, the idea being that Gödel’s proof contains logical
steps which also occur in paradox derivation. Indeed, Gödel’s argument to
his First Theorem runs close to the Liar Paradox, differing only in replacing
truth by provability. Thus, Gödel’s Theorems would be collateral damage in
a logical solution to the paradoxes. This provides motivation for us to show
that Gödel’s Theorems do not apply when arithmetic is based on the logic of
meaning containment.

In Section 4, we prove the simple consistency of arithmetic by finitary
methods, where the arithmetic is based on the sentential logic MC. The
method of proof of this result will use metavaluations, introduced by Meyer
in [1976a] and extended by Slaney in [1984] and [1987]. This method will
also enable us to show that if A ∨ B is provable then, for all its constant
instances A′ ∨ B′, either A′ or B′ is provable. These results are in stark
contrast to Gödel’s second and first theorems, respectively. These are fur-
ther key technical results for MC, demarcating it from classical logic, and
hopefully heralding a string of property differences between MC and clas-
sical logic. In Section 5, we extend the results proved for the logic MC to
most M1- and M2-metacomplete logics and, in Section 6, we will examine
Mendelson [1964] to determine how this arithmetic will differ from classi-
cal Peano arithmetic. Indeed, we will show that all of Mendelson’s theorems
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THE CONSISTENCY OF ARITHMETIC 355

from sections 3.1 to 3.11 continue to hold, with almost all being in the same
form and with some being in modified forms.

2. The Logics MC, MCQ and MCQ-

We first set out the logic MC and its quantificational extension MCQ in
its current modified form. Originally, the logic called DJd was presented
in Brady [1996] with an axiomatization and content semantics, and subse-
quently also in the book [UL]. More recently in Brady and Rush [2008],
consideration was given to dropping the two rules of quantified distribution,
∀x(A ∨ B) ⇒ A ∨ ∀xB and A & ∃xB ⇒ ∃x(A & B), the first of which pre-
vents the Law of Excluded Middle (A∨∼A) from applying to all quantified
‘→’-free formulae in the context of arithmetic. [Of course, this also includes
their formula forms, ∀x(A ∨ B) → A ∨ ∀xB and A & ∃xB → ∃x(A & B).
Note too that x cannot occur free in A in each of these forms, as we take
x to be only a bound variable.] It was argued in Brady and Rush [2008]
that these two quantified distribution rules embrace a combination of the
extensional and the intensional, this being their downfall. The extensional
here refers to conjunction and disjunction, whilst the intensional refers to
the two quantifiers, which can of course be applied to non-recursive do-
mains, these not being establishable in any element-by-element fashion. Fur-
ther, in Brady and Meinander [2008], the sentential distribution properties,
A & (B∨C) → (A & B)∨(A & C) and (A∨B) & (A∨C) → A∨(B & C),
are removed because it is argued there that sentential distribution is not an
intensional property. Nevertheless, the sentential rule forms are still included
in the logic as they follow from a widened form of the meta-rule of MC, viz.
if A, B ⇒ C then D ∨ A, D ∨ B ⇒ D ∨ C.

However, some further considerations regarding these existential and uni-
versal distribution rules have come to be realized, requiring some adjust-
ments to MCQ, these being also reported on in Brady and Meinander [2008].
The existential distribution rule, A & ∃xB ⇒ ∃x(A & B), is easily deriv-
able from the widened 2-premise meta-rule, if A, Ba/x ⇒ Ca/x then A,
∃xB ⇒ ∃xC. This meta-rule holds as a result of the meaning of the exis-
tential quantifier as ‘at least one of, but without necessarily including which
one’. Since the variable a is common to premise and conclusion, the particu-
lar element is carried to the conclusion, where existential generalization then
applies. Further, this 2-premise meta-rule is deductively equivalent to the
single-premise version of the meta-rule, if Aa/x ⇒ Ba/x then ∃xA ⇒ ∃xB,
in combination with the existential distribution rule. So, we will replace the
single premise meta-rule by the 2-premise one in the logic MCQ below.

Moreover, in Section 4, we will argue that the universal distribution rule,
∀x(A ∨ B) ⇒ A ∨ ∀xB, fails for a recursive interpretation of the universal
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356 ROSS T. BRADY

quantifier. (Note that we will also argue that the existential distribution rule
still holds for a recursive interpretation of the existential quantifier.) Since
this interpretation is one of the interpretations within the ambit of the univer-
sal quantifier, generally construed, the universal distribution rule must also
fail generally as well. Any specific interpretation can only add logical ax-
ioms and rules to the basic system MCQ, not subtract them. This is because
the logic MCQ is based on properties of connectives and quantifiers, just
determined by their fundamental meanings, without embellishments such as
recursion. Nevertheless, regrettably, we will need to contract the system
MCQ to the system MCQ- in order for our consistency proof to work.

In the process, we do need to make a slight contraction to the meta-rules
MR1 (if A ⇒ B then C ∨ A ⇒ C ∨ B) and QMR1 (if Aa/x ⇒ Ba/x then
∃xA ⇒ ∃xB) in the system MCQ in order to fit in with the rejection of
universal distribution, as footnoted in Brady and Meinander [2008]. We
restrict the application of QR1 (Da/x ⇒ ∀xD, where a does not occur in
D), in the proof of the rule A, B ⇒ C of MR1 (If A, B ⇒ C then D ∨ A,
D ∨ B ⇒ D ∨ C) and in the proof of the rule A, Ba/x ⇒ Ca/x of QMR1 (If
A, Ba/x ⇒ Ca/x then A, ∃xB ⇒ ∃xC), as follows: QR1 can only be used
to prove ∀xD as a theorem. This restriction makes sense as the meta-rules
work through disjunctive or existential instantiations, which cannot then be
universally generalized upon.

It is important to note here that these determinations are for the pure logics
MC and MCQ and that in applied situations such as arithmetic to follow,
strengthenings of these logics may well be appropriate. Indeed, it will be
seen that the LEM should apply to the identity statements of arithmetic, and
hence to formulae built up using ∼, & and ∨, and that the DS should also
apply to such formulae, but we will nevertheless extend the DS to full use on
the grounds that arithmetic is simply consistent.

So, we first set up the axiomatizations of MC and MCQ making these
above adjustments regarding sentential and quantified distribution and the
meta-rules.

MC.
Primitives: ∼, &, ∨, →.
Axioms:
1. A → A.
2. A & B → A.
3. A & B → B.
4. (A → B) & (A → C) → .A → B & C.
5. A → A ∨ B.
6. B → A ∨ B.
7. (A → C) & (B → C) → .A ∨ B → C.
8. ∼∼A → A.
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THE CONSISTENCY OF ARITHMETIC 357

9. A → ∼B → .B → ∼A.
10. (A → B) & (B → C) → .A → C.
Rules:
1. A, A → B ⇒ B.
2. A, B ⇒ A & B.
3. A → B, C → D ⇒ B → C → .A → D.
Meta-rule:
1. If A, B ⇒ C then D ∨ A, D ∨ B ⇒ D ∨ C.
As indicated above, we expand the standard one-premise meta-rule, if A ⇒
B then C ∨ A ⇒ C ∨ B, to the above two-premise one, thus allowing a
derivation of the distribution rules, A & (B∨C) ⇒ (A & B)∨ (A & C) and
(A ∨ B) & (A ∨ C) ⇒ A ∨ (B & C). This extends the use of the disjunctive
meta-rule MR1 to include the above three two-premise rules R1–3 directly
and generally expand its usefulness.1

MCQ.
Quantificational Primitives.
∀, ∃ (quantifiers)
a, b, c, . . . (free individual variables)
x, y, z, . . . (bound individual variables)
f, g, h, . . . (predicate variables)
[m, n, . . . (individual constant schemes)]
[r, s, t, . . . (schemes for terms, which are variable or constant)]
Quantificational Axioms.
1. ∀xA → At/x, for any term t.
2. ∀x(A → B) → .A → ∀xB.
3. At/x → ∃xA, for any term t.
4. ∀x(A → B) → .∃xA → B.
Note that, in distinguishing free and bound individual variables, x can only
occur bound in the A of QA2 and in the B of QA4. Terms can be any free
variable or individual constant.
Quantificational Rule.
1. Aa/x ⇒ ∀xA, where a does not occur in A.

1 The second sentential distribution rule is easily proved by applying MR1 to R2, after
first applying A2 and A3. The first one requires a little more work. We first have: A & (B ∨

C) ⇒ (A & B) ∨ A, and then A & (B ∨ C) ⇒ (C ∨ A) & (C ∨ B) ⇒ C ∨ (A & B) ⇒

(A & B) ∨ C. Hence, A & (B ∨ C) ⇒ (A & B) ∨ (A & C).
Also, MR1 can be completely generalized to: if A1, . . . , An ⇒ B then C ∨ A1, . . . , C ∨ An,
by repeated application of MR1 to R2.
Let A1, . . . , An ⇒ B. Then A1 & . . . & An−1, An ⇒ B. Let C ∨ A1, . . . , C ∨ An. Then, by
repeated MR1, C∨ (A1 & A2), . . . , C∨An, and hence C∨ (A1 & . . . & An−1), C∨An and
C ∨ B.
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358 ROSS T. BRADY

Quantificational Meta-rule.
1. If A, Bm/x ⇒ Cm/x then A, ∃xB ⇒ ∃xC.
QMR1 is subject to the proviso that, in the derivation A, Bm/x ⇒ Cm/x, QR1
cannot generalize on any variable free in either of the premises A and Bm/x.
Similarly, MR1 is subject to the same proviso concerning the derivation A,
B ⇒ C. For MR1, this proviso prevents D ∨ Aa/x ⇒ D ∨ ∀xA and hence
∀x(D∨A) ⇒ D∨∀xA from being derived. For QMR1, the proviso prevents
the derivation of ∃xBa/y ⇒ ∃x∀yB and hence ∀y∃xB ⇒ ∃x∀yB. Of course,
for both meta-rules, QR1 can still be used to prove a theorem in A, B ⇒ C
and in A, Bm/x ⇒ Cm/x, respectively, regardless of whether the generalized
variable occurs free in the premises or not.

Though MCQ is ideal, the following method of metavaluations does sim-
plify the modelling used to establish metacompleteness and hence the sim-
ple consistency. In so doing, the method cannot sufficiently distinguish
∀x(A → B) ⇒ A → ∀xB from ∀x(A ∨ B) ⇒ A ∨ ∀xB, and unfortunately,
at this stage, we need to exclude QA2, and its rule-form, and the rule-form
of its associated QA4, as well as the already-excluded quantified distribution
rule, ∀x(A ∨ B) ⇒ A ∨ ∀xB.

Since both QA2 and QA4 are used to prove ∃xA ↔ ∼∀x∼A, along with
QA1 and QA3, we put ∃xA as a definition:
∃xA =df ∼∀x∼A.
We then drop QA3, which is now provable, but we replace QA2 by the much
weaker:
QA2′.A → ∀xA.
As above, x can only occur bound in A.
Thus, iterated ‘→’ ’s are removed from the quantificational axioms.
This now forms the logic MCQ-. This is the logic we will carry forward into
the proof of metacompleteness.

3. The Re-Shaping of Relevant Arithmetic

The initial work on relevant arithmetic was done by Meyer in [1975] and
[1975a], abstracted in [1976], where he set out its axiomatization based on
the strong relevant logic R and proved that this arithmetic was non-trivial,
i.e. not all formulae are provable in it.

We axiomatize his system, which he called R#, as is set out on p. 20 of
[1975] and pp. 14–16 of [1975a]:
R#.
The definitions A∨B =df ∼(∼A & ∼B) and ∃xA =df ∼∀x∼A were added.
x,y,z, . . . (variables ranging over natural numbers).
0 (the number zero).
The functions ′ (successor), + (addition) and × (multiplication) were added.
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0 and successor generate the natural numbers in the usual way.
a, b, c, . . . (schemes for natural number constants).
r, s, t, . . . (schemes for natural number terms)
Axioms.
1. A → B → .B → C → .A → C.
2. A → .A → B → B.
3. A & B → A.
4. A & B → B.
5. (A → B) & (A → C) → .A → B & C.
6. A & (B ∨ C) → (A & B) ∨ (A & C).
7. ∼∼A → A.
8. A → ∼B → .B → ∼A.
9. A → ∼A → ∼A.
Rules.
1. A, A → B ⇒ B.
2. A, B ⇒ A & B.
Quantificational Axiom.
10. ∀xA → At/x, where t is free for x in A.
Quantificational Rule.
3. A → B ∨ C ⇒ A → ∀xB ∨ C, where x is neither free in A nor in C.
Number-theoretic Axioms.
11. x′ = y′ → x = y.
12. x′ 6= 0.
13. x = y → x′ = y′.
14. x = y → .x = z → y = z.
15. x + 0 = x.
16. x + y′ = (x + y)′.
17. x × 0 = 0.
18. x × y′ = (x × y) + x.
Number-theoretic Rule.
A(0), A(x) → A(x′) ⇒ A(x). [Mathematical Induction]

Meyer in [1975a] set up a natural deduction system and used it to show
that all the classically provable formulae of form s = t, for numerical terms
s and t, are provable in R#. Over a period of time, he unsuccessfully tried to
show that the rule γ: A, ∼A ∨ B ⇒ B (which is deductively equivalent to
the DS), was an admissible rule of R#. Alas, he and Friedman subsequently
showed in their [1988] that this was not the case, i.e. that γ is inadmissible.
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An important result for R# is its non-triviality, proved by Meyer for the
stronger system RM3#.2 Indeed, what he proved was that 0 = 1 is not prov-
able in RM3#. To show this, he added the modelling condition 0 = 2,
yielding an inconsistent arithmetic model which is modulo 2. These in-
consistencies are evaluated as ‘both true and false’ in RM3, whilst 0 = 1
is maintained as just ‘false’ in the 3-valued modelling. Once soundness is
shown, the unprovability of 0 = 1 follows.3 However, this is not the stronger
and more familiar simple consistency, i.e., for every formula A, not both A
and ∼A are provable.

Our present task is to re-axiomatize Peano arithmetic, based on our logic
MC. We need to set up this axiomatization of arithmetic capturing the spirit
of Peano’s axioms in a form which reflects the ideals of MC, i.e. with its
focus on entailment as a meaning containment. This was done in part on
p. 205 in Brady and Rush [2008], where rule ‘⇒’ ’s were used to replace the
‘→’ ’s in the axioms 11 and 13 above, in the process of examining the use
of the Law of Excluded Middle in Peano arithmetic. This is because the en-
tailment ‘→’ is an inappropriate relationship between statements involving
distinct natural numbers. This can be seen as follows. By repeated applica-
tion of axiom 11 above, we can easily prove that 100 = 100 → 0 = 0, and,
by repeated application of axiom 13 above, 0 = 0 → 100 = 100 is prov-
able. For numbers so far apart, these cannot be meaning containments, nor,
putting them together, a meaning equivalence. Indeed, this would be so even
for numbers 1 apart, as such numbers are based on distinct sets of objects.
(This line of argument was taken a little further on p. 158 of Brady [1996].)

Additionally, on p. 205 of Brady and Rush [2008], the rule ∼m = n ⇒
∼m′ = n′ is added as rules are not generally contraposible. This illustrates
De Morgan negation which, being essentially 4-valued, is captured using
both positive and negative statements. Generally, such pairs of statements
yield the four possible scenarios concerning the presence or absence of state-
ments and their negations.

We do, however, take all the identity statements as classical, i.e. the LEM
and the DS should both apply to them. As argued in Brady and Rush [2008],
the scope of Boolean negation and hence classical logic is not universal but
restricted at least to include a large part of the physical world and what can
be mapped into it. It seems reasonable that identity statements in arithmetic
should fall into this latter category, the reason being that identities between

2 RM3 is a 3-valued logic, with values true, false and both true and false. RM3 extends the
infinitely-valued logic RM, which is axiomatized as R + A → .A → A. An axiomatization
for RM3 can be found in Brady [1982].

3 This proof is available in abstracted form in Meyer [1976] and also in Meyer and
Mortensen [1984].
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two natural numbers either hold or they don’t, and they can’t do both. This
relates back to the physical world through various sets of objects of the same
and different sizes. Thus, we include the LEM as an assumption for identity
statements, but we will show that the corresponding DS rule is admissible
later on.

So, finally, based on MCQ-, as set out in Section 2, we present the ax-
iomatization for Peano arithmetic, which we will call MC#. We continue to
use separate free and bound variables, together with the numerical constant
schemes and schemes for terms.
Identity Axioms.
1. a = a.
2. a = b → b = a.
3. a = b & b = c → a = c.
The entailments are appropriate here as identity is symmetric, and a = c is
contained within the conjunctive meaning of the two identities, a = b and
b = c.

Identity Rule.
1. s = t, A(s) ⇒ A(t), where, for terms s and t, t is substituted for s in a
single argument place.
Note that the entailment form of the identity rule, s = t ⇒ A(s) → A(t),
can also be derived. Hence, s = t ⇒ A(s) ↔ A(t), which shows up the
very close relationship between identity and meaning equivalence. Note too
that the converse holds, by universally quantifying over the A. Thus, the
shapes of axioms and rules involving identity should mimic their equivalen-
tial shapes, as can be seen, for example, in IA3 above.
Number-theoretic Axioms.
1. ∼a′ = 0.
2. a + 0 = a.
3. a + b′ = (a + b)′.
4. a × 0 = 0.
5. a × b′ = (a × b) + a.
Number-theoretic Rules.
1. s = t ⇒ s′ = t′.
2. s′ = t′ ⇒ s = t.
3. ∼s = t ⇒ ∼s′ = t′.
4. ∼s′ = t′ ⇒ ∼s = t.
Number-theoretic Meta-Rule.
If A(m) ⇒ A(m′) then A(0) ⇒ A(t), where t is an arbitrary numerical con-
stant or variable. [Mathematical Induction]
Classicality Axiom.
1. a = b ∨ ∼a = b. [The LEM]
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We do not include the Classicality Rule (CR1), ∼s = t, s = t ∨ B ⇒
B, here, as we would like, but wait until after the proof of consistency to
establish the full DS admissibly and then add it on as a rule.

Note that we can establish the more familiar form of Mathematical Induc-
tion with conclusion ∀xA(x) by putting t as a variable a, say, not occurring
in A(x), and by applying QR1.

Also, note that we do not restrict the application of NMR1 in the proofs of
the rules, A, B ⇒ C and A, Bm/x ⇒ Cm/x of MR1 and QMR1, respectively,
as ∀xA(x) is not specifically introduced by NMR1.

As is shown by Theorem 1 on p. 204 of Brady and Rush [2008], the LEM
extends to any →-free formula A of arithmetic without quantifiers, viz. A ∨
∼A, for A built up using ∼, & and ∨ alone. Note that (sentential) distribution
is used in rule form in the proof of this Theorem 1, but this is derivable from
MR1.

It is also worth noting that if ∀x(A∨B) ⇒ A∨∀xB is included, then, by ex-
tending the induction argument of Theorem 1 of Brady and Rush [2008], the
LEM extends to all quantificational formulae of classical logic. Moreover,
we are including A & ∃xB ⇒ ∃x(A & B), which, with the above Classical-
ity Rule, CR1, by extending the induction argument of Theorem 2 of [2008],
would enable the Disjunctive Syllogism to extend to all quantificational for-
mulae of classical logic. These two results would then enable all of classical
Peano arithmetic to be derived. In particular, for the Gödel sentence G, we
would then have G ∨ ∼G provable, whilst, by Gödel’s First Theorem, nei-
ther G nor ∼G would be provable, on the assumption that Peano arithmetic
is consistent. However, we will show in Section 4 that if a sentence A ∨ B
is provable in our system, based on the above MCQ-, then either A or B is
provable. This will show that ∀x(A ∨ B) ⇒ A ∨ ∀xB is not derivable in this
system, as the LEM would then be provable for Gödel’s G. Given that neither
G nor ∼G would be provable in the system, it being weaker than classical
logic under the translation of ‘→’ into ‘⊃’, the instances of the LEM must
then stop short of G ∨ ∼G.

4. The Simple Consistency Proof

We prove the simple consistency of the above re-shaped form of Peano arith-
metic by using the method of metavaluations, which were introduced for
quantified positive logics by Meyer in [1976a], and subsequently extended
by Slaney in [1984] and [1987] to full sentential logics with negation. As
can be seen from Brady [2010], in an applied setting containing classical
formulae, this method works more smoothly for sentences, i.e. formulae
with no free variables. So, we will modify their notion of metavaluation for
formulae with free variables so that it is expressed in terms of its application
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to closed instances (i.e. constant instances). Further, these closed instances
need to be arranged in such a way that they can be recursively constructed,
not just because we are endeavouring to construct a finitary proof of con-
sistency, but also because it is needed to prove metacompleteness. (Note,
in Brady [2010], that recursion for closed formulae is introduced, but it is
for axiomatic purposes.) It is important to realise here that in expressing the
induction step, A(m) ⇒ A(m′), the two ‘m’ ’s are treated as schematic for
constants, and not evaluated as variables pertaining just to the A(m) and to
the A(m′).

Further, as recursive methods are used in the meta-theory, we need to pay
particular attention to the logic of the meta-theory. Whilst intuitionist logic
is espoused as the logic for constructive methods, our logic MCQ- with its
focus on entailment and deduction can also be considered suitable for the
meta-logic of recursive methods, which represents the extent of human rea-
soning in the arithmetic context. Indeed, MCQ- can be seen as a deductivist
logic. (See Brady and Rush [2008] and Brady [2008] for some discussion
of this, especially as it relates to negation in MC.) Also, any change in logic
from the object- to the meta-language is hard to justify. The logic MCQ-

of the object-language, especially given its universality, should also apply
to the meta-language, though one would expect there to be some classical
gain in the process. That is, the whole point of meta-theory is to examine
the object-theory as a whole, from outside of itself, and make judgements on
it, which would generally be classically evaluated. This is so in the assign-
ment of T and F to the metavaluations below. However, the metavaluations
for ∀xA and for a formula A with free variables require recursive processes
which may invoke a departure from classical logic, especially in cases where
these processes are related to one another through the formula or rule.

Detlefsen [1979], on p. 309, makes this point re Gödel’s Second Theorem:

In order for a consistency formula to ‘express’ consistency in the ap-
propriate sense the quantifiers and operators in it must be construed
finitistically, and not classically, since it is the finitistic consistency
of a classical system that is at issue. But a finitistic interpretation
of the universal quantifier would seem to differ drastically from a
classical interpretation of it, . . . .

Thus, he argues that a finitistic logic is needed for the meta-theory when
finitary methods are being used to prove consistency, and that this logic is
distinct from classical logic.

In our case, ‘if v(∀x(A∨B)) = T then v(A∨∀xB) = T’ fails to hold in the
meta-logic, as does ∀x(A ∨ B) ⇒ A ∨ ∀xB in the object-logic.4 Given the

4 I owe this point to Graham Priest.
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similarities of the positive first-degree for MCQ- and intuitionist predicate
logic, the reasons for its failure are similar to those for intuitionist logic given
in Dummett [1977], pp. 202–8, and Beall and Restall [2006], pp. 64–5. All
one needs is an example of a recursive set expressed as a union of two sets,
one of which is not recursive whilst the other is not satisfied for any particular
recursively determined element. Indeed, if the Beall and Restall example
on p. 65 was allowed to extend to the infinite, that would nicely suffice.
They consider students in a philosophical logic class who have satisfied the
prerequisite of doing an introductory logic subject or have been allowed to
enrol by special permission. Say, if the class was denumerably infinite and
each member was stipulated as being admitted in one of the two ways, then,
since there was no rhyme or reason to their admission to the class within any
enumeration of its members, it is quite possible for there to be no recursive
process for determining that all have been admitted by prerequisite nor any
recursive determination of someone admitted by special permission.5

Note that A & ∃xB ⇒ ∃x(A & B) holds in intuitionist logic and does not
present a problem for recursive processes, as any recursive process used to
show ∃xB can also be used to show ∃x(A & B), given that A holds. This
provides the justification for maintaining it in the logic MCQ- for recursive
arithmetic purposes.

To begin the proof, we first need the following:
Lemma 1.
(1) For any identity s = t, for constant terms s and t, either s = t or ∼s = t is
provable in MC#.
(2) Further, 0 = s′, for any constant term s, is unprovable in MC#.
Proof. (1) Just apply the number-theoretic axioms and rules, for the appro-
priate proofs of the form s = t or ∼s = t. If s and t represent the same
number then use a = a. If s and t represent different numbers, use NA1
and NR3. Then, use the appropriate axioms and rules concerning successor,
addition and multiplication to create the terms, for both the positive and neg-
ative cases. E.g. 2 x (1′ + 1) = 2 x (1′ + 0′) = 2 x (1′ + 0)′ = 2 x 1′′ =
(2 x 1′)+2 = (2 x 1)+2+2 = (2 x 0)+2+2+2 = 0+2+2+2 (eliminat-
ing x) = 0+2+(2+1)′ = 0+2+(2+0)′′ = 0+2+2′′ = 0+(2+2′)′ =
0 + (2 + 2)′′ = 0 + (2 + 1)′′′ = 0 + (2 + 0)′′′′ = 0 + 2′′′′ = (0 + 2′′′)′ =
(0 + 2′′)′′ = (0 + 2′)′′′ = (0 + 2)′′′′ = (0 + 1)′′′′′ = (0 + 0)′′′′′′ = 0′′′′′′

(eliminating +) = 6. (See Section 6 for more detail on this method.)
(2) We use Meyer’s inconsistent modelling of relevant arithmetic to show
that 0 = m′, for any numerical constant m, is unprovable in MC#, by choos-
ing arithmetic modulo m + 2. Then, 0 = s′ is also unprovable, for any

5 It is easily shown that ∀x(A ∨ B) ⇒ A ∨ ∀xB (where x cannot be free in A) and
∀x(A ∨ B) ⇒ ∃xA ∨ ∀xB are deductively equivalent.
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constant term s. His method, written up in Meyer and Mortensen [1984],
uses the 3- valued logic RM3. Classical logic is not usable, as the DS must
be invalid. (This is why the DS has been removed completely from the ax-
iomatization of MC#.) �

We follow what is called the two-sorted approach for the quantified logic in
Brady [2010], but the classical sort is initially restricted to atomic formulae
of form a = b, which can be extended to formulae with ∼, & and ∨. We
construct the metavaluations v and v* for the sentential part, as follows,
bearing in mind that they take exactly one of the values T and F:

(i) v(s = t) = T iff s = t is a theorem of MC#, for constant terms s and
t.
v*(s = t) = v(s = t), for constant terms s and t.

For the following metavaluations (ii)–(v), we let A and B be sentences.
(ii) v(A & B) = T iff v(A) = T and v(B) = T.

v*(A & B) = T iff v*(A) = T and v*(B) = T.
(iii) v(A ∨ B) = T iff v(A) = T or v(B) = T.

v*(A ∨ B) = T iff v*(A) = T or v*(B) = T.
(iv) v(∼A) = T iff v*(A) = F.

v*(∼A) = T iff v(A) = F.
(v) v(A → B) = T iff A → B is a theorem of MC#, if v(A) = T then

v(B) = T, and if v*(A) = T then v*(B) = T.
v*(A → B) = T.

[Note that MC is M1-metacomplete, in Slaney’s sense, in which case v*(A →
B) always takes the value T. (See Slaney [1987].)]

We add the following metavaluations v and v* to account for the quantifier
∀, where ∀xA is a sentence and An/x is a constant instance of A, obtained by
substituting the numerical constant scheme n for x in A.
Note that we use m, n, . . . , as schemes for numerical constants.

(vi) v(∀xA) = T iff v(An/x) = T, for all numerical constants n, recur-
sively generated.
v*(∀xA) = F iff v*(An/x) = F, for some numerical constant n, re-
cursively determined.

In the case of vacuous quantification,
v(∀xA) = T iff v(A) = T and v*(∀xA) = F iff v*(A) = F.

Then, to take account of free variables, we add the following metavalua-
tion:

(vii) v(A) = T iff v(Ai) = T, for all constant instances Ai of A, recur-
sively generated.
v*(A) = F iff v*(Ai) = F, for all constant instances Ai of A, recur-
sively generated.
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We need to explain ‘recursive generation’ and ‘recursive determination’
for the quantified valuations (and also for formulae with free variables). For
recursive generation we start with the base case v(A0/x) = T. Then, an in-
duction step of form, v(Am/x) = T ⇒ v(Am′/x) = T, is added, with the rule
arrow understood as a classical rule and the natural number scheme m be-
ing interpreted as a universally quantified meta-logical variable over natural
numbers. These will enable mathematical induction to apply, as a meta-
logical principle, so as to derive the appropriate generality. So, we express
‘v(An/x) = T, for all numerical constants n, recursively generated’ as the
conjunction: v(A0/x) = T and, for all m, if v(Am/x) = T then v(Am′/x) = T.

For (vii), the above also caters for one free variable. For further free
variables, we use the same expression, but with replacement of v(A(0)),
v(A(m)) and v(A(m′)) by metavaluations of formulae with one or more free
variables, each of which are inductively evaluated. This enables variables
to be added, one by one, in any particular order. Though mathematical in-
ductions can fairly generally be carried out on any variable, it is conceivable
that a formula might exist which requires induction on a particular variable.
Also, we can use this method to show that universal statements are all prov-
able via mathematical induction.

Unlike recursive generation, recursive determination is existential. Since
existential quantification is equivalent to a negated universal and the negation
is De Morgan, recursive determination is established by a process. (See
Brady [2008].) Such a process would lead to a witness for the existential
and, as such, is a complementary process to that of recursive generation
of the universal. This is distinct from the Boolean negation of a universal,
which is given by v(∀xA) = F, which just negates the recursive generation,
leaving open the possibility of v(An/x) = T, for all n, but not recursively
generated. And, this account of recursive determination is sufficient for the
applications to be made of it in what follows.

We follow Meyer [1976a] and Slaney [1984] in establishing metacom-
pleteness via the two following lemmas, but we need to account for vari-
ables:
Lemma 2.
If A is a theorem of MC# then v(A) = T, and hence:
If ∼A is a theorem of MC# then v*(A) = F.
Proof. Induction is on proof steps. At each step, we first consider replac-
ing all uncoded variables by constant instances. We then build up the true
metavaluations for the original formulae or original conclusions of rules, one
variable at a time, in some order. Because this latter process is standard, we
consider it separately in (ii).
(i) So, we start with constant instances. We give special attention to axioms
and rules involving quantification and negated identity. We give some exam-
ples of these.
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QA1. ∀xA → At/x, for a term t.
Let v(∀xA) = T. Then, v(An/x) = T, for all numerical constants n, recur-
sively generated. Let t be a constant and let m be the numerical constant
determined by t. But, any particular constant m, the value of term t, must be
reached after a finite number of recursive steps. So, v(At/x) = T. [We do the
case where t is a variable in (ii).]
Let v*(At/x) = F. Let m be as above. Then, v*(At/x) = F, can be recur-
sively determined in m steps, and hence v*(∀xA) = F.
QR1. Aa/x ⇒ ∀xA, where a does not occur in A.
We consider this rule with just the free variable a, leaving the rest of the
variables for (ii). Let v(Aa/x) = T. Then, v(An/x) = T, for all constant
instances An/x, recursively generated. Thus, v(A0/x) = T and v(Am/x) =
T ⇒ v(Am′/x) = T, and hence v(∀xA) = T, by definition.
QMR1. If A, Bm/x ⇒ Cm/x then A, ∃xB ⇒ ∃xC, where, in the derivation A,
Bm/x ⇒ Cm/x, QR1 does not generalize on a free variable in A or Bm/x.
Let, if v(A) = T and v(Bm/x) = T then v(Cm/x) = T, where m is a schematic
numerical constant.
Let v(A) = T and v(∼∀x∼B) = T. Then, v*(∀x∼B) = F and v*(∼Bn/x) =
F, for some numerical constant n, recursively determined. For this constant,
v(Bn/x) = T, and hence v(Cn/x) = T by assumption, and then v*(∼Cn/x) =
F. So, v*(∀x∼C) = F and v(∼∀x∼C) = T.
IR1. s = t, A(s) ⇒ A(t).
Let v(s = t) = T and hence s = t is provable in MC#. By Lemma 1, if s and
t represent distinct natural numbers then s = t is unprovable, and so s and t
represent the same natural numbers. Then, v(A(s)) = v(A(t)).
NA1. ∼a′ = 0.
By Lemma 1, s′ = 0 is unprovable in MC#, and hence v(s′ = 0) = F,
v*(s′ = 0) = F, and v(∼s′ = 0) = T.
NR1. s = t ⇒ s′ = t′.
If v(s = t) = T then v(s′ = t′) = T, for constant terms s, t.
NR3. ∼s = t ⇒ ∼s′ = t′.
Let v(∼s = t) = T, for constant terms s, t. Then, v*(s = t) = F and
v(s = t) = F. By NR2, if v(s′ = t′) = T then v(s = t) = T. Hence,
v(s′ = t′) = F, v*(s′ = t′) = F and v(∼s′ = t′) = T.
NMR1. If A(m) ⇒ A(m′) then A(0) ⇒ A(t).
Let, if v(A(m)) = T then v(A(m′)) = T. Then, as m is a schematic nu-
merical constant it interprets as a meta-logical variable. Let v(A(0)) = T.
Then, v(∀xA(x)) = T , as the constant instants are recursively generated,
according to the definition. Hence, v(A(t)) = T, as for QA1.
CA1. a = b ∨ ∼a = b.
For constant terms s, t, v(s = t) = T or F. Then, v(s = t) = T or
v*(s = t) = F, and v(s = t) = T or v(∼s = t) = T, in which case,
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v(s = t ∨ ∼s = t) = T.
Note that CR1 is left out at this point, to protect the proof of Lemma 1.

(ii) We next deal with formulae with variables. Here, the method is quite
general, but we consider a typical axiom, rule and meta-rule.
A1. A → A.
To prove v(A → A) = T, we start with v(Ai → Ai) = T, where Ai is A
with all of its variables replaced by constants. This will hold unilaterally,
as above, for any choice of constants, through a simple piece of general
(finitary) argument, in the manner of Meyer and Slaney. If we instead replace
all variables bar a, say, in Ai by constants, then v(Ai → Ai) = T since
v(Ai → Ai0/a) = T and v(Ai → Aim

′/a) = T, yielding ‘if v(Ai → Aim/a) =
T then v(Ai → Aim

′/a) = T’, as the rule is classical. [We keep using the
same symbolism ‘Ai’ here.]
Note that v(Ai → Ai) = T, for any choice of constants substituted for all
variables bar a. We next (instead) replace all variables bar a and b in Ai by
constants. Then, v(Ai → Ai0/b) = T and v(Ai → Aim

′/b) = T, where
the variable a still occurs in Ai, and again: if v(Ai → Aim/b) = T then
v(Ai → Aim

′/b) = T, yielding v(Ai → Ai) = T. The procedure continues
inductively until all variables are fully re-instated, variable by variable, and
hence v(A → A) = T.

This method is based on a two-step deductive process to establish the prop-
erty for all constant substitutions, which is taken to be an alternative form
of Mathematical Induction, classically created out of NMR1. That is, the
property holds for 0 and also for m′, together covering all natural numbers,
without the assumption of the property for m. Again, the order of variable
reinstatement does not matter, as long as there is some order.
R1. A, A → B ⇒ B.
Let v(A) = T and v(A → B) = T, created as above for A1. We similarly
create v(B) = T from the constant instances v(Bi) = T, obtained from the
constant instances of v(A) = T and v(A → B) = T.
MR1. If A, B ⇒ C then D ∨ A, D ∨ B ⇒ D ∨ C, with the proviso.
Let v(D ∨ A) = T and v(D ∨ B) = T, both created as above for A1. Let,
if v(A) = T and v(B) = T then v(C) = T, each true metavaluation v being
created as for A1 above. So, each of these true metavaluations apply to all
their constant instances, from which we can similarly create v(D ∨ C) = T
from its constant instances.

(iii) Lastly, we need to show that if ` ∼A then v*(A) = F. Let ` ∼A.
Clearly, from (i) and (ii), v(∼A) = T. Whenever A is a sentence, equiva-
lently, v*(A) = F. Let A have variables. Then v(∼Ai) = T, for all constant
instances ∼Ai of ∼A. At the level of constant instances, v*(Ai) = F, and
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the same recursive generation as used above, but for v* and F, can be used
to yield v*(A) = F. �

Corollary.
For any identity s = t, for constant terms s and t, not both s = t and ∼s = t
are provable in MC#.
Proof. Let s = t and ∼s = t be provable in MC#. By Lemma 2, v(s = t) = T
and v*(s = t) = F. But, then, v(s = t) = F, which is a contradiction, as
only one value of T and F can be taken. Thus, not both s = t and ∼s = t are
provable in MC#. �

In the proof of Lemma 2, it is important that the rule, ∀x(A ∨ B) ⇒
A∨∀xB, does not preserve T for the metavaluation v, as otherwise, as pointed
out in Section 2 and Section 3, this would mean that Corollary (1) to Theo-
rem 1 below would contradict Gödel’s Incompleteness Theorem, especially
given the consistency of MC# (Theorem 2). The fact that the above rule does
not preserve T can be seen from the need of that same rule in the meta-logic.
However, as argued at the beginning of this section, this does not hold here.

Lemma 3.
(1) If v(A) = T then A is a theorem of MC#, and:
(2) If v*(A) = F then ∼A is a theorem of MC#.
Proof. We prove both (1) and (2) together by double induction on formula
construction and on replacement of constants by variables, making use of
some simple derived rules of MCQ-. The overarching induction is on for-
mulae and at each stage we employ an induction on the number of variables
introduced by Mathematical Induction. The induction on formulae is similar
to that of Meyer in [1976a] and of Slaney in [1984].
(i) The base case concerns the atoms s = t, for terms s and t. Consider
the constant terms si and ti. If v(si = ti) = T then ` si = ti, and if
v*(si = ti) = F then v(si = ti) = F and si = ti is unprovable. Then,
by Lemma 1, ` ∼si = ti.
Consider terms s and t with one variable a between them, and let v(s = t) =
T. Then, v(s = t0/a) = T and if v(s = tm/a) = T then v(s = tm′/a) = T. By
the base case and Lemma 2, ` s = t0/a and if ` s = tm/a then ` s = tm′/a,
and, by Mathematical Induction, ` s = t, introducing the variable a. Simi-
larly, by letting v*(s = t) = F for this s = t with the variable a, we obtain
` ∼s = t, by again using the base case, Lemma 2, and Mathematical Induc-
tion.
Now consider s = t with just the variables a and b, letting v(s = t) = T.
Each of v(s = t0/b) = T and if v(s = tm/b) = T then v(s = tm′/b) = T
holds, by definition of v(s = t) = T. By induction hypothesis and Lemma
2, ` s = t0/b and if ` s = tm/b then ` s = tm′/b, and, by Mathematical
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Induction, ` s = t. Similarly, by letting v*(s = t) = F, we obtain ` ∼s = t.
We continue to inductively introduce the remainder of the variables in this
fashion until the final s = t with all its free variables is derived.
(ii) The induction steps for ∼A, A & B, A ∨ B and A → B, for the constant
instances ∼Ai, Ai & Bi, Ai ∨ Bi and Ai → Bi, are straightforward, as in
Meyer [1976a] and Slaney [1984]. The induction on the number of intro-
duced variables proceeds as given for the base case of formula construction.
(iii) For the induction step for ∀xA, for the constant instance v(∀xAi) = T,
we use the recursive generation: v(Ai0/x) = T, if v(Aim/x) = T then
v(Aim

′/x) = T, as follows. By the base case and Lemma 2, ` Ai0/x and if
` Aim/x then ` Aim

′/x. By Mathematical Induction and QR1, ` ∀xAi. Sim-
ilarly for v*(∀xAi) = F, we use the recursive determination of a numerical
constant m such that v*(Aim/x) = F. By induction hypothesis, ` ∼Aim/x,
for this m, and hence ` ∼∀xAi. The induction on the number of introduced
variables can now proceed as above. �

Thus, by Lemmas 2 and 3:
Theorem 1.
The system MC# is metacomplete, i.e. v(A) = T iff A is provable in MC#,
and also v*(A) = F iff ∼A is provable in MC#.

Corollaries.
For MC#:

(1) If ` A ∨ B then ` A or ` B, for sentences A, B. [Priming Property]
(2) If ` A ∨ B then, for all constant instances Ai ∨ Bi of A ∨ B, ` Ai or

` Bi. [Extended Priming Property]
(3) If ` ∃xA then ` Am/x, for some numerical constant m, for sentence

∃xA. [Satisfaction Property]
(4) If ` ∃xA then, for all constant instances ∃xAi of ∃xA, ` Aim/x, for

some numerical constant m. [Extended Satisfaction Property]
Corollary (2) is a nice yardstick by which applied logics can be judged. It

extends Theorem 3 of Brady and Rush [2008]: For any formula A built up
from atoms of form a = b, using ∼, & and ∨ only, if A∨∼A is provable then,
for each of its constant instances A′ ∨ ∼A′, either A′ or ∼A′ is provable. It
ensures that the ∨-I rule introduces all constant disjunctions. Next we have
the proof of simple consistency, which, given the nature of the methods we
have been using, is obtained by finitary methods.

Theorem 2.
If v(A) = T then v*(A) = T. Thus, MC# is simply consistent.
Proof. By induction on formula construction.
(i) The base case concerns the atoms of form s = t, for terms s and t. For
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constant terms si and ti, v(si = ti) = v*(si = ti), and hence the theorem
holds. For terms s and t with variables, v(s = t) = T and v*(s = t) = F
clearly cannot both hold.
(ii) For sentences A and B, if v(A & B) = T then, by using the induction
hypothesis for A and B, v*(A & B) = T. Similarly, if v(A ∨ B) = T then
v*(A ∨ B) = T, and if v(∼A) = T then v*(∼A) = T, also by induction hy-
pothesis. For any sentence A → B, if v(A → B) = T then v*(A → B) = T,
since the latter always holds. For formulae A and/or B with variables, the
theorem clearly applies to these cases.
(iii) For a sentence ∀xA, if v(∀xA) = T then, by induction hypothesis,
v*(∀xA) cannot be F. Again, for A with other variables, v(∀xA) = T and
v*(∀xA) = F cannot both hold. �

Theorem 3.
For all sentences A, built up from atoms using ∼, & and ∨ only, v(A) =
v*(A). Thus, these sentences are negation-complete, as well as consistent.
Proof. By induction on formula construction. The base case is as for Theo-
rem 2. The induction steps for ∼, & and ∨, follow by converse reasoning to
that of Theorem 2. �

Theorem 4.
The rule CR1, ∼s = t, s = t ∨ B ⇒ B, is an admissible rule of MC#.
Proof. Let ` ∼s = t and ` s = t ∨ B. Then, for all their respective con-
stant instances, ` ∼si = ti and ` si = ti ∨ Bi, and, by Corollary (1) above,
` si = ti or ` Bi. By Theorem 2, ` Bi, and by Lemma 2, v(Bi) = T, for
all constant instances. By the proof method of Lemma 2, v(B) = T, and, by
Theorem 1, ` B. �

Corollary.
The DS, ∼A, A ∨ B ⇒ B, is also an admissible rule of MC#.
Proof. The proof of Theorem 4 equally applies to general formulae A in
place of s = t. �

This corollary allows us to add the full DS as a rule of the system MC#,
as each of its rules just preserve true metavaluations and hence theorem-
hood in MC#, and thus the DS cannot cause a non-theorem to be derived.
Then, the unprovability arguments of Lemma 1 will still apply, as the true
metavaluations do characterize a simply consistent subtheory of the incon-
sistent modular arithmetic used in the proof of this lemma.

Ex Falso Quodlibet, A, ∼A ⇒ B, can be derived from the DS by the famil-
iar Lewis argument. This rule proves useful in deriving rules in arithmetic,
as it can ensure that a rule A ⇒ B continues to hold when ∼A is a theo-
rem. Rules are always stated in general terms even though they only apply
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in the case when all their premises are theorems, and thus EFQ will aid us
in showing that a rule continues to hold even when the negation of one of its
premises is a theorem. We will use the DS and EFQ in this way in the proofs
of Section 6 below.

The DS is also added to the derivations, A, B ⇒ C and A, Bm/x ⇒ Cm/x
of MR1 and QMR1, respectively. When we apply MR1 to the DS, we get
D ∨∼A, D ∨ A ∨ B ⇒ D ∨ B, a strengthened form of the DS, which would
still be admissible in the manner of Theorem 4. Further, if we apply QMR1
to the DS to yield ∼A, ∃x(A ∨ B) ⇒ ∃xB, then this can be transformed to
∼A, A ∨ ∃xB ⇒ ∃xB, an instance of the DS and thus admissible. Note that
the form ∃x∼A, A∨B ⇒ ∃xB does not apply as x should be free in A∨B.6

5. Extending these Results to Metacomplete Logics

For which logics do the above proofs of results go through? Clearly, since
metavaluations are used to model the logic, the logics will need to be meta-
complete. At the sentential level, M1- and M2-metacomplete logics, as de-
fined in Slaney [1987], would normally suffice for Lemmas 2 and 3, and we
can choose either to include or exclude the distribution axiom, A & (B ∨
C) → (A & B) ∨ (A & C), and choose either to include the meta-rule ‘if
A, B ⇒ C then D ∨ A, D ∨ B ⇒ D ∨ C’, the meta-rule ‘if A ⇒ B then
C ∨ A ⇒ C ∨ B’, or no meta-rule at all.

However, since we have changed the usual order of application, i.e. com-
pleteness before soundness, and we have proved soundness first before com-
pleteness, some of the soundness proofs that rely on completeness will not
be able to be proved. These include the key axioms, A → .A → B → B,
(A → .B → C) → .B → .A → C and A → .B → A, where ‘if
v(A) = T then ` A’ or the same with B are needed, and so we cannot
include these axiom-forms in our logics. Nevertheless, we can include some

6 Nevertheless, there is a proof of ∀x(A ∨ B) ⇒ A ∨ ∀xB, in the special case where A
is classical, i.e. the LEM, A ∨ ∼A, and the DS, ∼A, A ∨ B ⇒ B, both hold for A. Here, if
A is quantifier-free and ‘→’-free, A will satisfy the LEM. For such an A, apply the DS: ∼A,
A∨Ba/x ⇒ Ba/x. Then, by QA1 and QR1, ∼A, ∀x(A∨B) ⇒ ∀xB, and so by MR1, A∨∼A,
A ∨ ∀x(A ∨ B) ⇒ A ∨ ∀xB. Hence, ∀x(A ∨ B) ⇒ A ∨ ∀xB.
Note that the derivation of ∀x(A ∨ B) ⇒ ∃xA ∨ ∀xB, mentioned in footnote 5, requires
the replacement of A in ∀x(A ∨ B) ⇒ A ∨ ∀xB by ∃xA. Since ∃xA need not satisfy the
LEM, this existential form need not follow here. Also, note that the counter-example given
at the beginning of Section 4 involved this existential form and thus will rely on the non-
classicality of ∃xA in order to work. Moreover, it can be shown that ∃xA ∨ ∼∃xA and
∀x(A ∨ B) ⇒ ∃xA ∨ ∀xB are inter-derivable, given the DS for ∃xA and the LEM for Ab/x

(b not free in A).
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weakened forms, obtained by replacing an ‘→’ by a rule ‘⇒’ or by replac-
ing its antecedent by an ‘→’-formula. Thus, we could include the rules,
A ⇒ A → B → B, A → .B → C, B ⇒ A → C and A ⇒ B → A, and the
axioms, A → B → .A → B → C → C, (A → .B → C → D) → .B →
C → .A → D and A → B → .C → .A → B. We could also include the
weakened axiom A → .A → A.

However, there is still one more consideration. All these logics, bar those
with the rule, A ⇒ B → A, or with the axiom, A → B → .C → .A → B,
are contained in RM3 and do not include the DS, and so suffice for Lemma 1.
Again, the DS can be admissibly added to the arithmetic, once it is shown to
be consistent. The quantificational axioms and rules are just those of MCQ-.

We first present just the sentential axioms and rules that are not included
in MC, and then point out which combinations yield M1-logics and which
yield M2-logics, all of which will suffice as the sentential basis for the results
of this paper.
Additional Axioms.
11. A & (B ∨ C) → (A & B) ∨ (A & C).
12. A → B → .C → A → .C → B.
13. A → B → .B → C → .A → C.
14. (A → B ∨ C) & (A & B → C) → .A → C.
15. A → B → .A → B → C → C.
16. (A → .B → C → D) → .B → C → .A → D.
17. A → .A → A.
Additional Rules.
5. A ⇒ A → B → B.
6. A → .B → C, B ⇒ A → C.

The basic system B of Routley and Meyer in [RLR1] is MC without A10
and with A9 replaced by the rule:
4. A → ∼B ⇒ B → ∼A.
A suitable M1-logic is obtained by adding to the system B, zero or more of
the axioms A9–14,17. A suitable M2-logic can be obtained by adding rule
R5, and then adding to B, zero or more of the axioms A9,11–13,15–17 and
the rule R6. For these M2-logics, in the assignment for the metavaluation
v*, replace ‘v*(A → B) = T’ by ‘v*(A → B) = T iff, if v(A) = T then
v*(B) = T’. The assignment v*(A → B) = T applies to the M1-logics only.
We also note that for M2-logics the induction step for formulae A → B still
applies in the proof of Theorem 2. Since v(A → B) = T and v(A) = T,
v(B) = T follows, and also v*(B) = T by the induction hypothesis.
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6. Comparison with Classical Peano Arithmetic

Lastly, we will examine the development of arithmetic in Mendelson’s
[1964]7 to compare what our system can and cannot do in relation to the clas-
sical Peano arithmetic. The inclusion of existential distribution, A & ∃xB ⇒
∃x(A & B), will make quite a difference to the formal development of arith-
metic as s < t and t | s (t is a divisor of s) are defined in terms of an existen-
tial quantifier, as can s ≤ t and ∼s = t. Thus, existential quantifiers can be
moved around in the standard classical way, even if universal quantifiers are
more restricted in their movements.

One advantage of arithmetic is that all negative classical statements can be
rendered positive. Just push negations through the formula until they attach
to identity statements of form, ∼s = t, and replace them by ∃x(s + x′ =
t) ∨ ∃x(t + x′ = s). Then, it would leave the only restriction on classical
Peano arithmetic as the restriction on distribution of universal quantifiers
over disjunction.

We now proceed to examine Chapter 3 ‘Formal Number Theory’ of Men-
delson [1964] in some detail. We start with the axioms of his system S of
arithmetic and then explore each of his propositions from 3.1 to 3.11. We
should first note that the inferential propositions amongst these are stated in
‘⊃’-form. Most often, these will be proved in rule-form and converted to
‘⊃’-form using the LEM and MR1, as follows:
Given A ⇒ B, ∼A ∨ A ⇒ ∼A ∨ B, by MR1, and hence A ⊃ B, due to the
LEM.
Occasionally, we will prove A ⊃ B in the form ∼A ∨ B, in which case
the rule-form easily follows by the DS. Recall that the LEM holds for all
formulae of form s = t and for all formulae built from these by using the
connectives ∼, &, ∨. Moreover, we will prove the LEM for s < t and
t | s along the way, enhancing the range of available ‘⊃’-forms of inferential
propositions.

Mendelson lists the axioms of S, as follows:
[We convert the symbolism, as appropriate.]
(S1) a = b ⊃ (a = c ⊃ b = c).
(S2) a = b ⊃ a′ = b′.
(S3) 0 6= a′.
(S4) a′ = b′ ⊃ a = b.
(S5) a + 0 = a.
(S6) a + b′ = (a + b)′.
(S7) a × 0 = 0.

7 More recent editions such as the 5th, dated 2010, are little different in this chapter.
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(S8) a × b′ = a × b + a.
(S9) A(0) ⊃ (∀x(A(x) ⊃ A(x′)) ⊃ ∀xA(x)), for any A(x).

(S3), (S5), (S6), (S7) and (S8) are directly provable in our system MC#,
whilst (S1), (S2) and (S4) are provable from their rule-forms with help from
the LEM. Because of the generality of the formula A in (S9), the LEM will
not be available here and the meta-rule-form NMR1: if A(m) ⇒ A(m′)
then A(0) ⇒ A(t), will be left as it stands, replacing (S9). In any case, this
form is stronger than (S9) in that the rule A(m) ⇒ A(m′) is easier to show
than the ‘⊃’-form. And, Mathematical Induction is usually applied in rule-
form anyway, in deducing a universal conclusion from the Base Case and the
Induction Step, which was established by deducing A(x′) from A(x).

Mendelson’s (S1′)–(S8′) are simply (S1)–(S8) with terms substituted for
variables, easily done via QR1 and QA1 in MC#. His Proposition 3.2(a)–(o)
is as follows:
(a) t = t.
(b) t = r ⊃ r = t.
(c) t = r ⊃ (r = s ⊃ t = s).
(d) r = t ⊃ (s = t ⊃ r = s).
(e) t = r ⊃ t + s = r + s.
(f) t = 0 + t.
(g) t′ + r = (t + r)′.
(h) t + r = r + t.
(i) t = r ⊃ s + t = s + r.
(j) (t + r) + s = t + (r + s).
(k) t = r ⊃ t × s = r × s.
(l) 0 × t = 0.
(m) t′ × r = t × r + r.
(n) t × r = r × t.
(o) t = r ⊃ s × t = s × r.
The proofs in MC# of (a)–(o) can be carried out in rule-form in the style of
Mendelson, with appropriate ‘⊃’-forms introduced by MR1 and the LEM,
instead of using the Deduction Theorem. However, we can use the identity
axioms and rule to expedite the proofs of (a)–(e),(i),(k),(o). Note that if
mathematical induction is used to prove (e) or (k), induction on ‘s’ can be
carried out in the respective consequent formulae, under assumption, with
the ‘⊃’ added afterwards.

Mendelson’s Corollary 3.3 essentially consists of the identity axiom IA1
and the identity rule IR1. Proposition 3.4(a)–(d) is as follows:
(a) t × (r + s) = (t × r) + (t × s).
(b) (r + s) × t = (r × t) + (s × t).
(c) (t × r) × s = t × (r × s).
(d) t + s = r + s ⊃ t = r.
The proofs of (a)–(c) are as in Mendelson, but the mathematical induction
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proof of (d) is applied to ‘s’ in the whole ‘⊃’-formula. And, as given above,
all the previous ‘⊃’-forms have been introduced by use of the LEM and
MR1.

The numerals 1, 2, . . . are defined for Proposition 3.5 as 0′, 1′, . . . We set
out 3.5(a)–(j), as follows:
(a) t + 1 = t′.
(b) t × 1 = t.
(c) t × 2 = t + t. (Etc. for 3, 4, . . . )
(d) t + s = 0 ⊃ t = 0 & s = 0.
(e) t 6= 0 ⊃ (s × t = 0 ⊃ s = 0).
(f) t + s = 1 ⊃ (t = 0 & s = 1) ∨ (t = 1 & s = 0).
(g) t × s = 1 ⊃ (t = 1 & s = 1).
(h) t 6= 0 ⊃ ∃y(t = y′).
(i) s 6= 0 ⊃ (t × s = r × s ⊃ t = r).
(j) t 6= 0 ⊃ (t 6= 1 ⊃ ∃y(t = y′′)).
Again, we follow Mendelson’s style of proof. For (d), the induction is ap-
plied to ‘s’ in the whole formula, and, for the induction step, we use the
theorem, ∼(t + m)′ = 0, applying ∼A ⇒ ∼A∨B to establish t + m′ = 0 ⊃
t = 0 & m′ = 0, without using the induction hypothesis. For (e), induction
is on ‘s’ in the consequent ‘⊃’-formula, while the main ‘⊃’ is added later.
Again, the induction hypothesis is not used. Also for (f), induction is on ‘s’
and the induction hypothesis is not used. For (g), induction is also on ‘s’,
and, for (h), induction is on ‘t’ with no use of induction hypothesis. For (i),
induction is on ‘r’ and follows the proof as laid out in Mendelson, the in-
troduction of the universal quantifier over x in the ‘t’-position being used to
allow a different substitution from ‘t’ to be made. For (j), we use induction
on ‘t’.

We set out only Proposition 3.6(a), as (b) and (c) are outside the scope of
the arithmetic derivations we are exploring in this paper.
(a) For any natural numbers m and n, if m 6= n then m 6= n, and also,
m + n = m + n and m × n = m × n.
The proofs follow Mendelson, the latter two by induction on n in the meta-
language.

We introduce the following definitions for use in Proposition 3.7.
t < s for ∃w(w 6= 0 & t + w = s).
t ≤ s for t < s ∨ t = s.
t > s for s < t.
t ≥ s for s ≤ t.
t ≮ s for ∼(t < s).
Proposition 3.7(a)–(z) is as follows:
(a) t ≮ t.
(b) t < s ⊃ (s < r ⊃ t < r).
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(c) t < s ⊃ s ≮ t.
(d) t < s ≡ t + r < s + r.
(e) t ≤ t.
(f) t ≤ s ⊃ (s ≤ r ⊃ t ≤ r).
(g) t ≤ s ≡ (t + r ≤ s + r).
(h) t ≤ s ⊃ (s < r ⊃ t < r).
(i) 0 ≤ t.
(j) 0 < t′.
(k) t < r ≡ t′ ≤ r.
(l) t ≤ r ≡ t < r′.
(m) t < t′.
(n) (0 < 1) & (1 < 2) & (2 < 3) & . . .
(o) t 6= r ⊃ (t < r ∨ r < t).
(o′) t = r ∨ t < r ∨ r < t.
(p) t ≤ r ∨ r ≤ t.
(q) t + r ≥ t.
(r) r 6= 0 ⊃ t + r > t.
(s) r 6= 0 ⊃ t × r ≥ t.
(t) r 6= 0 ≡ r > 0.
(u) r > 0 ⊃ (t > 0 ⊃ r × t > 0).
(v) r 6= 0 ⊃ (t > 1 ⊃ t × r > r).
(w) r 6= 0 ⊃ (t < s ≡ t × r < s × r).
(x) r 6= 0 ⊃ (t ≤ s ≡ t × r ≤ s × r).
(y) t ≮ 0.
(z) t ≤ r & r ≤ t ⊃ t = r.

Now, the LEM does not initially hold for any of the above definitions
which are based on that for t < s. This is because the existential quantifier
in the definitions goes beyond the scope of our previous proof of the LEM.
So, each of the 3.7 ‘⊃’-forms are first proved in rule-form, i.e. with ‘⇒’ re-
placing each ‘⊃’ occurring within, and hence with ‘⇔’ replacing ‘≡’. Then,
the LEM will be proved for t < s, using some of these rule-forms, which
will then enable each of the above ‘⊃’-forms to be proved. Of course, those
‘⊃’-forms with ‘t 6= r’ or ‘r 6= 0’ as an antecedent can be obtained without
this result.

The proofs of the rule-forms of 3.7(a)–(z) will still follow Mendelson’s
style of proof. For 3.7(b) and subsequently (and also previously for 3.5(i)),
Mendelson’s use of his Rule C is replaced by our use of the meta-rule QMR1.
After an existential statement ∃wA(w) is reached, we introduce Aa/w as an
assumption, with ‘a’ new to the proof. Then, we prove a conclusion, usually
without the ‘a’, and apply QMR1. For 3.7(b), we note the role of the existen-
tial distribution rule, A & ∃wB ⇒ ∃w(A & B) in carrying this out. In 3.7(f)
and subsequently, we use the rule version of disjunction elimination:
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if A ⇒ C and B ⇒ C then A∨B ⇒ C. [This is easily proved using MR1.]
Note that 3.7(m) is best proved before (k), (o′) before (o), and (y) before (w).

Since 3.7(o′) is akin to the LEM for t < r, we will set out the proof. We
use mathematical induction on ‘r’ in the formula ∀x(x = r ∨ x < r ∨ r < x).
For the base case, 0 ≤ a, by (i), and hence a = 0∨a < 0∨0 < a and ∀x(x =
0∨x < 0∨ 0 < x). For the induction step, let ∀x(x = m ∨ x < m ∨ m < x).
Now, by 3.5(h), a = 0∨∃y(a = y′). By (j), a = 0 ⇒ a = m′∨a < m′∨m′ <
a. Let a = b′. Then, by induction hypothesis, b = m ∨ b < m ∨ m < b, and
then b′ = m′ ∨ b′ < m′ ∨ m′ < b′, by using (k) and (l). Substituting a/b′,
a = m′ ∨ a < m′ ∨ m′ < a, and, by QMR1, ∃y(a = y′) ⇒ a = m′ ∨ a <
m′ ∨ m′ < a. By MR1, a = 0 ∨ ∃y(a = y′) ⇒ a = m′ ∨ a < m′ ∨ m′ < a.
Finally, a = m′ ∨ a < m′ ∨ m′ < a and ∀x(x = m′ ∨ x < m′ ∨ m′ < x).
Thus, ∀x(x = r ∨ x < r ∨ r < x) and t = r ∨ t < r ∨ r < t.

Further, 3.7(o′) can be used to prove the LEM for s < t, as follows. By
3.7(o′), s = t ∨ s < t ∨ t < s. By (c), t < s ⇒ s ≮ t. By (a), s = t ⇒ s ≮ t.
By MR1, s = t ∨ t < s ⇒ s ≮ t. So, by MR1, s < t ∨ s ≮ t. The LEM then
extends to the other definitions: t ≤ s, t > s, t ≥ s, t ≮ s. Thus, each of the
rule-forms in 3.7 can be replaced by their ‘⊃’-forms.

We conclude 3.7 with a proof of the converse form of 3.7(w): r 6= 0 ⊃
(t× r < s× r ⊃ t < s). We use mathematical induction on ‘s’ in the formula
∀x(r 6= 0 ⊃ (x × r < s × r ⊃ x < s)). For the base case, ∼a × r <
0 × r, by (y), and hence ∀x(r 6= 0 ⊃ (x × r < 0 × r ⊃ x < 0)). For
the induction step, let ∀x(r 6= 0 ⊃ (x × r < m × r ⊃ x < m)). Let
r 6= 0. Now, a = 0 ∨ a 6= 0. By (j), a = 0 ⇒ a < m′ and hence
a = 0 ⇒ a × r < m′ × r ⊃ a < m′. By 3.5(h), a 6= 0 ⇒ ∃y(a = y′). Let
a = b′. By induction hypothesis, b × r < m × r ⊃ b < m and hence, by
(k) and (l), ∀w(w = 0 ∨ b × r + w 6= m × r) ∨ b′ < m′. Then, by 3.4(d),
∀w(w = 0∨b′×r+w 6= m′×r)∨b′ < m′. Hence, b′×r < m′×r ⊃ b′ < m′

and, substituting a/b′, a = b′ ⇒ a × r < m′ × r ⊃ a < m′. So, by QMR1,
∃y(a = y′) ⇒ a×r < m′×r ⊃ a < m′ and a 6= 0 ⇒ a×r < m′×r ⊃ a < m′.
Since a = 0∨a 6= 0, a×r < m′×r ⊃ a < m′, by MR1. So, r 6= 0 ⊃ (a×r <
m′ × r ⊃ a < m′), by LEM, and ∀x(r 6= 0 ⊃ (x × r < m′ × r ⊃ x < m′)).

Proposition 3.8(a)–(c) is as follows:
(a) t = 0 ∨ . . . ∨ t = k ≡ t ≤ k, for any natural number k.
(a′) A(0) & . . . & A(k) ≡ ∀x(x ≤ k ⊃ A(x)), for any k and formula A.
(b) t = 0 ∨ . . . ∨ t = k − 1 ≡ t < k, for any k > 0.
(b′) A(0) & . . . & A(k − 1) ≡ ∀x(x < k ⊃ A(x)), for any k > 0 and for-
mula A.
(c) (∀x(x < y ⊃ A(x)) & ∀x(x ≥ y ⊃ B(x))) ⊃ ∀x(A(x) ∨ B(x)).
3.8(a) can be proved in its ‘≡’-form by induction on k in the metalanguage,
as set out in Mendelson, using the LEM. (a′) in its rule-form, A(0) & . . . &
A(k) ⇔ ∀x(x ≤ k ⊃ A(x)), can be proved using (a). This is not extended
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to its ‘≡’- form above, since we do not have the LEM in the generality
required for A(x). (b) follows as for (a) and (b′) is proved in the form,
A(0) & . . . & A(k − 1) ⇔ ∀x(x < k ⊃ A(x)), and again this is not ex-
tended to its ‘≡’-form above. (c) also follows in its rule-form, (∀x(x < y ⊃
A(x)) & ∀x(x ≥ y ⊃ B(x))) ⇒ ∀x(A(x) ∨ B(x)), and is not extended to its
above ‘⊃’-form.

Proposition 3.9(a)–(b), with Exercise:
(a) (Complete Induction) ∀x(∀z(z < x ⊃ A(z)) ⊃ A(x)) ⊃ ∀xA(x).
(b) (Least Number Principle) A(x) ⊃ ∃y(A(y) & ∀z(z < y ⊃ ∼A(z))).
(Ex.) (Method of Infinite Descent): ∀x(A(x) ⊃ ∃y(y < x & A(y))) ⊃
∀x∼A(x).
3.9(a) can be proved in the meta-rule formulation:
(∀z(z < t ⊃ A(z) ⇒ A(t)) ⇒ ∀xA(x).
The proof follows that of Mendelson, with B(s) as ∀z(z ≤ s ⊃ A(z)), by
mathematical induction on ‘s’ in B(s).
However, 3.9(b) is provable in the contraposed rule-form:
∼∃y(A(y) & ∀z(z < y ⊃ ∼A(z))) ⇒ ∀y∼A(y).
The proof follows Mendelson, using (a), but the rule does not contrapose due
to the lack of LEM for the premise. This is mainly because of the generality
of the formula A, but there could also be a problem with the two quantifiers.
There is a reasonable prospect, for some specific A such that the LEM holds
for it, of obtaining the least number satisfying A and thus being able to de-
rive the least-number principle in rule-form and hence in ‘⊃’- form.
(Ex.) is provable in rule-form: ∀x(A(x) ⊃ ∃y(y < x & A(y))) ⇒ ∀x∼A(x),
using 3.9(a).

We then introduce the notion of divisibility.
t | s for ∃z(s = t x z). (t divides s, or s is divisible by t.)
Proposition 3.10(a)–(h), with Exercises 1 and 2:
(a) t | t.
(b) 1 | t.
(c) t | 0.
(d) t | s & s | r ⊃ t | r.
(e) s 6= 0 & t | s ⊃ t ≤ s.
(f) t | s & s | t ⊃ s = t.
(g) t | s ⊃ t | (r × s).
(h) t | s & t | r ⊃ t | (s + r).
(Ex.1) t | 1 ⊃ t = 1.
(Ex.2) t | s & t | s′ ⊃ t = 1.
We prove (a)–(c) and the rule-forms of (d)–(h). In the proof of the rule-form
of (f), we consider the three cases, s 6= 0, t 6= 0 and s = t = 0. Exercise 1
is provable in ‘⊃’-form starting with t 6= 1 ∨ t = 1, whereas Exercise 2 is
proved in rule-form, as follows. Let s = t × a and s′ = t × b, for some a and
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b, and so t × b = t × a + 1. By letting b < a, prove 1 = 0, and similarly, by
letting a = b, prove 1 = 0. Hence, a < b and by letting a + d = b, t × d = 1
and t = 1.

Proposition 3.11 gives the existence of a unique quotient and remainder
upon division:
y 6= 0 ⊃ ∃!u∃!v(x = y × u + v & v < y).
The proof follows Mendelson.
Proposition 3.11 plays an important role in the proof of the LEM for t | s,
which is presented as follows:
s = 0 ⇒ 0 | s, by 3.10(c). s 6= 0 ⇒ ∀w(s 6= 0 x w) ⇒ ∼0 | s. Hence,
t = 0 ⇒ t | s ∨ ∼t | s.
Let t 6= 0. Then, by 3.11, ∃!u∃!v(s = t × u + v & v < t). So, let s =
t × a + b & b < t and s = t × c + d & d < t ⇒ a = c & b = d. b = 0 ⇒
s = t × a ⇒ t | s. So, it remains to consider b 6= 0. Let s = t × c & 0 < t.
By uniqueness, a = c and b = 0. So, s = t × c ⇒ b = 0, s = t × c ⊃ b = 0,
b 6= 0 ⊃ s 6= t×c, and b 6= 0 ⇒ ∀z(s 6= t×z) ⇒ ∼t | s. Since b = 0∨b 6= 0,
t | s ∨ ∼t | s. So, t 6= 0 ⇒ ∃!u∃!v(s = t × u + v & v < t) ⇒ t | s ∨ ∼t | s,
and, since t = 0 ∨ t 6= 0, t | s ∨ ∼t | s follows.

As suggested by Mendelson, we can recursively introduce the functions ab

and a!. The recursive definition for ab is:
a0 = 1.
ab′ = ab × a.
From this, we can easily prove:
ab+c = ab × ac, by induction on b, and (ab)c = ab×c, by induction on c.
The recursive definition of a! is:
0! = 1.
a′! = a′ × a!
These just expand the range of terms and thus the LEM is unaffected.

In general, mathematical induction enabled us to prove the properties con-
cerning identity of terms, due to the use of the LEM to convert rules to their
corresponding ‘⊃’-formulae. The properties concerning the ordered relation
‘<’ and the divisibility relation ‘|’ relied upon the removal of the existential
quantifier of their definitions and the use of previous identity properties.

In conclusion, we appear to be able to prove the expected properties for
existentially defined concepts. The problems occur with the generality of an
arbitrary formula A, where the LEM cannot be assumed, or with noncon-
structive methods such as occurs with the Least Number Principle with this
generality. On this latter point, I suspect that the Gödel representation of
provability would not satisfy the LEM, due to the probable lack of recursive
procedure for determining the set of all non-theorems. Also, leading up to
this, the failure to prove the Least Number Principle makes it hard to see how
general recursion can be formulated, the lack of which would restrict us to
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primitive recursion. And, our use of recursion in determining the metavalu-
ations of quantified formulae and those with free variables reflects primitive
recursion rather than general recursion. Further, the logic MC, together with
all M1- and M2-metacomplete logics of Section 5, are constructive logics
in that their positive fragments are contained in intuitionist logic and their
negated formulae still need to be established, but in a corresponding mirror-
image way to that of unnegated formulae.8 This contrasts with the falsity of
classical logic, which acts as a fallback when truth does not apply. The clar-
ification of all this will have to await another paper, which details the Gödel
argument.
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