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IT MIGHT HAVE BEEN CLASSICAL LOGIC

DIDERIK BATENS∗

Abstract
In this paper, a propositional logic Q is presented. This logic is more
attractive than classical propositional logic P for explicating actual
proofs. Moreover, while Q and P assign the same consequence set
to consistent premise sets, Q assigns a sensible and non-trivial con-
sequence set to inconsistent premise sets.

1. Aim of this paper

When Frege designed classical propositional logic, henceforth P, he had ba-
sically two sources to rely on. The first source was a large collection of
alleged proofs, some recognized as correct, others containing steps that were
deemed mistaken. This provided the raw material for which an explication
(in the sense of [9]) had to be provided. The second source was a cluster of
philosophical views, most of them deriving from traditions that had started
with Aristotle. These views formed the theoretical constraints for the new
logic.

This paper invites the reader to imagine that the philosophical views had
been absent or different, and to join in a project that leads to a different
propositional logic, which will be called Q. Both Q and the journey leading
there are interesting. For one thing, Q is at least as good an explication of
“correct proof” as P. To be more precise, all sensible alleged proofs that are
classified as correct by P are classified as correct by Q and vice versa.1 So it
will not come as a surprise that P and Q assign exactly the same consequence
set to consistent premise sets.

∗Research for this paper was supported by subventions from the Fund for Scientific
Research – Flanders and from Ghent University. I am indebted to Peter Verdée for discussions
and very careful and extremely helpful comments on a former version.

1 What is meant here by “sensible” will be explicated in the sequel of the text.
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242 DIDERIK BATENS

Nevertheless, Q is very different from P. It is so different that some logi-
cians, before seeing Q at work, would consider the combination of its prop-
erties impossible. Many proofs sanctioned correct by P cannot be obtained
in terms of Q and precisely these ‘proofs’ display features that proofs should
not display. Moreover, Q is defined in terms of a procedure, which provides a
decision method at the propositional level and a positive test for derivability
at the predicative level.

A remarkable feature of Q is that it invalidates Ex Falso Quodlibet. So
although, as said above, everything derivable from a consistent premise set
by P is derivable from the same premise set by Q, Q is a paraconsistent
logic, and actually a strictly paraconsistent one.2 So it does not lead from
inconsistency to triviality. To the contrary, it assigns a sensible consequence
set to every inconsistent premise set.

That Q assigns the same consequence set as P to consistent premise sets
makes it a very unusual paraconsistent logic. And indeed, Q is remarkable.
Unlike most paraconsistent logics, Q validates Disjunctive Syllogism: A ∨
B,¬A `Q B. However, unlike the known paraconsistent logics that validate
Disjunctive Syllogism, Q also validates Addition: A `Q A∨B. Any logician
will realize that something unexpected is going on here.

Notwithstanding all this, Q is a simple system and its application is easy. A
warning is in place here. We have all been made so familiar with the theory
behind the proofs of Tarski logics, that we consider most of it as obvious.
Mastering the theory behind Q-proofs requires a couple of definitions and
conventions. After this, however, all is simple and easy.

I shall not argue that P has to be replaced by Q. Nor shall I try to present
an elaborate set of philosophical views in order to underpin Q. All I want to
argue is that Q is a fascinating system, which deserves careful attention and
further study.

In subsequent sections, I shall spell out Q, provide it with a semantics, and
study its central properties. I shall keep the discussion at the propositional
level, as the typical difference with classical logic resides there. It is useful
to mention, however, that the corresponding predicative logic is called CL−

(pronounce it C-L-minus) in Ghent and that results on it are forthcoming (or
meanwhile published), including an ‘axiomatization’ of CL− in [21]. Most
of that work was done by Peter Verdée and Dagmar Provijn.

Before moving on, let me mention that the present paper had a long history.
The idea of a prospective dynamics — see below — was first applied to P in
[7]. There it became clear that Ex Falso Quodlibet is isolated from the other
rules. It took a while before I realized that the logic Q, which is obtained by

2 A logic L is paraconsistent iff A,¬A 0L B. This means that there is an A such that
not all formulas are L-derivable from {A,¬A}. A logic L is strictly paraconsistent iff there
is no A such that all formulas are L-derivable from {A,¬A}.
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dropping this isolated rule, has impressive properties that largely compensate
the lack of some usual properties. The logic Q was first presented in the
Third World Congress on Paraconsistency (Toulouse, 2003). Not much later,
I wrote a draft paper on Q, containing a semantics and some metatheory.
More urgent work, mainly on adaptive logics, prevented me from finishing
the paper, until 2010 when the present volume was planned. An advantage
of this situation is that other people have worked on the matter, studying the
system and extending it, and that the present version is in line with those
results. Moreover, many results presented here are new, for example the
three-valued semantics and the connected metatheory.

2. Some Ideas Behind the Logic

Engaging in constructing an explication for alleged proofs, it would come to
mind that proofs are goal-directed sequences: they follow a path that leads
from premises to the conclusion. Moreover, proofs are the result of goal-
directed search processes. In searching for a proof, one follows a certain
procedure, which may be more or less deterministic and may or may not lead
to success. Obviously, there is a difference between the successful result of
a proof search and a published proof. The latter is cleaned up and polished;
unsuccessful search branches are removed and the result is transformed in
such a way that it looks neat to the reader, that its line is easy to follow, and
that it provides insight into the proven statement. That published proofs are
cleaned up, does not mean that the search process that led to them and the
resulting ‘unclean’ proof are uninteresting or unimportant. Proof heuristics
is an important aspect of logic — logic teachers who neglect it are justly
unpopular.

Trying to derive p from the premise set {q ⊃ ¬(t∨¬r), t, q ∨ s, q ∨ (t ⊃
p)}, one might reason as follows. Clearly, p can be obtained from q∨(t ⊃ p)
provided we obtain both ¬q and t; t is a premise, so we are still looking for
¬q; this follows from q ⊃ ¬(t∨¬r) provided we obtain t∨¬r; this formula
can be obtained from either t or ¬r; and t is a premise. So the desired proof
is found.

If one follows a usual proof format, not much can be written down before
the proof is found — just the premises. There is a way around this: to push
part of the heuristics into the proof. This is realized by means of prospective
expressions, which have the form [∆] A, and are interpreted as: the formula
A can be obtained from the premises by obtaining the members of the finite
set ∆ from them. The finite set ∆ will be called the condition of [∆] A, even
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244 DIDERIK BATENS

if ∆ = ∅ as is explained below; A will be called the formula of [∆] A.3 With
this convention, the previous proof search leads to the following result —
some explanation follows.

1 [p] p Goal R11

2 q ∨ (t ⊃ p) Prem
3 [¬q] t ⊃ p 2; ∨E
4 [¬q, t] p 3; ⊃E R6

5 t Prem
6 [¬q] p 4, 5; Trans R11

7 q ⊃ ¬(t ∨ ¬r) Prem
8 [t ∨ ¬r]¬q 7; ⊃E R10

9 [t]¬q 8; C∨E R10

10 ¬q 5, 9; Trans
11 p 6, 10; Trans

The prospective expression [p] p on line 1 states the truism that p can be
obtained from the premises if p can be obtained from them. The function
of this expression is to indicate that we are trying to derive the formulas in
the condition, viz. p. Next we introduce a premise from which p can be
obtained — this is made precise in the next section. On line 3 the premise is
analysed: the disjunction is eliminated in such a way that p can be obtained
from the formula of the resulting prospective expression. This expression
states that t ⊃ p is obtained if ¬q is obtained. As we are trying to derive p,
the formula t ⊃ p is further analysed, which leads to line 4. The formula of
this line is p and this is what we were after because p is an (actually the only)
element of the condition of line 1. The second member of the condition of
4 is the premise t. It is introduced on line 5 and next is removed from the
condition of line 4 by Trans, resulting in 6. At this point a mark is added to
line 4. This line became redundant in view of line 6: ¬q alone is sufficient
to obtain p. At line 7, a premise is introduced in view of the target ¬q. The
premise is analysed at line 8. As the condition of 8 cannot be ‘obtained’
from a premise,4 the condition is analysed by eliminating the disjunction.
There are two ways for doing so; only the first occurs in the present proof:
the disjunction in the condition is eliminated by relying on the fact that t is

3 Prospective expressions are used in order to keep proofs between margins. An alterna-
tive is to write only the formula in the second column of the annotated proofs and to write
the condition in a fourth column. The idea of prospective proofs originated as an inversion
of the conditions that occur in the dynamic proofs of adaptive logics.

4 What I mean is that it is impossible to introduce a premise and to obtain [∆] t∨¬r from
it, for some ∆, in the same way as 4 is obtained from 2 and 9 is obtained from 7. The matter
is made precise in the next section.
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sufficient to obtain t∨¬r. The only member of the condition of line 9 occurs
at line 5. So we apply Trans and mark lines 8 and 9 as redundant. As the
formula of line 10 is the only member of the condition of line 6, Trans is
once more applied, whence p is derived unconditionally. At this point, line
1 is marked as redundant, which means that the goal is reached.

As we shall see in Section 4, the resulting sequence of prospective expres-
sions may be turned into a standard proof and there is an algorithm for doing
so. However, the sequence may be regarded as a proof itself.

Certain choices were made in constructing 1–11. After line 3, one might
have searched for ¬q, postponing the application of ⊃E. Similarly, one might
have derived [¬r]¬q instead of [t]¬q at line 9 (by C∨E). This would have led
to a dead end as ¬r cannot be obtained from the premises. As such choices
concern computational matters rather than conceptual matters, I shall not
discuss them in the present paper.

It is useful to consider the proof 1–11 as containing eleven prospective
expressions. So where a condition is absent, as at line 2, the formula is taken
to be preceded by an empty condition, as in [∅] q ∨ (t ⊃ p). The prospective
expression introduced by the Goal rule is called the goal expression. A proof
consisting of just an application of the Goal rule will be said to be at stage 1,
the sequence of lines obtained by extending a proof at stage n with one line,
will be said to be stage n + 1 of the proof.

3. The Procedure

An instruction is a rule with a deontic restriction attached to it. The restric-
tion is a permission or obligation to apply the rule in view of the stage of the
proof. A procedure is a set of instructions. An attempted proof for Γ `Q G
(see below) will be the result of applying a procedure. The restrictions will
depend on the stage of the proof, viz. on the prospective expressions that
occur in the proof. Incidentally, while a procedure is described here as a
complication of a system of rules, the latter (a formal system of the standard
kind) may also be seen as a borderline case of a procedure: a set of rules that
come with a universal permission.

That attempted proofs are defined in terms of a procedure is the natu-
ral outcome of the fact that proofs are the result of a goal-directed process.
Many procedures are equivalent in the sense that they lead to the same con-
sequence set. They may differ in efficiency, elegance, etc. Once a procedure
for explicating a set of alleged proofs is described, one may expect that im-
provements for it are proposed. Certain steps that look sensible at one point
may be deemed not sensible as insights in the procedure are gained. In order
to make my point in the present paper, I shall present a rather permissive
procedure, neglecting matters of efficiency.
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246 DIDERIK BATENS

Let me first mention the rules without their deontic restrictions. There are
three kinds of rules: formula analysing rules, condition analysing rules, and
‘structural’ rules. The first two kinds will be introduced in a unified form
(varying on a theme from [20]). Let ∗A denote the ‘complement’ of A, viz.
B if A has the form ¬B and ¬A otherwise.5 To each formula two other
formulas are assigned according to the following table:

a a1 a2 b b1 b2

A ∧ B A B ¬(A ∧ B) ∗A ∗B

A ≡ B A ⊃ B B ⊃ A ¬(A ≡ B) ¬(A ⊃ B) ¬(B ⊃ A)

¬(A ∨ B) ∗A ∗B A ∨ B A B

¬(A ⊃ B) A ∗B A ⊃ B ∗A B

¬¬A A A

The formula analysing rules for a-formulas and b-formulas are respectively:6

[∆] a
[∆] a1 [∆] a2

[∆] b
[∆ ∪ {∗b2}] b1 [∆ ∪ {∗b1}] b2

The condition analysing rules for a-formulas and b-formulas are respec-
tively:

[∆ ∪ {a}] A
[∆ ∪ {a1, a2}] A

[∆ ∪ {b}] A
[∆ ∪ {b1}] A [∆ ∪ {b2}] A

Here are the four further rules, in which Γ refers to the premise set and G
to the intended conclusion (the Goal):
Goal To introduce [G] G.

Prem To introduce A for some A ∈ Γ.

Trans
[∆ ∪ {B}] A

[∆′] B
[∆ ∪ ∆′] A

EM
[∆ ∪ {B}] A

[∆′ ∪ {¬B}] A
[∆ ∪ ∆′] A

5 Note that ∗∗¬p is ¬p but that ∗∗¬¬p is p, just like ∗∗p.

6 The rule to the left actually summarizes two rules: both [∆] a1 and [∆] a2 may be
derived from [∆] a; similarly for the rule to the right and for the condition analysing rule for
b-formulas.
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In order to spell out the deontic restrictions, we need three preparatory
steps. That A is a positive part of another formula is defined as the intersec-
tion of all relations fulfilling the following clauses:7

1. pp(A, A).

2. if pp(A, a1) or pp(A, a2), then pp(A, a).

3. if pp(A, b1) or pp(A, b2), then pp(A, b).
The set of goal-descendants in a prospective proof is defined as the small-

est set Σ for which hold:
1. [G] G ∈ Σ ,

2. [∆] G ∈ Σ if it is obtained by a condition analysing rule from a
[∆′] G ∈ Σ ,

3. [∆ ∪ Θ] G ∈ Σ if it is obtained by EM from [∆ ∪ {A}] G and [Θ ∪
{¬A}] G, and [∆ ∪ {A}] G ∈ Σ or [Θ ∪ {¬A}] G ∈ Σ ,

4. [∆ ∪Θ] G ∈ Σ if it is obtained by Trans from [∆ ∪ {A}] G ∈ Σ and
[Θ] A .

The members of the conditions of lines that are unmarked at stage s will
be said to be the targets at stage s. We shall see that, with the exception of
the Goal rule, rules are applied at a stage in function of the targets at that
stage.8 I shall consider three marking definitions:

Redundant A line in which [∆] A is derived is marked as redundant from
a stage s on iff, at stage s, [∆′] A has been derived for some ∆′ ⊂ ∆.
The mark is “Ri” (with i the stage at which the mark is introduced).

Circular A line in which [∆] A is derived is marked as circular iff {A} ⊂
∆ and [∆] A is not the goal expression. The mark is “C”.

Dead end An (otherwise unmarked) line that has [A1, . . . , An] B as its
prospective expression is marked as a dead end from a stage s on iff,
at stage s, there is an Ai (1 ≤ i ≤ n) to which no condition analysing
rule can be applied and that is not a positive part of any premise. The
mark is “Ai|” (for that specific Ai).

The sense of these definitions is easy to grasp. A line with prospective
expression [∆] A is redundant if another line of the proof reveals that the

7 Unlike what is done in [18] and [7], I do not introduce negative parts because there is no
need for them (and they complicate the predicative case). Note that, on the present definition,
pp(p,¬p ⊃ q) but not pp(¬¬p,¬p ⊃ q).

8 The requirement will be expressed indirectly for Trans — see below in the text — by
the requirement that the lines are unmarked.
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formula A may be obtained by obtaining the members of a proper subset of
∆. Circular lines are heuristically useless because obtaining the members of
∆ involves obtaining A; but if A is obtained, there is no need to look for the
other members of ∆. A line marked as a dead end is heuristically useless
in that, where [∆] A is its prospective expression, there is no point in trying
to derive some members of ∆ as other members of ∆ cannot be analysed
— so they are literals (sentential letters or negations of sentential letters) in
the present propositional case — and cannot be obtained from the premises
anyway.

Not all marked lines are useless. By applying EM, for example, one ob-
tains a prospective expression the condition of which does not contain all
formulas from the conditions of the two lines on which the application re-
lies. So one or more applications of EM that start from marked lines may
lead to an unmarked line.

Given the above, the (very permissive) procedure may be summarized as
follows.

(i) An attempted proof for Γ `Q G starts off by an application of the Goal
rule, introducing [G] G.

(ii) In an attempted proof, a prospective expression [∆] A can be intro-
duced at most once as a goal-descendant and at most once as a non-
goal-descendant.

(iii) A premise may be introduced (by Prem) at a stage if, at that stage, a
target is a positive part of it.

(iv) A member of the condition of a line that is not marked as redundant
may be analysed (by a condition analysing rule).

(v) A formula analysing rule resulting in [∆] A may be applied to a prospec-
tive expression that is not a goal-descendant, provided a target is a
positive part of A at the stage of the proof.

(vi) Trans may be applied to prospective expressions of unmarked lines.
(vii) EM may be applied to prospective expressions that are not marked as

redundant.
The expressed permissions are only valid in as far as the application fulfils

all obligations. For example, the permission expressed by (v) is restricted by
the ban imposed by (ii).

If restrictions that refer to marked lines are dropped (all members of prospec-
tive conditions are then targets), one obtains an even more permissive (and
less efficient) procedure. Still, if the premise set Γ is finite, a prospective
proof for Γ `Q G will either be successful or stop at a finite point.

Some comments on the procedure are useful. Clause (i) is required to
get the proof started. Clause (ii) prevents that the same formula is repeated
infinitely. The restriction is harmless in that the use of any occurrence
of a prospective expression is the same, except that an occurrence that is
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not a goal-descendant can be used more liberally than one that is a goal-
descendant. Premises are only introduced when they are useful in view of
(iii). As for (iv), note that a member of a condition may be analysed even if
it is itself a positive part of a premise. To see why this is necessary, consider
the target p∨q in the presence of the premise set {r∨ (p∨q), p∨s,¬s}. Al-
though p∨ q is a positive part of r∨ (p∨ q), the premises do not allow one to
obtain it from that premise, whereas analysing the target gives us p and this
can be obtained from the premises. Clause (v) warrants that the formulas of
goal-descendants are not analysed. This means that G is not analysed when-
ever it is the formula of a prospective expression that is a goal-descendant. It
can indeed be proved that analysing the formula of a goal-descendant, [∆]G,
is useless and moreover would make Theorem 3 false.9 The deontic restric-
tions warrant that the formulas of other prospective expressions, even if they
are identical to G, are analysed in a way that may be useful for the ongoing
proof. The restriction in clauses (vi) and (vii) provably prevent the addition
of useless prospective expressions.

Definition 1 : An attempted Q-proof for Γ `Q G is a list of prospective
expressions written by application of the above procedure.

Definition 2 : An attempted Q-proof for Γ `Q G is successful iff G occurs in
it on the empty condition.

Definition 3 : A Q-proof of G from Γ is an attempted Q-proof for Γ `Q G
that is successful.

Definition 4 : Γ `Q G iff there is a Q-proof of G from Γ.

Definition 5 : An attempted Q-proof for Γ `Q G stops iff the procedure does
not allow one to add a prospective expression to the attempted proof.

In connection with Definition 5, the reader should keep in mind that the
procedure is goal-directed. While [p] q occurs in some attempted Q-proofs
for p ⊃ q `Q q and occurs in all such proofs that stop, it does not occur in
any attempted proof for p ⊃ q `Q r.

Proofs of Q-theorems depend essentially on EM. A simple example is the
proof of (p ∧ q) ⊃ p :

1 [(p ∧ q) ⊃ p] (p ∧ q) ⊃ p Goal R5

2 [¬(p ∧ q)] (p ∧ q) ⊃ p 1; C⊃E R5

9 Peter Verdée gave me the following example: if the restriction were removed, [p,¬p] q
would occur in the prospective proof for p,¬p `Q p ∨ q.
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3 [p] (p ∧ q) ⊃ p 1; C⊃E p| R5

4 [¬p] (p ∧ q) ⊃ p 2; C¬∧E ¬p| R5

5 (p ∧ q) ⊃ p 3, 4; EM

Another (still very simple) illustration of EM is provided by the proof of
q ∨ p from {¬p ⊃ p}:

1 [q ∨ p] q ∨ p Goal R7

2 [q] q ∨ p 1; C∨E q| R7

3 [p] q ∨ p 1; C∨E R7

4 ¬p ⊃ p Prem
5 [¬p] p 4; ⊃E
6 [¬p] q ∨ p 3, 5; Trans R7

7 q ∨ p 3, 6; EM

I claimed that Q is at least as good an explication for correct proofs as
P. This was an understatement: Q is much better than P in this respect.
First, it excludes repeated steps, like the recurring introduction of the same
premise. More importantly, it prevents that proofs are extended with steps
that serve no purpose, like 3 in the following official Fitch-style P-proof of
q from {p, p ⊃ q}:

1 p Premise
2 p ⊃ q Premise
3 p ∨ r 1; Addition
4 q 1, 2; Modus Ponens

Officially, any finite number of lines similar to 3 may be inserted between
3 and 4. The point is not that such lines are superfluous for the resulting
successful proof. The point is that the lines are not sensible steps for deriving
q from the premises. Allow me to present another example. The following
official annotated proof of p, p ⊃ q `P q (in which I use the theorem (A ∧
B) ⊃ A for the sake of brevity) does not contain any step that is superfluous
within this proof. Nevertheless, the proof is not the outcome of a sensible
goal-directed process.

1 p Premise
2 p ⊃ q Premise
3 p ∨ q 1; Addition
4 p ∨ r 1; Addition
5 (p ∨ q) ∧ (p ∨ r) 3, 4; Adjunction
6 p ∨ (q ∧ r) 5; Distributivity
7 (q ∧ r) ⊃ q Theorem
8 q 6, 2, 7; Dilemma
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Before leaving the matter, I add two comments on the procedure. First, the
following rule is permissible.

C∗E [∆ ∪ {∗A}] A
[∆] A

If A is the goal, the rule is even derivable: [∆] G follows by EM from
[∆∪{∗G}] G and [G] G. If A is a target, the proof contains a prospective ex-
pression [∆′∪{A}] B. Applying C∗E to [∆∪{∗A}] A enables one to derive
[∆′ ∪ ∆] B by Trans. If C∗E is not applied, one obtains [∆′ ∪ ∆ ∪ {∗A}] B
by Trans, and next [∆′ ∪ ∆] B by EM.10

The second comment is that further marking definitions improve the ef-
ficiency of the procedure. Some prospective expressions [∆] A are target-
circular in the sense that A is only useful to obtain (in one or more steps) a
formula B on a different condition, whereas B ∈ ∆. In this case [∆] A may
be handled as if it were circular.

4. Some Properties

In [7], the system Pc is presented, which defines prospective proofs for P.
The only difference with Q is that Pc also contains the EFQ rule:

EFQ Where A ∈ Γ, add [¬A] G to the proof.

The recursive definition of “goal-descendant” in Pc is as in Q, except that
one should add in item 1 of the definition: if A ∈ Γ, [¬A] G ∈ Σ. So Pc is
an extension of Q. Several lemmas and theorems proved below follow im-
mediately from those proved in [7] or may be proved by a slight modification
to those proofs. I shall nevertheless introduce new information below when
this provides more insights.11

Theorem 1 : If Γ `Q A, then Γ `P A.

Proof. Consider a Q-proof of A from Γ. Transform the list L of prospective
expressions (second elements of the lines of the proof) to a list of formulas

10 So although [∆] A cannot be obtained without C∗E, everything one can do with [∆] A
can be obtained. Moreover, deriving [∆] A from [∆ ∪ {∗A}] A is correct according to the
‘interpretation’ of prospective expressions — see the paragraph following Theorem 9 for this
interpretation. Incidentally, showing that C∗E is permissible in case A is not a target is more
tiresome and is skipped here.

11 A simpler proof of Theorem 1 is that every prospective Q-proof is a prospective P-proof
in view of what is said in this paragraph in the text.
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L′ by letting every prospective expression [B1, . . . , Bn] A in L correspond
to the formula ∗B1 ∨ . . .∨∗Bn ∨A. It is easily seen that L′ can be extended
to a P-proof of A from Γ. An application of the Goal rule is justified by a
proof of the P-theorem ∗G ∨ G, an application of Prem is justified by the
Premise rule, and the transformations of all other Q-rules are derivable rules
in P. �

Some will find it easier to transform a prospective expression [B1, . . . , Bn]
A to (B1 ∧ . . . ∧ Bn) ⊃ A. I do not spell out the derivable P-rules because
their number is finite and their derivability in P is obvious.

It is instructive to exemplify the transformation described in the present
proof of Theorem 1. So let us apply it to the prospective proof in Section
1, freely making use of continuous disjunctions. The line numbers in the
justifications are as in the prospective proof. I list the required derivable
P-rule for each step.

1 ¬p ∨ p P-Theorem
2 q ∨ (t ⊃ p) Prem
3 q ∨ (t ⊃ p) 2; A/A
4 q ∨ ¬t ∨ p 3; A ∨ (A ⊃ C)/A ∨ (¬A ∨ C)
5 t Prem
6 q ∨ p 4, 5; A ∨ ¬B ∨ C, B/A ∨ C
7 q ⊃ ¬(t ∨ ¬r) Prem
8 ¬(t ∨ ¬r) ∨ ¬q 7; A ⊃ B/B ∨ ¬A
9 ¬t ∨ ¬q 8; ¬(A ∨ B) ∨ C/¬A ∨ C
10 ¬q 5, 9; ¬A ∨ B, A/B
11 p 6, 10; A ∨ B,¬B/A

Having proved that P is an upper limit for Q, Theorem 2 holds if it can be
shown that: if Γ is consistent and Γ `P A, then Γ `Q A.

Theorem 2 : For all consistent Γ, CnQ(Γ) = CnP(Γ).

The proof of this theorem in terms of the procedure is longwinded and
complicated. However, there is an easy proof in semantic terms. So I post-
pone the proof to Section 5, making sure that circularity is avoided.

Theorem 3 : If [∆] B occurs in an attempted Q-proof for Γ `Q A, then
Γ ∪ ∆ `Q B.

This theorem is proved in [7] as Theorem 1. That proof concerns Pc, but
is easily adjusted to Q (by dropping all references to the EFQ rule).

Several further properties are immediate in view of the prospective proce-
dure. A premise that is a literal can only be employed in an application of
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Trans. So this gives us at once Lemma 1, which is a weak counterpart of
Theorem 3.

Lemma 1 : If A is a literal, Γ ∪ {A} `Q G, and Γ 0Q G, then [A] G occurs
in every stopped attempted Q-proof for Γ `Q G.

Other properties we are interested in are more general. Let AB
σ be the re-

sult of replacing all occurrences of the sentential letter σ in A by the formula
B and let ΓB

σ = {AB
σ | A ∈ Γ}.

Theorem 4 : Q is reflexive (Γ ⊆ CnQ(Γ)), monotonic (CnQ(Γ) ⊆ CnQ(Γ∪
Γ′)), compact (Γ `Q G iff there is a finite Γ′ ⊆ Γ for which Γ′ `Q G), struc-
tural (if Γ `Q G, then ΓB

σ `Q GB
σ ), and decidable (there is an algorithm for

deciding whether A1, . . . , An `Q B).

Incidently, the prospective proofs are an algorithm for deciding whether
A1, . . . , An `Q B. Indeed, an attempted Q-proof for every such expression
either is successful or stops (because at most finitely prospective expressions
can occur in the proof in view of the finite number of literals that occur in
the premises and conclusion) — if the proof stops, A1, . . . , An 0Q B.

Let CNF(A), the conjunctive normal form of A, be the last member of the
sequence of formulas defined as follows. The first formula in the sequence
is A. Every other formula in the sequence is obtained by applying to the
previous formula in the sequence the first transformation from the following
list that leads to a different formula.

. . . a . . . 7→ . . . (a1 ∧ a2) . . . (1)

. . . b . . . 7→ . . . (b1 ∨ b2) . . . (2)
. . . ∨ (A ∧ B) ∨ . . . 7→ (. . . ∨ A ∨ . . .) ∧ (. . . ∨ B ∨ . . .) (3)

. . . (A1 ∨ . . . ∨ An) . . . 7→ . . .
∨

{A1, . . . , An} . . . (4)

. . . (A1 ∧ . . . ∧ An) . . . 7→ . . .
∧

{A1, . . . , An} . . . (5)

A few comments are needed. I freely use continuous conjunctions and
continuous disjunctions as well as conjunctions and disjunctions of the mem-
bers of finite sets. This is easily seen to be unproblematic. Next, the obvious
understanding of the clauses is that if . . . is empty, then . . . ∨ A denotes A
and . . . ∧ A denotes A; similarly for ∨ . . . and ∧ . . .. The requirement that
the transformation leads to a different formula ensures that the list is finite
for every A. Note that applying, for example (1) to p ∨ (q ∧ r) leads to the
same formula. Finally, the outer dots in (5) always denote empty strings in
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the definition of CNF(A). In the definition of DNF(A) — see below in the
text — the outer dots in (4) denote empty strings.

So the list starts with a formula A, is finite, and its last formula is CNF(A)
and has the structure

∧

{
∨

(∆1), . . . ,
∨

(∆n)}

in which the members of every ∆i are literals.
The disjunctive normal form of A, DNF(A), is defined by the same trans-

formations except that (3) is replaced by

. . . ∧ (A ∨ B) ∧ . . . 7→ (. . . ∧ A ∧ . . .) ∨ (. . . ∧ B ∧ . . .) .

With this replacement, the last formula in the list, DNF(A) has the structure

∨

{
∧

(∆1), . . . ,
∧

(∆n)} (6)

in which every ∆i is a set of literals.
The procedures that lead from A to CNF(A) and to DNF(A) ‘push nega-

tions inside’ in view of transformations (1) and (2). No other transformation
affects negation. So, if a conjunct of CNF(A) contains both the sentential
letter B and its negation ¬B, that conjunct is a P-theorem but it is not re-
moved. Similarly, if a disjunct of DNF(A) contains both B and ¬B, the
disjunct is a P-contradiction, but is not removed.

Consider two variants of disjunctive normal forms. Where DNF(A) =
∨

(Σ), so Σ is a set of
∧

(∆i), DNF+(A) =
∨

(Σ′) with Σ′ defined as the
smallest set such that (i) Σ ⊆ Σ′ and (ii) if

∧

(∆∪{A}),
∧

(∆′∪{∗A}) ∈ Σ′,
then

∧

(∆∪∆′) ∈ Σ′. Moreover, where DNF+(A) =
∨

(Σ′), DNF±(A) =
∨

(Σ′′) with Σ′′ = {
∧

(∆) |
∧

(∆) ∈ Σ′; for all ∆′ ⊂ ∆,
∧

(∆′) /∈ Σ′}.
Obviously `P A ≡ CNF(A), `P A ≡ DNF(A), `P A ≡ DNF+(A), and

`P A ≡ DNF±(A). So a P-valuation (of the standard semantics) assigns the
value 1 to A iff it assigns the value 1 to (at least) one literal of each conjunct
of CNF(A). Similarly, a P-valuation assigns the value 1 to A iff it assigns
the value 1 to (at least) one disjunct of DNF(A), to (at least) one disjunct of
DNF+(A), and to (at least) one disjunct of DNF±(A).

Normal forms provide many insights in prospective proofs. For example,
B is a positive part of A iff B is a disjunct of a conjunct of CNF(A).

Consider an attempted Q-proof for Γ `Q G in which one applies the Goal
rule and next applies condition analysing rules to [G] G and its descendants
until it is impossible to do so. This results in a set of prospective expres-
sions. Let [∆1] G, . . . , [∆n] G be the prospective expressions in which the
condition contains only literals. The ∆i are easily seen to be identical to the
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∆i for which
∧

(∆i) is a disjunct of DNF(G). So a P-valuation assigns the
value 0 to G iff it assigns the value 0 to at least one member of each ∆i.

Let us apply EM as much as possible to these [∆i] G. This may lead to
new lines with prospective expressions [∆n+1] G, . . . , [∆n+m] G, in which
every ∆i is still a set of literals. The new ∆i are those for which

∧

(∆i) is
a disjunct of DNF+(G) but not of DNF(G). In other words, the ∆i that
contain only literals and are the condition of a prospective expression [∆i] G
are identical to the ∆i for which

∧

(∆i) is a disjunct of DNF+(G). Again, a
P-valuation assigns the value 0 to G iff it assigns the value 0 to at least one
member of each ∆i.

Finally, consider the [∆i] G that occur at lines not marked as redundant.
These ∆i are those for which

∧

(∆i) is a disjunct of DNF±(G). As `P

DNF±(G) ≡ G, a P-valuation assigns the value 0 to G iff it assigns the
value 0 to at least one member of each of these ∆i.

The following considerations are also clarifying. Let CNF(G) be a dis-
junction of literals: A1 ∨ . . . ∨ An. After applying condition analysing
rules to [G] G, one obviously obtains the prospective expressions [A1] G, . . . ,
[An] G. Next, let CNF(G) be the conjunction of two disjunctions of literals,
(A1 ∨ . . . ∨ An) ∧ (B1 ∨ . . . ∨ Bm). Applying condition analysing rules
to [G] G results in [A1, B1] G, . . . , [A1, Bm] G, . . . , [An, Bm] G.12 Note
that

∨

{
∧

{A1, B1}, . . . ,
∧

{A1, Bm}, . . . ,
∧

{An, Bm}} is DNF((A1∨. . .∨
An) ∧ (B1 ∨ . . . ∨ Bn)). Such considerations lead to the simple but long-
winded proof of the following theorem.

Theorem 5 : Γ `Q G iff, for every conjunct
∨

(∆) of CNF(G), Γ `Q

∨

(∆).

Every conjunct of the conjunctive normal form of a P-theorem contains
both a sentential letter and its negation as a disjunct. So the previous theorem
gives us the following corollary — the corollary follows also from Theorem
2.

Corollary 1 : Q and P share all theorems (∅ `Q A iff ∅ `P A).

Let us turn to premises. Until now we have concentrated on the question
whether a given prospective expression can be derived from a premise within
a specific prospective proof. The answer to that question depends on (i) the
targets that occur in the proof (at the stage) and (ii) the specific premises. Let
us now consider the more abstract question which prospective expressions
can be obtained from a premise, independent of a specific prospective proof.

12 If an Ai is identical to a Bj , the corresponding condition is obviously a singleton.
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(†) A prospective expression [Θ] B, in which B and all members of Θ are
literals, can be obtained from a premise A iff there is a conjunct

∨

(∆)
of CNF(A) such that ∆ = {B} ∪ {∗C | C ∈ Θ}.

This is most easily seen in the diagrammatic setting of [3]. Seeing it is also
simple if one considers an arbitrary formula and goes through the formula
analysing rules and the condition analysing rules for a-formulas and for b-
formulas. The following theorem is a consequence of (†).

Theorem 6 : Where {
∨

(∆1),
∨

(∆2), . . .} comprises the conjuncts of the
conjunctive normal form of the members of Γ, Γ `Q G iff {

∨

(∆1),
∨

(∆2),
. . .} `Q G.

Note that
∨

∆i is useless with respect to the target C if C, ∗C ∈ ∆i.
Indeed, in this case, the resulting prospective expression is always circular.
This is immediately obvious from an example: p ∨ ¬p ∨ q ∨ r leads to the
circular expressions [p,¬q,¬r] p and [¬p,¬q,¬r]¬p. This does not mean
that p∨¬p∨q∨r is useless with respect to other targets. Indeed, it also leads
to [p,¬p,¬r] q and to [p,¬p,¬q] r and there is of course nothing wrong with
inconsistent conditions.

We know from Theorem 2 that Q coincides with P for consistent premise
sets. What about inconsistent premise sets?

Theorem 7 : Q is a paraconsistent logic.

To see this, it is sufficient to consider a prospective proof for p,¬p `Q q.
The Goal rule leads to [q] q and the prospective proof stops right there: q
is not a positive part of any premise. Those who have doubts about the
way in which Q handles inconsistent premises should write out Q-proofs for
p,¬p `Q p∨q and ¬p,¬p ⊃ p, p ⊃ r `Q r and p,¬p, p ⊃ q, p∨r, (q∧r) ⊃
s `Q s.

Theorem 8 : Q is not a transitive logic.

This follows directly from the fact that p,¬p `Q p ∨ q and p,¬p `Q ¬p
and p ∨ q,¬p `Q q, but p,¬p 0Q q. The logic Q is not even cumulatively
transitive: there are Γ and Γ′ such that Γ′ ⊆ CnQ(Γ) but CnQ(Γ ∪ Γ′) *
CnQ(Γ). The obvious example is that p,¬p `Q p∨ q and p,¬p, p∨ q `Q q,
but p,¬p 0Q q. However, Theorem 2 gives us the following corollary.

Corollary 2 : Q is transitive with respect to consistent premise sets (if Γ is
consistent and Γ′ ⊆ CnQ(Γ), then CnQ(Γ′) ⊆ CnQ(Γ)).
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The logic Q is a very unusual paraconsistent logic. This was already men-
tioned: unlike most paraconsistent logics, Q validates Disjunctive Syllo-
gism: A ∨ B,¬A `Q B; unlike the known paraconsistent logics that val-
idate Disjunctive Syllogism, Q also validates Addition: A `Q A∨B. This is
precisely possible because Q is not transitive for inconsistent premise sets.

An interesting open problem concerns the relation between Q and P. We
know already that: (1) If Γ is consistent, then Γ `Q G iff Γ `P G. From this
follows, by the monotonicity of Q: (2) If Γ is consistent and Γ `P G, then
Γ ∪ Γ′ `Q G (even if Γ ∪ Γ′ is inconsistent). Moreover, as Q is structural,
it follows from (1) that: (3) If Γ is consistent and Γ `P G, then ΓB

σ `Q GB
σ

(even if ΓB
σ is inconsistent). That p,¬p, p ∨ r,¬p ∨ ¬r ∨ q `Q q follows

by (3) but not by (2). That ¬p,¬q, p ∨ q `Q p ∧ q follows by (2) but not
by (3). The open problem is whether (2) and (3) together are sufficient to
characterize all valid Q-inferences in terms of P.

5. An Adequate Semantics

I surmise that many semantic systems are adequate for Q. I have a whole set
of them, some deterministic and some indeterministic. The trouble is that I
failed to prove for any of them that it is adequate with respect to Q. So I
have to come up with the next best thing: a semantics that is adequate under
a transformation.

If you are not familiar with this, just read on. The matter is simple and
reliable. The idea is that every statement Γ `Q G is reduced to finitely many
statements Γ1 `Q G1, . . . , Γn `Q Gn, in which the Γi and Gi fulfil a certain
formal requirement C. That Γ `Q G obtains just in case Γ1 `Q G1 and . . .
and Γn `Q Gn obtain is warranted by the syntactic metatheory. Next, the
semantics is proven adequate for every Γ′ `Q G′, in which Γ′ and G′ fulfil
the formal requirement C.

Let us first turn to the transformation I shall need for Q. We know from
Theorem 5 that Γ `Q G iff Γ `Q

∨

(∆) for every conjunct
∨

(∆) of
CNF(G). We moreover know from Theorem 6 that Γ `Q G iff Γ′ `Q G, in
which Γ′ comprises every

∨

(∆) that occurs in the conjunctive normal form
of a member of Γ. Putting these bits together, we have a syntactic warrant
for the following transformation: Γ `Q G iff, for every conjunct

∨

(∆) of
CNF(G), Γ′ `Q

∨

(∆), in which Γ′ comprises every
∨

(Θ) that occurs in
the conjunctive normal form of a member of Γ.

Given this transformation, it is sufficient to devise a semantics that is ade-
quate for Γ `Q G whenever G is a disjunction of literals and every member
of Γ is a disjunction of literals.
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For those who consider this still rather fast, let me phrase it differently.
I shall define a semantic consequence relation Γ �Q G for formulas (G
and the members of Γ) that are disjunctions of literals. The function �Q

is extended to all formulas by: Γ �Q G iff, for every conjunct
∨

(∆) of
CNF(G), Γ′

�Q

∨

(∆), in which Γ′ comprises every
∨

(Θ) that occurs in
the conjunctive normal form of a member of Γ.

Incidentally, all other connectives can be defined from negation and dis-
junction in P. The same holds for Q and the definitions are the same. This
is another remarkable property of Q. Indeed, P has an adequate two-valued
semantics, all connectives are truth-functions with respect to that semantics
and the set {¬,∨} is functionally complete — all possible connectives that
are truth-functions with respect to the two-valued semantics can be defined
from {¬,∨}. Q to the contrary does not have an adequate two-valued seman-
tics in which negation is a truth function. I shall rely on the usual definitions,
for example in Table 1, to restrict attention to negation and disjunction.

Although Q is a propositional logic, I shall use model to refer to a valua-
tion function v. Where W denotes the set of formulas of the propositional
CL-language. A model is a valuation function v : W → {0, u, 1} with the
following properties:

C1 If A is a literal and v(A) = 0 then v(¬A) = 1.
C2 If A is a literal and v(A) = u then v(¬A) = u.13

C3 v(b) = 1 iff (v(b1) = 1 or v(b2) = 1) and (v(∗b1) = 0 or v(b2) = 1)
and (v(b1) = 1 or v(∗b2) = 0).

C4 v(b) = 0 iff v(b1) = 0 and v(b2) = 0.
C5 v(a) = 1 iff v(a1) = 1, v(a2) = 1 and v(∗a1) = v(∗a2).
C6 v(a) = 0 iff v(a1) = 0 or v(a2) = 0.

A model v verifies A iff v(A) = 1, falsifies A iff v(A) = 0, and verifies Γ
iff it verifies every A ∈ Γ. Γ �Q G iff no model verifies Γ and falsifies G.14

It is instructive to formulate the semantics in terms of tables — see Table 1.
The combinations of values that do not occur in the right hand table are
excluded by the semantics — compare C1, C2, the right hand table itself.
Note that v(A∨B) is a truth function of v(A), v(∗A), v(B) and v(∗B), and
that v(¬(A ∨ B)) is a truth function of v(∗A) and v(∗B).

13 An alternative semantics is obtained if this clause is replaced by “If A is a literal,
v(A) ∈ {0, 1}.” This semantics too is adequate for Q. The proofs that follow in the text
hardly need to be adjusted. It is left to the reader to adjust Tables 1 and 2.

14 Where a model of Γ is a model that verifies Γ, Γ �Q G iff no model of Γ falsifies G.
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Negation is an indeterministic operator — this is indicated by the 1/0 in
the table for negation. Note that v(¬¬A) = v(A) holds for all A by virtue
of C5 and C6.

where A is a literal
A ¬A
1 1/0
u u
0 1

A ¬¬A

1 1
u u
0 0

A B ∗A ∗B A ∨ B ¬(A ∨ B)
1 1 1 1 1 1
1 1 1 0 1 0
1 1 0 1 1 0
1 1 0 0 1 0
1 u 1 u u u
1 u 0 u 1 0
1 0 1 1 u u
1 0 0 1 1 0
u 1 u 1 u u
u 1 u 0 1 0
u u u u u u
u 0 u 1 u u
0 1 1 1 u u
0 1 1 0 1 0
0 u 1 u u u
0 0 1 1 0 1

Table 1. Three-Valued Tables for ¬A, ¬¬A, A ∨ B, and ¬(A ∨ B)

The value u may be read in two different ways. If one reads it as unde-
fined, the valuations are partial functions. The value u may also be read as a
weak form of truth, viz. one that does not warrant Disjunctive Syllogism for
disjunctive formulas — more generally, a form of truth that does not warrant
detachment for b-formulas. If, for example, v(∗A) = 1, then v(A ∨ B) = 1
warrants that v(B) = 1, whereas v(A ∨ B) = u does not even warrant that
v(B) 6= 0. Note that, if either A or B is true in the strong sense or in the
weak sense, then A ∨B is true in one of both senses. A formula of the form
A∧B is true in the weak sense iff neither A nor B is false, but either at least
one of them is true in the weak sense or v(∗A) 6= v(∗B).

The Q-semantic consequence leads from strong truth to (strong or weak)
truth. For example, p �Q p ∨ q: if v(p) = 1, then v(p ∨ q) ∈ {u, 1}.

The proof of the following lemmas is immediate in view of C1 and the
tables for A∨B and ¬(A∨B) in Table 1. If you have doubts about Lemma
3, please realize that there is a trivial model (one that verifies all formulas).

Lemma 2 : For all formulas A, if v(A) = 0 then v(¬A) = 1.
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Lemma 3 : Every premise set has a model.

Of course this semantics is still very tiresome. Even checking whether as-
sociativity for disjunction holds requires a long time. In [1] I developed a
means to get a grasp on such obstinate semantic systems — notwithstanding
the title of that paper, the technique may be used to turn many indeterminis-
tic n-ary semantics into a deterministic m-ary tuple semantics; for a couple
semantics m ≤ n2. In the present case, the three-valued semantics is turned
into a four-valued couple semantics. Its valuation function v assigns to ev-
ery formula A a member of {10, uu, 11, 01}, the first digit of v(A) being
the value of v(A) and the second digit of v(A) being the value of v(¬A).15

In the four-valued semantics, which is displayed in Table 2, every connec-
tive is a truth function. The couple semantics makes the properties of the
logic extremely transparent. In view of properties of the three-valued se-
mantics, there is no reason to distinguish between literals and other formulas
for negation and there is no need for a separate table handling ¬¬A. I add
tables for the explicitly defined connectives. These tables are derivable from
the two ones at the top in view of the standard definitions. They are instruc-
tive in themselves, but are useless for the subsequent soundness proof and
completeness proof — this will soon become clear.

In connection with Disjunctive Syllogism, we have seen the following. If a
model verifies A∨B, then it verifies B whenever it verifies ∗A and it verifies
A whenever it verifies ∗B. However, if a model merely does not falsify
A ∨ B, then it may verify ∗A and nevertheless not verify (and even falsify)
B; and it may verify ∗B and nevertheless not verify (and even falsify) A.
The same holds for implication, viz. for Modus Ponens and Modus Tollens.
A model that verifies A ⊃ B verifies B whenever it does not falsify A and
falsifies ∗A whenever it does not verify ∗B. If, however, the model does
merely not falsify A ⊃ B, then it may verify A and not verify B; and even
falsify B — see the combination “11 ⊃ 01”. Similarly for Modus Tollens.
This feature is even more striking for equivalence. The only cases in which
A ≡ B is verified by a model is where A and B have the same truth value
and A and B as well as their their negations have values in {0, 1}.

15 There are only four values because the couple values (1u, u1, u0, 0u, and 00) cannot
occur.
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A ¬A
10 01
uu uu
11 11
01 10

∨ 10 uu 11 01
10 10 10 10 10
uu 10 uu uu uu
11 10 uu 11 uu
01 10 uu uu 01

∧ 10 uu 11 01
10 10 uu uu 01
uu uu uu uu 01
11 uu uu 11 01
01 01 01 01 01

⊃ 10 uu 11 01
10 10 uu uu 01
uu 10 uu uu uu
11 10 uu 11 uu
01 10 10 10 10

≡ 10 uu 11 01
10 10 uu uu 01
uu uu uu uu uu
11 uu uu 11 uu
01 01 uu uu 10

Table 2. Four-Valued Couple-Semantics

In line with the three-valued semantics, a four-valued model (valuation) v

verifies A iff v(A) ∈ {10, 11}, verifies Γ iff it verifies every member of Γ,
and falsifies A iff v(A) = 01. Again Γ �Q G iff no model verifies Γ and
falsifies G.

It is obvious that the four valued couple semantics is equivalent to (defines
the same consequence relation as) the three valued one. Every v defines a v

that verifies the same formulas as v and falsifies the same formulas as v; and
every v is so defined from a v.

Turning the four-valued couple semantics into a simple four-valued se-
mantics (with values 1, 2, 3, and 4) delivers an ingeniously looking seman-
tics, but the couple semantics reveals where it comes from.

Theorem 9 : If Γ `Q G, then Γ �Q G. (Soundness)

In view of the transformation described in the third paragraph of this sec-
tion, we restrict our attention to cases where G is a disjunction of literals and
every member of Γ is a disjunction of literals.

If [∆] G is a goal-descendant, it is interpreted as: every model that verifies
Γ and does not falsify a member of ∆, does not falsify G. So this comes to:
v(A) 6= 1 for some A ∈ Γ or v(A) = 0 for some A ∈ ∆ or v(G) 6= 0.16

Other prospective expressions [∆] A are interpreted as: every model that
verifies Γ and does not falsify a member of ∆ verifies A. Note that these
other prospective expressions are obtained from one or more premises.

Suppose then that Γ `Q G. So a proof from Γ contains the prospective
expression [∅] G — I write the condition explicitly to make the point clear.
We proceed by an obvious induction on the length of the proof. I outline

16 Still in other words, no valuation verifies Γ, assigns a value in {1, u} to all members of
∆ and falsifies G — take Lemma 3 into account to interpret this.
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the cases. The reader is prayed to check the semantic statements in terms of
the three-valued semantics or, which is often easier, in terms of the couple
semantics from Table 2.

An application of the Goal rule is justified by: whatever Γ, if a model does
not falsify G then it does not falsify G. An application of Prem is justified
by: a model that verifies Γ verifies all members of Γ.

Remember that formula analysing rules are never applied to goal-descen-
dants, but only to prospective expressions that are descendants of premises.
It follows that applications of the formula analysing rule for a-formulas are
justified by: if every model that verifies Γ and does not falsify a member of
∆ verifies a, then every model that verifies Γ and does not falsify a member
of ∆ verifies a1 (similarly for a2). Applications of a formula analysing rule
for b-formulas are justified by: if every model that verifies Γ and does not
falsify a member of ∆ verifies b, then every model that verifies Γ and does
not falsify a member of ∆ and does not falsify ∗b2 verifies b1 (and similarly
for b1 and b2 exchanged).17

Applications of a condition analysing rule require two subcases, but the
justifications can be phrased in one breath. Applications of a-formulas are
justified by: if every model that verifies Γ and does not falsify a member
of ∆ ∪ {a} verifies A (respectively does not falsify G), then every model
that verifies Γ and does not falsify a member of ∆ ∪ {a1, a2} verifies A
(respectively does not falsify G). Applications of b-formulas are justified
by: if every model that verifies Γ and does not falsify a member of ∆ ∪ {b}
verifies A (respectively does not falsify G), then every model that verifies Γ
and does not falsify a member of ∆ ∪ {b1} verifies A (respectively does not
falsify G); and similarly for b2.

No model falsifies both A and ∗A. So if v falsifies a member of ∆ ∪ {A}
and falsifies a member of Θ ∪ {∗A}, then it falsifies a member of ∆ ∪ Θ.
From this follows the justification of EM for both goal-descendants and non-
goal-descendants.

Applications of Trans are justified by: if every model that verifies Γ and
does not falsify a member of ∆ ∪ {B} verifies A, and every model that
verifies Γ and does not falsify a member of ∆′ verifies B, then every model
that verifies Γ and does not falsify a member of ∆∪∆′ verifies A. If [∆′] B
is a goal-descendant(whence B is G) “verifies A” has to be replaced twice
by “does not falsify G” in the justification.

Relying on these cases, the result of the induction is that all prospective ex-
pressions in the proof are justified on the interpretation. Among the expres-
sions is the goal-descendant [∅] G and its interpretation reads: every model

17 Please check this on the table for disjunction. For example and in terms of the couple
semantics: whenever v(A ∨ B) ∈ {10, 11} and v(∗A) 6= 01, viz. v(A) 6= 10, then v(B) ∈
{10, 11}.
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that verifies Γ does not falsify G. So Γ �Q G. This completes the proof of
Theorem 9.

The present semantics distinguishes between true in the strong sense (ver-
ification) and true in the weak sense (non-falsification). This seems required
to handle the non-transitivity of Q: if p ∨ q were verified in all models of
{p,¬p}, then so would be q, and it shouldn’t. So, in a semantics that is
adequate for the full language, without the detour of the syntactic transfor-
mation, the distinction between verification and non-falsification will be re-
tained or even refined. In view of this, it is useful to stress that [∆] A is
interpreted as: every model that verifies Γ and does not falsify a member
of ∆ verifies A (respectively does not falsify G in case [∆] A is a goal-
descendant). To require that the model verifies ∆ would lead to a mistaken
interpretation of the situation. Even the present semantics enables one to see
this. Suppose that p,¬p, q ∈ Γ, that ¬q is not Q-derivable from Γ, and that
a proof from Γ contains the prospective expression [p ∧ q] r, which is later
analysed to [p, q] r. Obviously Γ has models v in which v(q) = 10; if it had
only models in which v(q) = 11, then ¬q would be a semantic consequence
of Γ. So, on the present semantics, v(p∧q) = uu and this is indeed sufficient
to justify the derivability of [∅] r.

The case of disjunction is similar. Consider a prospective proof in which
p is a target and let (q ∨ r) ⊃ p be a premise. Prem will be applied and the
formula analysing rule for b-formulas will give us the prospective expression
[q ∨ r] p. From this, the condition analysing rule for b-formulas will lead to
[q] p and [r] p. Suppose that q can be obtained from the premises and that r
cannot. So the prospective proof will lead one from [∅] q and [q] p to [∅] p.
Every model v that verifies the premises will verify (q ∨ r) ⊃ p as well
as q, but need not verify r and may even falsify it. So v(q ∨ r) = uu for
some models of the premises. These comments are somewhat speculative.
They pertain to an adequate semantics which does not require the syntactic
transformation.

Theorem 10 : If Γ �Q G then Γ `Q G. (Strong Completeness)

The proof of this theorem is shorter than that of the previous one. Given
the syntactic transformation, we restrict our attention to the case in which G
is a disjunction of literals, say

∨

(Λ), and Γ is a set of disjunctions of literals.
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Suppose that Γ 0Q G. Let Σ comprise all literals that occur in Γ and let
L = 〈B1, B2, . . .〉 be a list of the members of Σ.18 Define

Ω0 = ∅

Ωi+1 =

{

Ωi ∪ {Bi+1} iff Γ ∪ Ωi ∪ {Bi+1} 0Q G,
Ωi otherwise.

Ω = Ω0 ∪ Ω1 ∪ . . .

Ω† = {A | A ∈ Ω, ∗A /∈ Ω}

and let V be a function that maps every literal to a couple value as follows:19

if A ∈ Λ ∪ (Σ − Ω), V (A) = 01 and V (∗A) = 10 (1)
if A ∈ Ω − Ω†, V (A) = 11 and V (∗A) = 11 (2)

if A ∈ Ω†, V (A) = 10 and V (∗A) = 01 (3)
if V (A) is not fixed by (1)–(3), V (A) = V (∗A) = 11. (4)

I now show that a couple-valuation v (from Table 2) is compatible with V
(they assign the same values to literals), that v falsifies G, and that v verifies
Γ, whence we are home.

(1) A couple-valuation v is compatible with V . To see this the following
are sufficient. (i) If A ∈ Λ then ∗A /∈ Λ. This follows from Γ `Q

∨

(∆ ∪
{A, ∗A}). (ii) Ω ∩ Λ = ∅. This follows from Γ ∪ {A} `Q

∨

(∆ ∪ {A}).
(iii) If A, ∗A ∈ Σ, then A ∈ Ω or ∗A ∈ Ω. To see this, suppose that it were
false. So there is an Ωi for which Γ ∪ Ωi ∪ {A} `Q G and an Ωj for which
Γ∪Ωj∪{∗A} `Q G. Where k is the maximum of {i, j}, Γ∪Ωk∪{A} `Q G
and Γ ∪ Ωk ∪ {∗A} `Q G by the monotonicity of Q. In view of Lemma 1,
it follows that Γ ∪ Ωk `Q G,20 which is excluded by the construction (the
definition of Ω).

(2) v falsifies G. This follows from the fact that v(A) = 01 for all A ∈ Λ.
(3) v verifies Γ. Consider a

∨

(∆) ∈ Γ and suppose that v does not verify it.
It follows that ∆∩Ω† = ∅ (otherwise v(

∨

(∆)) = 10) and that ∆ * Ω−Ω†

(otherwise v(
∨

(∆)) = 11). So
∨

(∆) =
∨

({A1, . . . , An}∪{C1, . . . , Cm})
with n ≥ 0, m > 0, A1, . . . , An ∈ Ω − Ω†, and C1, . . . , Cm ∈ Σ − Ω.
We know from the construction that Γ ∪ Ω 0Q G. Consider a stopped

18 For the sake of generality, I do not exclude that Σ and hence L are denumerably infinite.

19 The value assigned in (4) is arbitrary. The present choice also suits the couple semantics
derived from the variant semantics mentioned in footnote 13.

20 Indeed, if Γ ∪ Ωk 0Q G, then both [A] G and [∗A] G occur in the attempted Q-proof
for Γ ∪ Ωk `Q G by Lemma 1. So [∅] G occurs in that proof in view of EM.
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attempted Q-proof for Γ ∪ Ω `Q G. In view of Lemma 1, [C1] G, . . . ,
[Cm] G all occur in the prospective proof. As every Ci is a target, the
premise

∨

({A1, . . . , An}∪{C1, . . . , Cm}) was introduced in the proof and,
for every Ci, the prospective expression [∗D | D ∈ ({A1, . . . , An} ∪
{C1, . . . , Cm}) − {Ci}] Ci occurs in the proof. Moreover, as A1, . . . , An ∈
Ω − Ω†, ∗A1, . . . , ∗An ∈ Ω − Ω†. So ∗A1,. . . , ∗An are introduced by Prem
whence, by Trans, [∗D | D ∈ ({C1, . . . , Cm} − {Ci})] Ci occurs in the
proof for every Ci. But then, again by Trans, [∗D | D ∈ ({C1, . . . , Cm} −
{Ci})] G occurs in the proof for every Ci. As these as well as [C1] G,
. . . , [Cm] G occur in the proof, so does [∅] G (by EM). But this contradicts
Γ ∪ Ω 0Q G. This ends the proof of Theorem 10.

I postponed the proof of Theorem 2 to the present section. The most trans-
parent proof seems to proceed in terms of the couple semantics from Table
2. A classical Q-model is one in which every literal (and hence every for-
mula) has a value in the set {10, 01}. Iff v is classical, the corresponding v
is a valuation of the standard P-semantics. Note that consistent premise sets
have classical (as well as non-classical) Q-models.21

Incidentally, Theorem 1 also follows from Theorem 10 and the complete-
ness of P with respect to its standard semantics. Indeed, if no Q-model that
verifies Γ falsifies G, then no classical Q-model that verifies Γ falsifies G.22

So if Γ �Q G, then Γ �P G.
Let us turn to the proof of Theorem 2. In view of the syntactic transforma-

tion, we take G and all members of Γ to be disjunctions of literals. Consider
a consistent Γ and a G such that Γ 0Q G. So Γ 2Q G by Theorem 10.
Hence, there is a Q-model v that verifies Γ and falsifies G. As G and the
members of Γ are disjunctions of literals, (i) every literal that is a disjunct of
G has the v-value 01 and (ii) for every A ∈ Γ, either a disjunct of A has the
v-value 10 or all disjuncts of A have the v-value 11.

We first transform v to a Q-model v1 by replacing every occurrence of u in
the v-value of a literal by 1 — this means that uu is replaced by 11. I leave it
to the reader to check that v1 verifies Γ and falsifies G. The following hold:
(i) every disjunct of G has the v1-value 01 and (ii) for every A ∈ Γ, either a
disjunct of A has the v1-value 10 or all disjuncts of A have the v1-value 11.

If a disjunct of a premise has the v1-value 10, the value of the premise will
remain 10 when disjuncts that have the v1-value 11 are given the value 10 or
01. So let

∨

(∆1),
∨

(∆2), . . . be the premises all disjuncts of which have the

21 If, for example, v assigns the value 11 to some sentential letters and 10 to all others, then
it is a non-classical model of {p, q}. Note also that the trivial model, in which v(A) = 11
for every sentential letter A, is a model of every premise set.

22 If Γ is inconsistent, no classical Q-model verifies it; if Γ is consistent, it has classical
Q-models and they all verify G.
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v1-value 11 and let 〈B1, B2, . . .〉 be a list of the members of ∆1 ∪ ∆2 ∪ . . ..
Define Ω0 = ∅, Ωi+1 = Ωi ∪ {Bi+1} if Γ ∪ Ωi ∪ {Bi+1} is P-consistent23

and Ωi+1 = Ωi otherwise; finally Ω = Ω0 ∪Ω1 ∪ . . .. Obviously Ω contains
a member of every ∆i and if B, ∗B ∈ ∆1 ∪ ∆2 ∪ . . ., then B ∈ Ω or
∗B ∈ Ω. Let v2 be exactly like v1 except that v2(B) = 10 for all B ∈ Ω and
v2(B) = 01 for all B ∈ (∆1 ∪ ∆2 ∪ . . .) − Ω. Note that v2 is a classical
model that verifies Γ and falsifies G. So Γ 2P G and, by the soundness of
P with respect to its standard semantics, Γ 0P G. From this together with
Theorem 1 follows Theorem 2.

6. Analysing Logic

This section is a digression about a potentially very interesting problem.
Consider again the Q-semantics. The semantic consequence relation was
defined as follows: Γ �Q G iff no model that verifies Γ falsifies G. This
definition differs from the usual one: every model that verifies the premises
also verifies the conclusion. If the usual definition is combined with the
models of the Q-semantics, we obviously obtain a logic that is a fragment
of Q; it assigns to premise sets a consequence set that is a subset of the Q-
consequence set and sometimes the subset if proper. Moreover, the fragment
would be transitive and a fortiori cautiously transitive: if all models that ver-
ify Γ verify ∆ and all models that verify ∆ verify A, then all models that
verify Γ verify A.

Considerations of a syntactic nature suggest that the fragment is called
analysing logic. An obvious property of Q is: if Γ `Q A, then Γ `Q A ∨ B
for all B. Phrased more generally: for all b, if Γ `Q b1, then Γ `Q b; and if
Γ `Q b2, then Γ `Q b. It is this property that we want to remove in analysing
logic. Thus from {p ∧ q, r ⊃ ¬p, r ∨ s} analysing logic should enable one
to derive s but not to derive s ∨ t.

Two warnings are in place at this point. First, there is absolutely no prob-
lem with Q that should be repaired by analysing logic. However, there seems
to be a fragment of Q that is closer to usual logics and it seems interesting to
delineate it. Next, members of the Ghent logic group use “analysing logic”
to denote several logics. One of the reasons for this, which will be revealed
in the present section, is that several logics are close to Q and that it was not
settled wether, with respect to Q, one of them deserves the name analysing
logic more that others. The candidates differ from each other both with
respect to derivability and with respect to Tarski properties. I will briefly

23 Actually P-consistency coincides with Q-consistency.
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sketch some of them, mentioning a few properties only and leaving open
whether any of them is superior to others.

Let us first look at the problem in terms of the semantics. On the present
Q-semantics, analysing logic does not have any valid formulas. For example
2 p∨¬p because v(p∨¬p) = uu if v(p) = uu. More generally, no formula
is verified by the model that assigns uu to every sentential letter.

We have seen that the Q-semantics remains adequate iff sentential letter
are given values in {01, 11, 10}. With this change, analysing logic has valid
formulas, for example � p∨¬p. Note, however, that we still have 2 p∨¬p∨q:
this formula is assigned the value uu if v(p) = 11 and v(q) = 01. There is
a weirder feature. So defined, analysing logic is not structural (in the usual
sense of the term). Indeed, (p∧q)∨¬(p∧q) follows by Uniform Substitution
from p∨¬p. Yet, if v(p) = 11 and v(q) = 01, then v((p∧q)∨¬(p∧q)) = uu.
Note that the formula is not even valid under the syntactic transformation
because this reduces the formula to p ∨ ¬p ∨ ¬q and q ∨ ¬p ∨ ¬q and both
are invalid.24

An adequate semantics that does not require a syntactic transformation
may very well enable one to define a nice analysing logic, which is structural,
transitive, and so on. Such a semantic system will apparently require more
couple values, including values like 1u and u0. Still, there may be several
such semantic systems and they may lead to different results. So let me stop
speculating and move on to the syntaxis.

The attentive reader will have seen that the absence of transitivity (for
inconsistent premise sets) is related to the condition analysing rule for b-
formulas. This rule, applied to the goal, enables one to derive p∨ q from, for
example, {p}. In Fitch-style terms the rule corresponds to Addition, which
enables one to introduce the arbitrary formula q as a disjunct of the con-
clusion. Analysing logic would typically invalidate Addition. And indeed
syntactic considerations suggest that there is a systematic fragment of Q that
encompasses the analysing part of Q.

Obviously, p∨q,¬p `Q q as well as p∨q,¬p `Q r∨q. In the context of Q,
there is a clear distinction between p∨q, which is a premise, and r∨q, which
is a conclusion. Indeed, if we add ¬q to the premises, we can derive p but
we cannot derive r — formally: p ∨ q,¬p,¬q `Q p but p ∨ q,¬p,¬q 0Q r.

The situation can even be put more sharply by means of the following
example. Although p∨q, p∨(q∨s),¬p `Q q∨s and p∨q, p∨(q∨s),¬p `Q

q ∨ r, adding ¬q to the premises, results in the derivability of s but not
in the derivability of r — formally: p ∨ q, p ∨ (q ∨ s),¬p,¬q `Q s but
p ∨ q, p ∨ (q ∨ s),¬p,¬q 0Q r.

24 Whether literals may have the value uu or not, without the syntactic transformation,
analysing logic would not even validate Adjunction. Indeed, if v(p) = 11 and v(q) = 10,
then v(p ∧ q) = uu. So p, q 2 p ∧ q.
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This reveals, as the reader will have understood before, that disjunctions
that occur in the conclusion of a Q-inference may be weaker than disjunc-
tions that occur in the premises. Analysing logic could select those Q-
consequences in which disjunctions have the same strength as they have in
the premises. Actually the matter is slightly more complicated. So let me
explain.

If a disjunction occurs in a premise, even as a subformula of the premise,
and if the disjunction is a positive part of the premise, then the disjunction
is indeed strong and detachable. Consider the premise (p ∨ q) ∨ r. If it is
possible to obtain ¬r from the other premises, then p ∨ q can be obtained
in its strong sense: as a detachable disjunction. The matter is different for a
premise like (p∨q) ⊃ r. The disjunction p∨q is obviously not a positive part
of this — the a-formula ¬(p∨ q) is. So the question whether the disjunction
is strong or weak does not even arise. And the same should obviously hold
for Q-consequences of premise sets: if (p∨ q) ⊃ r is a Q-consequence of Γ,
the question wether the disjunction in p∨ q is strong or weak does not arise.
Incidentally, this the syntactic transformation eliminates all possible sources
of confusion.

Before going on, another point should be made clear. If r is a target in a
proof and (p ∨ q) ⊃ r is a premise, the premise will be introduced, [p ∨ q] r
will be derived, and from this [p] r and [q] r will be derived. It may seem that
this relies on Addition: if one obtains p (or q), then one obtains p ∨ q and
hence also r. Addition not being an analysing step, do those derivations have
a place in analysing logic? They do. The formula (p ∨ q) ⊃ r is equivalent
to (p ⊃ r)∧ (q ⊃ r). From this p ⊃ r and q ⊃ r follow by analysing means.
Put differently, (p ∨ q) ⊃ r expresses that p as well as q as well as the
detachable disjunction p ∨ q are sufficient to obtain r. This is an important
insight that matches the semantics. Suppose that p ∨ q can be obtained from
the premises and hence is detachable. The logic Q presupposes that p and
¬p cannot both be false. If p is not false, we have r anyway. If ¬p is not
false, the detachable disjunction gives us q and this in turn gives us r.

So, on the syntactic approach, analysing logic is the logic for which b-
formulas that are positive parts of the conclusion have the same force as dis-
junctions that are positive parts of the premises. If this is so, analysing logic
is transitive (for consistent premise sets as well as for inconsistent ones).

Analysing logic clearly cannot be defined by removing condition analysing
rules for b-formulas from Q. To see this, consider line 9 in the example proof
in Section 2. The premise q ⊃ ¬(t∨¬r) is equivalent to (q ⊃ ¬t)∧(q ⊃ r).
Analysing this gives us q ⊃ ¬t. So t should be sufficient to deliver ¬q. Sim-
ilarly, (p ∧ r) ∨ q ` p ∨ q is clearly correct in view of analysing means. The
same holds for p∨q ` p∨q. It even holds for p∧q ` p∨q; the conclusion is
a weakening of the premise, but no arbitrary letter is introduced. In the last
three examples, it moreover holds that adding ¬p to the premises enables one
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to derive q and adding ¬q to the premises enables one to derive p. Formally:
(p ∧ r) ∨ q,¬q `Q p and (p ∧ r) ∨ q,¬p `Q q and p ∨ q,¬q `Q p, etc.

So I was implicitly applying a criterion for defining the consequence re-
lation of analysing logic. Roughly the criterion states that Γ ` A ∨ B iff
Γ `Q A∨B and Γ∪{¬A} `Q B and Γ∪{¬B} `Q A. The criterion should
obviously be applied with some care. Indeed, we want p, q 0 p∨(q∨r) even
though p, q `Q p ∨ (q ∨ r) and p, q,¬p `Q q ∨ r and p, q,¬(q ∨ r) `Q p.
This suggests that the criterion should only be applied to conclusions that
are, once more, disjunctions of literals and that the criterion is applied for
each literal separately. This still does not seem to help much. Indeed,
p, q `Q p ∨ q ∨ r and p, q,¬p `Q q ∨ r and p, q,¬q `Q p ∨ r and
p, q,¬r `Q p ∨ q all hold. However, and this seems to provide the required
insight, p, q,¬p,¬q 0Q r. Given the implicit criterion for disjunctions of
literals, Theorem 5 suggests a way to generalize the logic to arbitrary formu-
las.

Definition 6 : Γ ` G is recursively defined by
1. where ∆ is a set of literals Γ `

∨

(∆) iff, for every ∆′ ⊂ ∆, Γ∪{∗A |
A ∈ ∆′} `Q

∨

(∆ − ∆′),25

2. where G is not a disjunction of literals, Γ ` G iff, for every conjunct
∨

(∆) of CNF(G), Γ `
∨

(∆).

This definition gives us ` p ∨ ¬p and 0 p ∨ ¬p ∨ q. Incidentally, the valid
formulas of analysing logic (as fixed by Definition 6) are the formulas B
such that every conjunct

∨

(∆) of CNF(B) has the following property: for
every A, A ∈ ∆ iff ∗A ∈ ∆ — for example 0 p ⊃ (p∨q) and 0 (p∧q) ⊃ p.
This approach is in line with one of the sketched semantic approaches. While
that is nice in itself, it gives us at once the weird outcome that analysing
logic is not structural. Indeed, ` p ∨ ¬p but 0 (p ∧ q) ∨ ¬(p ∧ q) because
0 p ∨ ¬p ∨ ¬q and 0 q ∨ ¬p ∨ ¬q.

Of course, there is a very different road. The syntactic approaches dis-
cussed so far concern a way to obtain analysing logic in terms of the Q-
consequence relation. Very different results may be obtained by proceeding
in terms of prospective proofs. As the prospective proofs for Q are natu-
ral and systematic, we need all the help we can get from the previous ap-
proaches.

I shall present two approaches. The first introduces multi-conditions. Just
as the formula of goal-descendants is handled in a special way in Q — no
formula analysing rule can be applied to it — we may handle the condition
of some goal-descendants in a special way for analysing logic. The easiest

25 With the obvious convention that
∨

{A} is A.
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way to explain the matter is as follows. After applying the Goal rule to obtain
[G] G, we apply condition analysing rules to this prospective expression and
to its descendants, until no such rule can be applied. The condition analysing
rule for a formulas is as before, but the one for b formulas is replaced by the
following:

[∆ ∪ {b}] A
[∆ ∪ {b1][∆ ∪ {b2}] A

So we write both conditions on the same line, thus introducing multi-condi-
tions. Eventually we reach a prospective expression

[∆1] . . . [∆n] G . (7)

To other formulas, viz. to premises and their descendants, we apply the usual
rules. An alternative and longwinded way to introduce the change is to define
certain occurrences of members of conditions as deriving from a sequence of
condition analysing rules applied to the condition G of the goal expression.

It still should be specified in which way Trans and EM are applied to the
separate conditions in expressions of the form (7). For applications of Trans,
we combine one of the multi-conditions with another prospective expression.
To avoid confusion, here is the form:

[∆1] . . . [∆i ∪ {B}] . . . [∆n] G
[∆′] B

[∆1] . . . [∆i ∪ ∆′] . . . [∆n] G

If one of the resulting conditions is empty, it is (written as [∅] or simply)
eliminated altogether. EM, to the contrary, is applied to members of the
same multi-condition. I again write the general form. As the order to the
separate conditions does not matter, I put the two relevant conditions in ad-
jacent places.

[∆1] . . . [∆i ∪ {B}][∆j ∪ {¬B}] . . . [∆n] G
[∆1] . . . [∆i ∪ ∆j ] . . . [∆n] G

So EM gives one a means to reduce the number of conditions, even to elim-
inate two at once in case ∆i = ∆j = ∅.

The idea is still (see Definition 2) that the proof is successful iff G occurs
on the empty condition (or on a set of empty conditions if that notation is
followed). This means that all members of a multi-condition are reduced to
∅.
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It is instructive to add a few simple proofs by way of illustration. Let us
start with a proof for p, q ∨ r ` r ∨ (p ∧ q). I leave it to the reader to adjust
the marking definitions.

1 [r ∨ (p ∧ q)] r ∨ (p ∧ q) Goal R9

2 [r][p ∧ q] r ∨ (p ∧ q) 1; C∨E R9

3 [r][p, q] r ∨ (p ∧ q) 2; C∧E R5

4 p Prem
5 [r][q] r ∨ (p ∧ q) 3, 4; Trans R9

6 q ∨ r Prem
7 [¬q] r 6; ∨E
8 [¬q][q] r ∨ (p ∧ q) 5, 7; Trans R9

9 r ∨ (p ∧ q) 8; EM

There is obviously no successful proof for p, q ` r ∨ (p ∧ q). This is
illustrated by the following attempted proof, which has stopped.

1 [r ∨ (p ∧ q)] r ∨ (p ∧ q) Goal
2 [r][p ∧ q] r ∨ (p ∧ q) 1; C∨E R7

3 [r][p, q] r ∨ (p ∧ q) 2; C∧E R5

4 p Prem
5 [r][q] r ∨ (p ∧ q) 3, 4; Trans R7

6 q Prem
7 [r] r ∨ (p ∧ q) 5, 6; Trans

I add a final example proof, viz. for (s∨p) ⊃ q, q ⊃ r ` p ⊃ r, to illustrate
that condition analysing rules function as for Q with respect to premises and
their descendants.

1 [p ⊃ r] p ⊃ r Goal R10

2 [¬p][r] p ⊃ r 1; C⊃E R10

3 q ⊃ r Prem
4 [q] r 3; C⊃E
5 [¬p][q] p ⊃ r 2, 4; Trans R10

6 (s ∨ p) ⊃ q Prem
7 [s ∨ p] q 6; C⊃E
8 [p] q 7; C∨E
9 [¬p][p] p ⊃ r 5, 8; Trans R10

10 p ⊃ r 9; EM
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These prospective proofs define a logic that is non-transitive. Indeed,
` (p∧q)∨¬(p∧q) and (p∧q)∨¬(p∧q) ` p∨¬p∨¬q,26 but 0 p∨¬p∨¬q.
So let me spell out an alternative.

The idea is to use disjunctions of sets of formulas. As in the previous
approach, one clearly separates the analysis of the condition of the goal ex-
pression from the analysis of premises. So where multi-conditions were in-
troduced in the previous approach, one now applies condition analysing rules
resulting in conditions that are sets of disjunctions of sets of literals. These
condition analysing rules are rather straightforward, but one needs two rules
for each type of formula. Consider first b-formulas:

[∆ ∪ {b}] G
[∆ ∪ {

∨

({b1, b2})}] G
[∆ ∪ {

∨

(Θ ∪ {b})}] G
[∆ ∪ {

∨

(Θ ∪ {b1, b2})}] G

For a-formulas, the rules are (the left rule is simply the standard rule):

[∆ ∪ {a}] G
[∆ ∪ {a1, a2}] G

[∆ ∪ {
∨

(Θ ∪ {a})}] G
[∆ ∪ {

∨

(Θ ∪ {a1}),
∨

(Θ ∪ {a2})}] G

These rules are applied to the goal expression until the (sole) condition is
a set of disjunctions of (possibly singleton) sets of literals.27 The targets
at this stage are these disjunctions28 together with the literals that occur in
these disjunctions.

In view of the targets, premise rules are introduced by Prem. This clarifies
at once the last part of the previous paragraph. More often than not, the
disjunctions of sets of literals will not be positive parts of any premises,
whereas the literals themselves are. If the literals are, we may need the
premises in order to derive the goal. On premises and their descendants, all
formula analysing rules and condition analysing rules of Q may be applied
as well as Trans and EM.

At this point several choices are possible. Keep in mind that a proof, as
described so far, consists of two sequences of prospective expressions: on
the one hand the application of the Goal rule and the descendants of the goal
expression obtained by the new rules, on the other hand the premises and
their descendants. We obviously need a way to connect both.

26 Analyse the goal expression to obtain [p][¬p][¬q] p ∨ ¬p ∨ ¬q, introduce and analyse
the premise to obtain [p,¬p]¬q, obtain [p][¬p][p,¬p] p ∨ ¬p ∨ ¬q by Trans and from this
obtain p ∨ ¬p ∨ ¬q by twice EM.

27 The disjunction of a singleton set of literals is obviously just a literal.

28 Officially one may consider all formulas that occur in conditions so far as targets, but
the effect is the same and the convention followed in the text is heuristically more transparent.
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It is possible to devise rules for deriving disjunctions of sets of literals from
the premises. However, this leads to many and complicated new instructions
and to a rather messy heuristics. The apparently simplest way to handle the
matter is to introduce an instruction that enables one to obtain a disjunction
of sets of literals from a prospective expression and next to restrict the rule
Trans with respect to goal-descendants. The first rule reads:

D [B1, . . . , Bn] A
∨

({A, ∗B1, . . . , ∗Bn})

whereas the restricted rule Trans for goal-descendants is called TransG and
looks as follows:

TransG
[∆ ∪ {A}] G

A
[∆] G

in which A is a disjunction of a (possibly singleton) set of literals. The rule
EM cannot be applied to goal-descendants in the present prospective proofs.

After presenting two example proofs, I shall comment on this logic. Con-
sider first a prospective proof for (p ∧ q) ⊃ r, p ∨ s, t ⊃ s,¬q ⊃ t ` s ∨ r.

1 [s ∨ r] s ∨ r Goal R16

2 [
∨

({r, s})] s ∨ r 1; C∨E R16

3 (p ∧ q) ⊃ r Prem
4 [p ∧ q] r 3; ⊃E
5 [p, q] r 4; C∧E
6 p ∨ s Prem
7 [¬s] p 6; ∨E
8 [¬s, q] r 5, 7; Trans
9 ¬q ⊃ t Prem
10 [¬t] q 9; C⊃E
11 t ⊃ s Prem
12 [¬s]¬t 11; C⊃E
13 [¬s] q 10, 12; Trans
14 [¬s] r 8, 13; Trans
15

∨

({r, s}) 14; D
16 s ∨ r 2, 15; TransG

The second example proof illustrates the absence of theorems in the present
system. Consider the attempted proof for ` (p ∧ q) ∨ ¬(p ∧ q).

1 [(p ∧ q) ∨ ¬(p ∧ q)] (p ∧ q) ∨ ¬(p ∧ q) Goal
2 [

∨

({p ∧ q,¬(p ∧ q)})] (p ∧ q) ∨ ¬(p ∧ q) 1; C∨E
3 [

∨

({p ∧ q,¬p,¬q})] (p ∧ q) ∨ ¬(p ∧ q) 2; C∨E
4 [

∨

({p,¬p,¬q}),
∨

({q,¬p,¬q})] (p ∧ q) ∨ ¬(p ∧ q) 3; C∧E
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The proof, which also illustrates the analysis of the goal condition, stops
right here. Obviously, every attempted proof without premises stops once
the goal condition is fully analysed.

The drawback of the present system is that the prospective dynamics it-
self does not encompass the proof heuristics. This is illustrated by the first
example proof. In order to obtain a successful proof, one needs to derive
∨

({r, s}). So one has to keep in mind that one needs to obtain either [¬s] r
or [¬r] s from the premises. Nevertheless, in deriving from the premises
all prospective expressions in view of the targets, one will find a successful
proof if there is one.

The absence of theorems in the present system should not be seen as a
drawback. Logic concerns inference. Theorems are merely side effects of
inference. Moreover, we do not want to have (p∧ q)∨¬(p∧ q) as a theorem
of analysing logic — p ∨ ¬p ∨ ¬q follows from it and can obviously not be
obtained by analysing means. But then we do not want p ∨ ¬p as a theo-
rem either, because otherwise the present version of analysing logic is not
structural. So the present prospective version of analysing logic has no the-
orems, but in return seems to be reflexive, transitive, monotonic, structural,
compact, and decidable, and moreover is a strict fragment of Q.

The reason for discussing analysing logic at length is that it will be helpful
to articulate a semantics that is adequate with respect to the full language of
Q and that does not require a syntactic transformation. Especially the last
prospective system seems valuable in this respect. It seems to agree with
Definition 6, provided one moreover requires that the conclusion is derived
from the premises.

7. In Praise of a Logic

As announced, I do not pretend that classical logic, in the present context P,
should be replaced by Q. Nevertheless Q is worth attention. It is a better
explication for proofs than P. At least two aspects of Q justify this claim.

The logic P was intended for consistent premise sets. For those, Q does at
least as good because it delivers exactly the same consequence sets. How-
ever, Q does better than P in that it prevents one from making heuristically
useless moves. This is the first aspect.

Note that P may be repaired in this respect, viz. by devising prospective
proofs for it. This was done in [7]. So the advantage is one of prospec-
tive proofs, rather than of the specific system Q.29 Nevertheless, Q has the

29 The prospective dynamics proved useful in other respects as well, for example it pro-
vides criteria for final derivability in adaptive logics, which have a consequence relation with
a high computational complexity. See [2, 22] for the criteria.
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advantage to be a natural system with respect to prospective proofs. In or-
der to devise prospective proofs for P, one needs to add EFQ to the rules
of Q. While Q consists of sensible and easily justifiable instructions, EFQ
is ad hoc and unnatural. In the context of Hilbert proofs, which presuppose
transitivity, EFQ is an unavoidable outcome of Addition and Disjunctive Syl-
logism. In the context of prospective proofs, EFQ does not result from any
insight in inference, but is merely a means to force inconsistent premise sets
into triviality. This makes it hard to justify EFQ in terms of prospective
proofs and precisely these proofs are superior to Hilbert proofs in view of
their goal-directed character.

The second aspect is related to inconsistent premise sets. To these P as-
signs the trivial consequence set. Logicians have looked for a justification
of this property. The only purported justification is that inconsistent premise
sets are false anyway. This requires some discussion.

Suppose for a moment that all inconsistent premise sets are false, as the
classicist claim goes. No argument in favour of P follows from this claim.
Indeed, whenever Γ is inconsistent, Q will reveal this and enable one to
classify the premise set as false. The whole point is what happens next.

Upon discovering that a premise set is inconsistent, no one actually derives
the trivial set from it. The reason is not only that it is impossible to do so in a
human lifetime (or during the existence of mankind), but rather that there is
no point in doing so. As soon as you derive an inconsistency from a premise
set, you know that the set is inconsistent. If you believe that all inconsistent
premise sets are false, you have to consider that premise set as false. But
why should one embark in deriving the trivial set, or rather claim that the
trivial set is derivable? The statement that inconsistent premise sets are false
might justify that it is harmless that P assigns the trivial consequence set
to inconsistent premise sets. But the statement does not entail that logics
should assign the trivial consequence set to inconsistent premise sets. That
shooting a corpse does not amount to murder, does not entail the obligation
to shoot corpses.

There are reasons to doubt the classicist position on inconsistency. That
all inconsistent premise sets are false has been questioned by an increasing
number of people — see [17, 6] and many other books and papers. However,
the classicist needs a further step to argue that it is harmless that P assigns
the trivial consequence set to inconsistent premise sets. Indeed, she needs to
show that there is no point in reasoning from inconsistent premise sets. This
cannot be shown because it is false.30 Even if all inconsistencies are false,

30 There is, for example, overwhelming evidence that inconsistencies occurred in the his-
tory of the sciences and that scientists reasoned from them. Examples from mathematics are
well-known: Cantor’s set theory, Frege’s set theory, Newton’s infinitesimal calculus, . . . ; for
some examples from the empirical sciences see [8, 10, 11, 13, 14, 15, 16, 19].
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our views on the world are often inconsistent. We have to reason from them,
were it only to arrive at consistent views. So even if all inconsistencies are
false, we still need paraconsistent logics.

I have pointed out that Q is an unusual paraconsistent logic. The reader
will have surmised that this is related to Q’s being non-transitive (for in-
consistent premise sets). And indeed, most paraconsistent logics are Tarski
logics. In at least one respect Q does better than all of those.

If a premise set is intended to be consistent but turns out inconsistent and
we want to replace it by a consistent one, we need to ‘interpret’ the premise
set “as consistently as possible”. This is typically the aim of inconsistency-
adaptive logics.31 In a sense, Q fulfils the same task. It provides a basis
for reasoning towards a consistent replacement of inconsistent theories. This
does not mean that Q makes inconsistency-adaptive logics superfluous. Han-
dling inconsistency (with the aim to eliminate it) is a methodological matter;
different approaches, and hence logics, are sensible and more or less suited
in specific situations. More often than not, the approaches provide differ-
ent bases for reasoning towards a consistent replacement. Which of them is
the best cannot be settled beforehand. Sometimes several consistent alterna-
tives differ drastically from each other, but are equally consistent and equally
close to the inconsistent original. The presumably consistent replacements
of Frege’s set theory are an obvious example.

Q provides only one of these approaches and not necessarily the most
attractive one. For example, although it does not turn inconsistency into
triviality, it spreads inconsistencies. Here are some examples:

a, ∗a `Q a1 ∧ ∗a1 and a, ∗a `Q a2 ∧ ∗a2

b, ∗b `Q b1 ∧ ∗b1 and b, ∗b `Q b2 ∧ ∗b2

A,¬A, B `Q (A ∧ B) ∧ ¬(A ∧ B)

A,¬A `Q ((A ∧ B) ∧ ¬(A ∧ B)) ∨ ((A ∧ ¬B) ∧ ¬(A ∧ ¬B))

(A1 ∧ ¬A1) ∨ . . . ∨ (An ∧ ¬An) `Q (A ∧ ¬A) ∧ . . . ∧ (An ∧ ¬An) .

This is not a disaster, but it is not attractive either. The more inconsistencies
are spread, the more difficult it is to find and eliminate their source.

Incidentally, Q solves a problem that was posed before in the literature. In
[12], Joke Meheus argues that it is unreasonable to expect a scientist to apply,
for example, disjunctive syllogism in some cases and not in others. If that is
correct, Q seems a good logic to explicate the way in which scientists handle

31 See [4] and many other papers. A provisional and incomplete version of the upcoming
survey book [5] is available on the web.
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inconsistency. Moreover, Q avoids certain technicalities that are required by
the logic AN, which is proposed in [12].

So the consequence sets Q assigns to inconsistent premise sets are sensible
in several respects. Moreover, those sets are defined by simple and natural
means: the very instructions that define the consequence sets of consistent
premise sets — precisely this is the point of the previous paragraph. In view
of this, the absence of transitivity (and even of cumulative transitivity) in Q is
not a reason for worry. P and Q agree on consistent premise sets and Q does
better for inconsistent premise sets. We have seen that assigning the trivial
consequence set to inconsistent premise sets is pointless and not justifiable
— at best excusable. The absence of transitivity is a price to pay, but the
return is (i) that inconsistent premise sets are assigned a sensible and useful
consequence set and (ii) that the set of instructions is systematic and natural.

Some have objected that Q concerns computational matters rather than
conceptual ones. This is mistaken. The computational aspects of Q are
related to the efficiency of the procedure and have hardly been given any
attention in the present paper. The prospective proofs, however, were devised
to get a grasp on the goal-directed aspects of logic and this is a conceptual
matter. This is the more obvious as Q is the direct and natural outcome of the
prospective dynamics. I have no proof that Q cannot be defined differently,
but doing so will apparently require meta-theoretical technicalities; I see no
way to characterize Q by means of a set of rules — see Section 3 — that
concern the handling of formulas of the object language.

So the circle seems to be closed. The prospective dynamics was originally
intended as a neutral means to push part of the proof heuristics into the proof
(for any logic). The prospective dynamics was first applied to P, viz. in [7].
There it turned out that EFQ is unnatural and ad hoc. It took some time
before it was realized that the result of dropping EFQ, viz. Q, is actually
superior to P as an explication for actual proofs. This suggests that we ques-
tion the philosophical views on inference that originated with Aristotle and
helped define ‘classical logic’ at the end of the nineteenth century.
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